Conservation Agriculture as a Sustainable System for Soil Health: A Review
Abstract
:1. Introduction
2. Conservation Agriculture
- (1)
- Continuous minimum mechanical soil disturbance;
- (2)
- Permanent soil organic cover with crop residues and/or cover crops;
- (3)
- Species diversification through varied crop rotations, sequences, and associations.
3. Soil Health
Soil Health Indicators
Key Soil Health Parameters | Reason |
---|---|
BIOLOGICAL | |
N mineralization | Capacity of the soil to supply N for crop growth |
Microbial biomass | Source and/or drain of C and nutrients |
Microbial activity | Related to the availability of nutrients and biogeochemical cycles |
Soil respiration | Indicator for biological activity and organic matter |
CHEMICAL | |
Organic carbon | Important for soil structure and fertility, and water-holding capacity |
Bio-available nutrient | Potential of nutrients to support plant development |
pH | Availability of nutrients |
CEC | Soil’s availability to supply plant nutrients |
EC | Related to soil structure, infiltration and crop development |
Potential pollutants | Potentially harmful for plant growth and plant–soil system health |
PHYSICAL | |
Penetration resistance | Related to infiltration capacity and erosion and runoff processes |
Aggregation | Indicator of soil structure and erosion protection |
Infiltration | Indicator for erosion and runoff |
Depth to hardpan | Roots growth potential |
Texture | Important for soil water and nutrient transfer and retention |
Water-holding capacity | Sufficient moisture to support plant growth |
4. Impact of Conservation Agriculture on Soil Health
4.1. Influence on Soil Physical Properties
4.1.1. Soil Structure
4.1.2. Bulk Density
4.1.3. Surface Seal and Soil Crust
4.1.4. Soil Compaction
4.1.5. Soil Moisture Content
4.1.6. Water Runoff and Soil Loss
4.1.7. Soil Temperature
4.2. Influence on Soil Chemical Properties
4.2.1. Soil Organic Carbon
4.2.2. Soil pH
4.2.3. Cation Exchange Capacity
4.2.4. Nutrient Availability
4.3. Influence on Soil Biological Properties
4.3.1. Microbial Activity
4.3.2. Soil Enzymatic Activities
4.3.3. Earthworms
4.3.4. Soil Respiration
5. Conclusions and Future Perspectives
- -
- Unavailability of appropriate equipment and machines, especially for small- and medium-scale farms;
- -
- Use of crop residues for livestock feed and fuel;
- -
- Lack of knowledge about the benefits of CA and how to implement CA;
- -
- Farmer mind-sets that limit the adoption of CA due to traditions or prejudices;
- -
- Lack of technical and financial support from governments, international organizations, and/or extension agencies;
- -
- Technical problems that can arise with the adoption of CA practices such as inadequate weed management, nutrient stratification, lower N availability, development of surface crust, etc., which can translate into a decrease in yield and can motivate farmers to abandon the system.
- -
- Improve the availability of machinery and supplies of plant nutrition;
- -
- Identify and eliminate sociocultural barriers to CA adoption;
- -
- Improve locally adapted management, such as appropriate crop rotations or the frequency and optimal timing of strategic tillage;
- -
- Increase institutional support, research, efficiency of extension services, and information dissemination mechanisms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foley, J.; Ramankutty, N.; Brauman, K.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- German, R.N.; Thompson, C.E.; Benton, T.G. Relationships among multiple aspects of agriculture’s environmental impact and productivity: A meta-analysis to guide sustainable agriculture. Biol. Rev. Camb. Philos. Soc. 2017, 92, 716–738. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.; Wu, W. Soil and Crop Management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef] [Green Version]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil health in agricultural systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 685–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO & ITPS. Status of the World’s Soil Resources (SWSR): Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015; Volume 650, Available online: https://www.fao.org/3/i5199e/i5199e.pdf (accessed on 9 November 2021).
- Moebius-Clune, B.N.; Moebius-Clune, D.J.; Gugino, B.K.; Idowu, O.J.; Schindelbeck, R.R.; Ristow, A.J.; van Es, H.M.; Thies, J.E.; Shayler, H.A.; McBride, M.B.; et al. Comprehensive Assessment of Soil Health—The Cornell Framework, 3.2 ed.; Cornell University: Geneva, NY, USA, 2016. [Google Scholar]
- Smith, P.; Gregory, P.J. Climate change and sustainable food production. Proc. Nutr. Soc. 2013, 72, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudary, M.; Ghasal, P.C.; Kumar, S.R.P.; Yadav, S.S.; Meena, V.S.; Bisht, J.K. Conservation Agriculture and Climate Change: An Overview. In Conservation Agriculture; Bisht, J., Meena, V., Mishra, P., Pattanayak, A., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- González-Sánchez, E.J.; Moreno-García, M.; Kassam, A.; Holgado-Cabrera, A.; Triviño-Tarradas, P.; Carbonell-Bojollo, R.; Pisante, M.; Veroz-González, O.; Basch, G. Conservation Agriculture: Making Climate Change Mitigation and Adaptation Real in Europe; ECAF: Brussels, Belgium, 2017. [Google Scholar] [CrossRef]
- Smith, P.; Olesen, J.E. Synergies between the mitigation of, and adaptation to, climate change in agriculture. J. Agric. Sci 2010, 148, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Escamilla, R. Food Security and the 2015–2030 Sustainable Development Goals: From Human to Planetary Health: Perspectives and Opinions. Curr. Dev. Nutr. 2017, 1, e000513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, J.; Subedi, S.; Timsina, K.; Chaudhary, A.; Kandel, M.; Tripathi, S. Conservation agriculture as an approach towards sustainable crop production: A Review. Farming Manag. 2020, 5, 7–15. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- FAO. Conservation Agriculture. 2015. Available online: https://www.fao.org/conservation-agriculture/en/ (accessed on 19 October 2021).
- Ikazaki, K.; Nagumo, F.; Simporé, S.; Barro, A. Are all three components of conservation agriculture necessary for soil conservation in the Sudan Savanna? Soil Sci. Plant Nutr. 2018, 64, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Jat, M.L.; Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Gathala, M.K.; McDonald, A.; Gerard, B. Conservation agriculture for sustainable intensification in South Asia. Nat. Sustain. 2020, 3, 336–343. [Google Scholar] [CrossRef]
- Yigezu, Y.A.; El-Shater, T.; Boughlala, M.; Devkota, M.; Mrabet, R.; Moussadek, R. Can an incremental approach be a better option in the dissemination of conservation agriculture? Some socioeconomic justifications from the drylands of Morocco. Soil Tillage Res. 2021, 212, 105067. [Google Scholar] [CrossRef]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond conservation agriculture. Front. Plant Sci. 2015, 6, 870. [Google Scholar] [CrossRef] [Green Version]
- Rodenburg, J.; Büchi, L.; Haggar, J. Adoption by adaptation: Moving from Conservation Agriculture to conservation practices. Int. J. Agric. Sustain. 2020, 19, 437–455. [Google Scholar] [CrossRef]
- FAO. Save and Grow: A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; Available online: https://www.fao.org/3/i2215e/i2215e.pdf (accessed on 16 November 2021).
- Das, T.K.; Nath, C.P.; Das, S.; Biswas, S.; Bhattacharyya, R.; Sudhishri, S.; Raj, R.; Singh, B.; Kakralia, S.K.; Rathi, N.; et al. Conservation agriculture in rice-mustard cropping system for five years: Impacts on crop productivity, profitability, water-use efficiency, and soil properties. Field Crops Res. 2020, 250, 107781. [Google Scholar] [CrossRef]
- Jat, H.S.; Choudhary, K.M.; Nandal, D.P.; Yadav, A.K.; Poonia, T.; Singh, Y.; Sharma, P.C.; Jat, M.L. Conservation agriculture-based sustainable intensification of cereal systems leads to energy conservation, higher productivity and farm profitability. Environ. Manag. 2020, 65, 774–786. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Li, H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar] [CrossRef]
- Lal, R. Sustainable intensification of China’s agroecosystems by conservation agriculture. Int. Soil Water Conserv. Res. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Bhan, S.; Behera, U.K. Conservation agriculture in India—Problems, prospects and policy issues. Int. Soil Water Conserv. Res. 2014, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, P.R. Conservation agriculture: What is it and why is it important for future sustainable food production? J. Agric. Sci. 2007, 145, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Sahu, G.; Mohanty, S.; Das, S. Conservation agriculture—A way to improve soil health. J. Exp. Biol. Agric. Sci. 2020, 8, 355–368. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.J.; Veroz, G.O.; Moreno, G.M.; Gomez, A.M.R.; Ordoñez, F.R.; Trivino, T.P.; Kassam, A.; Gil, R.J.A.; Basch, G.; Carbonell, B.R. Climate change adaptability and mitigation with conservation agriculture. In Food Science, Technology and Nutrition, Rethinking Food and Agriculture; Woodhead Publishing Series; Kassam, A., Kassam, L., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 231–246. [Google Scholar] [CrossRef]
- Indoria, A.K.; Rao, C.S.; Sharma, K.L.; Reddy, K.S. Conservation agriculture—A panacea to improve soil physical health. Curr. Sci. 2017, 112, 52–61. Available online: http://www.jstor.org/stable/24911616 (accessed on 10 November 2022). [CrossRef]
- Subbulakshmi, S.; Saravanan, N.; Subbian, P. Conventional tillage vs. conservation tillage—A review. Agric. Rev. 2009, 30, 56–63. [Google Scholar]
- Madarász, B.; Juhos, K.; Ruszkiczay, R.Z.; Benke, S.; Jakab, G.; Szalai, Z. Conservation tillage vs. conventional tillage: Long-term effects on yields in continental, sub-humid Central Europe, Hungary. Int. J. Agric. Sustain. 2016, 14, 408–427. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.; Helfrich, M.; Hanisch, S.; Quendt, U.; Rauber, R.; Ludwig, B. Effect of conventional and minimum tillage on physical and biochemical stabilization of soil organic matter. Biol. Fertil. Soils 2010, 46, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Busari, A.M.; Kuka, L.S.S.; Amanpreet, K.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 2, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Stevens, A.W. Review: The economics of soil health. Food Policy 2018, 80, 1–9. [Google Scholar] [CrossRef]
- White, C.M.; DuPont, S.T.; Hautau, M.; Hartman, D.; Finney, D.M.; Bradley, B.; LaChance, J.C.; Kaye, J.P. Managing the trade-off between nitrogen supply and retention with cover crop mixtures. Agric. Ecosyst. Environ. 2017, 237, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Jaffuel, G.; Blanco-Pérez, R.; Büchi, L.; Mäder, P.; Fließbach, A.; Charles, R.; Degen, T.; Turlings, T.C.J.; Campos-Herrera, R. Effects of cover crops on the overwintering success of entomopathogenic nematodes and their antagonists. Appl. Soil Ecol. 2017, 114, 62–73. [Google Scholar] [CrossRef]
- Lyon, D.J.; Nielsen, D.C.; Felter, D.G.; Burgener, P.A. Choice of summer fallow replacement crops impacts subsequent winter wheat. Agron. J. 2007, 99, 578–584. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, T.C.; Jaynes, D.B.; Parkin, T.B.; Moorman, T.B.; Singer, J.W. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water. Agric. Water Manag. 2012, 110, 25–33. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Cates, A.M.; Ruark, M.D.; Grandy, A.S.; Jackson, R.D. Small soil C cycle responses to three years of cover crops in maize cropping systems. Agric. Ecosyst. Environ. 2019, 286, 106649. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Chang. Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Carbonell, B.R.; Ordoñez, F.R.; Torres, F.P.; Durán, Z.V.H. Conservation agriculture practices to improve the soil water management and soil carbon storage in Mediterranean rainfed agro-ecosystems. In Soil Health Restoration and Management; Meena, R., Ed.; Springer: Singapore, 2020; pp. 203–230. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Clark, A.J.; Decker, A.M.; Meisinger, J.J.; McIntosh, M.S. Kill date of vetch, rye, and a vetch-rye mixture: I. Cover crop and corn nitrogen. Agron. J. 1997, 89, 427–434. [Google Scholar] [CrossRef]
- Ladan, S.; Jacinthe, P.A. Nitrogen availability and early corn growth on plowed and no till soils amended with different types of cover crops. J. Soil Sci. Plant Nutr. 2017, 1, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.P.; Shrestha, A.; Irmak, S. Trade-offs between winter cover crop production and soil water depletion in the San Joaquin Valley, California. J. Soil Water Conserv. 2015, 70, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Stagnari, F.; Galieni, A.; Speca, S.; Cafiero, G.; Pisante, M. Effects of straw mulch on growth and yield of durum wheat during transition to conservation agriculture in Mediterranean environment. Field Crops Res. 2014, 167, 51–63. [Google Scholar] [CrossRef]
- Bhullar, M.S.; Pandey, M.; Kumar, S.; Gill, G. Weed management in conservation agriculture in India. Indian J. Weed Sci. 2016, 48, 1–12. [Google Scholar] [CrossRef]
- Farooq, M.; Flower, K.C.; Jabran, K.; Wahid, A.; Siddique, K.H.M. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 2011, 117, 172–183. [Google Scholar] [CrossRef]
- Bonfante, A.; Basile, A.; Bouma, J. Targeting the soil quality and soil health concepts when aiming for the United Nations Sustainable Development Goals and the EU Green Deal. Soil 2020, 6, 453–466. [Google Scholar] [CrossRef]
- Laishram, J.; Saxena, K.G.; Maikhuri, R.K.; Rao, K.S. Soil quality and soil health: A review. Int. J. Ecol. Environ. Sci. 2012, 38, 19–37. [Google Scholar]
- USDA. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 25 October 2021).
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping systems in agriculture and their impact on soil health—A review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Wang, K.H.; Hooks, C.R.R. Chapter 4: Managing soil health and soil health bioindicators through the use of cover crops and other sustainable practices. In MD Organic Vegetable Growers; Brust, G.E., Ed.; University of Maryland: College Park, MD, USA, 2011. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Fierer, N.; Wood, S.A.; Bueno de Mesquita, C.P. How microbes can, and cannot, be used to assess soil health. Soil Biol. Biochem. 2021, 153, 108111. [Google Scholar] [CrossRef]
- Thoumazeau, A.; Bessou, C.; Renevier, M.S.; Trap, J.; Marichal, R.; Mareschal, L.; Decaëns, T.; Bottinelli, N.; Jaillard, B.; Chevallier, T.; et al. Biofunctool®: A new framework to assess the impact of land management on soil quality: Part A: Concept and validation of the set of indicators. Ecol. Indic. 2019, 97, 100–110. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Comparison of soil quality index using three methods. PLoS ONE 2014, 9, e105981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherubin, M.R.; Karlen, D.L.; Cerri, C.E.P.; Franco, A.L.C.; Tormena, C.A.; Davies, C.A.; Cerri, C.C. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS ONE 2016, 11, e0150860. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Rinot, O.; Levy, G.J.; Steinberger, Y.; Svoray, T.; Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total Environ. 2019, 648, 1484–1491. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; dos Santos, C.A.; Alves, P.R.L.; de Paula, A.M.; Nakatani, A.S.; Pereira, J.M.; Nogueira, M.A. Soil health: Looking for suitable indicators: What should be considered to assess the effects of use and management on soil health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef] [Green Version]
- Hermans, T.D.G.; Dougill, A.J.; Whitfield, S.; Peacock, C.L.; Eze, S.; Thierfelder, C. Combining local knowledge and soil science for integrated soil health assessments in conservation agriculture systems. J. Environ. Manag. 2021, 286, 112192. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Morrow, J.G.; Huggins, D.R.; Carpenter-Boggs, L.A.; Reganold, J.P. Evaluating measures to assess soil health in long-term agroecosystem trials. Soil Sci. Soc. Am. J. 2016, 80, 450–462. [Google Scholar] [CrossRef]
- Qi, Y.; Darilek, J.L.; Huang, B.; Zhao, Y.; Sun, W.; Gu, Z. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- Caron, P.; Biénabe, E.; Hainzelin, E. Making transition towards ecological intensification of agriculture a reality: The gaps in and the role of scientific knowledge. Curr. Opin. Environ. Sustain. 2014, 8, 44–52. [Google Scholar] [CrossRef]
- Kassam, A.; Derpsch, R.; Friedrich, T. Global achievements in soil and water conservation: The case of conservation agriculture. Int. Soil Water Conserv. Res. 2014, 2, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Zhang, Q. Effects of Soil Aggregate Stability on Soil Organic Carbon and Nitrogen under Land Use Change in an Erodible Region in Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 3809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spohn, M.; Giani, L. Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time. Soil Biol. Biochem. 2011, 43, 1081–1088. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Cherubin, M.R.; da Silva Oliveira, D.M.; Feigl, B.J.; Pimentel, L.G.; Lisboa, I.P.; Gmach, M.R.; Varanda, L.L.; Morais, M.C.; Satiro, L.S.; Popin, G.V.; et al. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Sci. Agric. 2018, 75, 255–272. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.W. Impact of soil organic matter on soil properties—A review with emphasis on Australian soils. Soil Res. 2015, 53, 605. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Shen, J.H.; Luo, Y.M.; Scheu, S.; Ke, X. Tillage, residue burning and crop rotation alter soil fungal community and water-stable aggregation in arable fields. Soil Tillage Res. 2010, 107, 71–79. [Google Scholar] [CrossRef]
- Azooz, R.H.; Arshad, M.A. Soil infiltration and hydraulic conductivity under long-term no-tillage and conventional tillage systems. Can. J. Soil Sci. 1996, 76, 143–152. [Google Scholar] [CrossRef]
- Castellanos-Navarrete, A.; Rodríguez, A.C.; de Goede, R.G.M.; Kooistra, M.J.; Sayre, K.D.; Brussaard, L.; Pulleman, M.M. Earthworm activity and soil structural changes under conservation agriculture in central Mexico. Soil Tillage Res. 2012, 123, 61–70. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Goudeseune, B.; De Corte, P.; Lichter, K.; Dendooven, L.; Deckers, J. Conservation agriculture as a sustainable option for the central Mexican highlands. Soil Tillage Res. 2009, 103, 222–230. [Google Scholar] [CrossRef]
- Sithole, N.J.; Magwaza, L.S.; Thibaud, G.R. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Tillage Res. 2019, 190, 147–156. [Google Scholar] [CrossRef]
- Thierfelder, C.; Wall, P.C. Rotation in conservation agriculture systems of Zambia: Effects on soil quality and water relations. Exp. Agric. 2010, 46, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Nyamangara, J.; Marondedze, A.; Masvaya, E.N.; Mawodza, T.; Nyawasha, R.; Nyengerai, K.; Tirivavi, R.; Nyamugafata, P.; Wuta, M. Influence of basin-based conservation agriculture on selected soil quality parameters under smallholder farming in Zimbabwe. Soil Use Manag. 2014, 30, 550–559. [Google Scholar] [CrossRef]
- Zhang, H.; Niu, L.; Hu, K.; Hao, J.; Li, F.; Gao, Z.; Wang, X. Influence of tillage, straw-returning and mineral fertilization on the stability and associated organic content of soil aggregates in the North China Plain. Agronomy 2020, 10, 951. [Google Scholar] [CrossRef]
- Eze, S.; Dougill, A.J.; Banwart, S.A.; Hermans, T.D.G.; Ligowe, I.S.; Thierfelder, C. Impacts of conservation agriculture on soil structure and hydraulic properties of Malawian agricultural systems. Soil Tillage Res. 2020, 201, 104639. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Somasundaram, J.; Salikram, M.; Sinha, N.K.; Mohanty, M.; Chaudhary, R.S.; Dalal, R.C.; Mitra, R.; Blaise, N.; Coumar, D.; Hati, V.; et al. Conservation agriculture effects on soil properties and crop productivity in a semiarid region of India. Soil Res. 2019, 57, 187–199. [Google Scholar] [CrossRef]
- Mloza-Banda, H.R.; Makwiza, C.N.; Mloza-Banda, M.L. Soil properties after conversion to conservation agriculture from ridge tillage in Southern Malawi. J. Arid Environ. 2016, 127, 7–16. [Google Scholar] [CrossRef]
- Gómez-Muñoz, B.; Jensen, L.S.; Munkholm, L.; Olesen, J.E.; Møller Hansen, E.; Bruun, S. Long-term effect of tillage and straw retention in conservation agriculture systems on soil carbon storage. Soil Sci. Soc. Am. J. 2021, 85, 1465–1478. [Google Scholar] [CrossRef]
- Cheesman, S.; Thierfelder, C.; Eash, N.S.; Kassie, G.T.; Frossard, E. Soil carbon stocks in conservation agriculture systems of Southern Africa. Soil Tillage Res. 2016, 156, 99–109. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q.P. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Mondal, S.; Mishra, J.S.; Poonia, S.P.; Kumar, R.; Dubey, R.; Kumar, S.; Verma, M.; Rao, K.K.; Ahmed, A.; Dwivedi, S.; et al. Can yield, soil C and aggregation be improved under long-term conservation agriculture in the eastern Indo-Gangetic plain of India? Eur. J. Soil Sci. 2021, 72, 1742–1761. [Google Scholar] [CrossRef]
- Laborde, J.P.; Wortmann, C.S.; Blanco-Canqui, H.; McDonald, A.J.; Baigorria, G.A.; Lindquist, J.L. Short-term impacts of conservation agriculture on soil physical properties and productivity in the Midhills of Nepal. Agron. J. 2019, 111, 2128–2139. [Google Scholar] [CrossRef]
- Kay, B.D.; VandenBygaart, A.J. Conservation tillage and depth stratification of porosity and soil organic matter. Soil Tillage Res. 2002, 66, 107–118. [Google Scholar] [CrossRef]
- He, J.; Kuhn, N.J.; Zhang, X.M.; Zhang, X.R.; Li, H.W. Effects of 10 years of conservation tillage on soil properties and productivity in the farming–pastoral ecotone of Inner Mongolia, China. Soil Use Manag. 2009, 25, 201–209. [Google Scholar] [CrossRef]
- Nyamadzawo, G.; Chikowo, R.; Nyamugafata, P.; Giller, K.E. Improved legume tree fallows and tillage effects on structural stability and infiltration rates of a kaolinitic sandy soil from central Zimbabwe. Soil Tillage Res. 2007, 96, 182–194. [Google Scholar] [CrossRef]
- Mondal, S.; Poonia, S.P.; Mishra, J.S.; Bhatt, B.P.; Karnena, K.R.; Saurabh, K.; Rakesh, K.; Chakraborty, D. Short-term (5 years) impact of conservation agriculture on soil physical properties and organic carbon in a rice–wheat rotation in the indo-Gangetic plains of Bihar. Eur. J. Soil Sci. 2019, 71, 1076–1089. [Google Scholar] [CrossRef]
- Islam, R.; Reeder, R. No-till and conservation agriculture in the United States: An example from the David Brandt farm, Carroll, Ohio. Int. Soil Water Conserv. Res. 2014, 2, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Parihar, C.M.; Yadav, M.R.; Jat, S.L.; Singh, A.K.; Kumar, B.; Pradhan, S.; Chakraborty, D.; Jat, M.L.; Jat, R.K.; Saharawat, Y.S.; et al. Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains. Soil Tillage Res. 2016, 161, 116–128. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Bertolla, C.; Urbani, S.; Taticchi, A.; Esposto, S.; Servili, M.; Sifola, M.I.; Pellegrini, S.; Pagliai, M.; et al. Changes of soil properties and tree performance induced by soil management in a high-density olive orchard. Eur. J. Agron. 2012, 41, 18–27. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop residue removal impacts on soil productivity and environmental quality. CRC Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Lahmar, R. Adoption of conservation agriculture in Europe: Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Usón, A.; Poch, R.M. Effects of tillage and management practices on soil crust morphology under a Mediterranean environment. Soil Tillage Res. 2000, 54, 191–196. [Google Scholar] [CrossRef]
- Baudron, F.; Tittonell, P.; Corbeels, M.; Letourmy, P.; Giller, K.E. Comparative performance of conservation agriculture and current smallholder farming practices in semi-arid Zimbabwe. Field Crops Res. 2012, 132, 117–128. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Lascano, R.J. Rain infiltration as affected by wheat residue amount and distribution in ridged tillage. Soil Sci. Soc. Am. J. 1996, 60, 1908–1913. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. 2020, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Dang, Y.P.; Seymour, N.P.; Walker, S.R.; Bell, M.J.; Freebairn, D.M. Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: I. Drivers and implementation. Soil Tillage Res. 2015, 152, 104–114. [Google Scholar] [CrossRef]
- Ruan, H.X.; Ahuja, L.R.; Green, T.R.; Benjamın, J.G. Residue cover and surface-sealing effects on infiltration: Numerical simulations for field applications. Soil Sci. Soc. Am. J. 2001, 65, 853–861. [Google Scholar] [CrossRef] [Green Version]
- McGarry, D.; Bridge, B.J.; Radford, B.J. Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics. Soil Tillage Res. 2000, 53, 105–115. [Google Scholar] [CrossRef]
- Verhulst, N.; Carrillo, G.A.; Moeller, C.; Trethowan, R.; Sayre, K.D.; Govaerts, B. Conservation agriculture for wheat-based cropping systems under gravity irrigation: Increasing resilience through improved soil quality. Plant Soil 2011, 340, 467–479. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. Stable high yields with zero tillage and permanent bed planting? Field Crops Res. 2005, 94, 33–42. [Google Scholar] [CrossRef]
- Stagnari, F.; Ramazzotti, S.; Pisante, M. Conservation agriculture: A different approach for crop production through sustainable soil and water management: A Review. In Organic Farming, Pest Control and Remediation of Soil Pollutants; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer: Dordrecht, The Netherlands, 2009; Volume 1, pp. 55–83. [Google Scholar] [CrossRef]
- Mondal, S.; Das, T.K.; Thomas, P.; Mishra, A.; Bandyopadhyay, K.; Aggarwal, P.; Chakraborty, D. Effect of conservation agriculture on soil hydro-physical properties, total and particulate organic carbon and root morphology in wheat (Triticum aestivum) under rice (Oryza sativa)-wheat system. Indian J. Agric. Sci. 2019, 89, 46–55. [Google Scholar]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res. 2011, 117, 17–27. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Schjønning, P.; Rasmussen, K.J.; Tanderup, K. Spatial and temporal effects of direct drilling on soil structure in the seedling environment. Soil Tillage Res. 2003, 71, 163–173. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Moreno, F.; Arrúe, J.L.; Cantero-Martínez, C.; López, M.V.; Murillo, J.M.; Sombrero, A.; López-Garrido, R.; Madejón, E.; Moret, D.; Álvaro-Fuentes, J. Conservation agriculture under Mediterranean conditions in Spain. In Biodiversity, Biofuels, Agroforestry and Conservation Agriculture; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer: Dordrecht, The Netherlands, 2010; Volume 5, pp. 175–193. [Google Scholar] [CrossRef] [Green Version]
- Wortmann, C.S.; Drijber, R.A.; Franti, T.G. One-time tillage of no-till crop land five years post-tillage. Agron. J. 2010, 102, 1302–1307. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, N.; Sayre, K.D.; Vargas, M.; Crossa, J.; Deckers, J.; Raes, D.; Govaerts, B. Wheat yield and tillage–straw management system×year interaction explained by climatic co-variables for an irrigated bed planting system in north-western Mexico. Field Crops Res. 2011, 124, 347–356. [Google Scholar] [CrossRef]
- Ghosh, B.N.; Dogra, P.; Sharma, N.K.; Bhattacharyya, R.; Mishra, P.K. Conservation agriculture impact for soil conservation in maize–wheat cropping system in the Indian sub-Himalayas. Int. Soil Water Conserv. Res. 2015, 3, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Sławiński, C.; Cymerman, J.; Witkowska-Walczak, B.; Lamorski, K. Impact of diverse tillage on soil moisture dynamics. Int. Agrophys. 2015, 26, 301–309. [Google Scholar] [CrossRef]
- Thierfelder, C.; Wall, P.C. Investigating conservation agriculture (CA) systems in Zambia and Zimbabwe to mitigate future effects of climate change. J. Crop. Improv. 2010, 24, 113–121. [Google Scholar] [CrossRef]
- Busari, A.M.; Salako, F.K.; Tuniz, C.; Zuppi, G.M.; Stenni, B.; Adetunji, M.T.; Arowolo, T.A. Estimation of soil water evaporative loss after tillage operation using the stable isotope technique. Int. Agrophys. 2013, 27, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Parihar, C.M.; Nayak, H.S.; Rai, V.K.; Jat, S.L.; Parihar, N.; Aggarwal, P.; Mishra, A.K. Soil water dynamics, water productivity and radiation use efficiency of maize under multi-year conservation agriculture during contrasting rainfall events. Field Crops Res. 2019, 241, 107570. [Google Scholar] [CrossRef]
- TerAvest, D.; Carpenter-Boggs, L.; Thierfelder, C.; Reganold, J.P. Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malawi. Agric. Ecosyst. Environ. 2015, 212, 285–296. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, B.Y.; Liu, S.L.; Qi, J.Y.; Wang, X.; Pu, C.; Li, S.S.; Zhang, X.Z.; Yang, X.G.; Lal, R.; et al. Sustaining crop production in China’s cropland by crop residue retention: A meta-analysis. Land Degrad. Dev. 2020, 31, 694–709. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Das, A.; Saha, R.; Kharkrang, E.; Tripathi, A.K.; Munda, G.C.; Ngachan, S.V. Conservation agriculture towards achieving food security in North East India. Curr. Sci. 2010, 99, 915–922. [Google Scholar]
- Mondal, S.; Chakraborty, D.; Das, T.K.; Shrivastava, M.; Mishra, A.K.; Bandyopadhyay, K.K.; Aggarwal, P.; Chaudhari, S.K. Conservation agriculture had a strong impact on the sub-surface soil strength and root growth in wheat after a 7-year transition period. Soil Tillage Res. 2019, 195, 104385. [Google Scholar] [CrossRef]
- Chalise, K.S.; Singh, S.; Wegner, B.R.; Kumar, S.; Pérez, G.J.D.; Osborne, S.L.; Nleya, T.; Guzman, J.; Rohila, J.S. Cover crops and returning residue impact on soil organic carbon, bulk density, penetration resistance, water retention, infiltration, and soybean yield. Agron. J. 2018, 110, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Mutuku, E.A.; Roobroeck, D.; Vanlauwe, B.; Boeckx, P.; Cornelis, W.M. Maize production under combined conservation agriculture and integrated soil fertility management in the sub-humid and semi-arid regions of Kenya. Field Crops Res. 2020, 254, 107833. [Google Scholar] [CrossRef]
- Sindelar, M.; Blanco-Canqui, H.; Jin, V.L.; Ferguson, R.B. Cover crops and corn residue removal: Impacts on soil hydraulic properties and their relationships with carbon. Soil Sci. Soc. Am. J. 2019, 83, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, M.; Rana, K.S.; Meena, M.C.; Bana, R.S.; Jakhar, P.; Ghasal, P.C.; Verma, R.K. Changes in physico-chemical and biological properties of soil under conservation agriculture based pearl millet–mustard cropping system in rainfed semi-arid region. Arch. Agron. Soil Sci. 2019, 65, 911–927. [Google Scholar] [CrossRef]
- Singh, B.; Eberbach, P.L.; Humphreys, E.; Kukal, S.S. The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Field Crops Res. 2011, 98, 1847–1855. [Google Scholar] [CrossRef]
- Gupta, R.; Sayre, K. Conservation agriculture in South Asia. J. Agric. Sci. 2007, 145, 207–214. [Google Scholar] [CrossRef]
- Assefa, T.; Jha, M.; Reyes, M.; Worqlul, A.W. Modeling the impacts of conservation agriculture with a drip irrigation system on the hydrology and water management in Sub-Saharan Africa. Sustainability 2018, 10, 4763. [Google Scholar] [CrossRef] [Green Version]
- Belay, S.A.; Schmitter, P.; Worqlul, A.W.; Steenhuis, T.S.; Reyes, M.R.; Tilahun, S.A. Conservation agriculture saves irrigation water in the dry monsoon phase in the Ethiopian Highlands. Water 2019, 11, 2103. [Google Scholar] [CrossRef] [Green Version]
- Jat, H.S.; Kumar, V.; Datta, A.; Choudhary, M.; Singh, Y.; Kakraliya, S.K.; Poonia, T.; McDonald, A.J.; Jat, M.L.; Sharma, P.C. Designing profitable, resource use efficient and environmentally sound cereal based systems for the Western Indo-Gangetic plains. Sci. Rep. 2020, 10, 19267. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.; Steinbach, H. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.Q.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Pu, C.; Zhang, X.; Xue, J.; Ren, Y.; Zhao, X.; Chen, F.; Lal, R.; Zhang, H. Crop yields under no-till farming in China: A meta-analysis. Eur. J. Agron. 2017, 84, 67–75. [Google Scholar] [CrossRef]
- Lu, X. A meta-analysis of the effects of crop residue return on crop yields and water use efficiency. PLoS ONE 2020, 15, e0231740. [Google Scholar] [CrossRef]
- Sun, L.; Wang, S.; Zhang, Y.; Li, J.; Wang, X.; Wang, R.; Lyu, W.; Chen, N.; Wang, Q. Conservation agriculture based on crop rotation and tillage in the semi-arid Loess Plateau, China: Effects on crop yield and soil water use. Agric. Ecosyst. Environ. 2018, 251, 67–77. [Google Scholar] [CrossRef]
- Das, T.K.; Bandyopadhyay, K.K.; Bhattacharyya, R.; Sudhishri, S.; Sharma, A.R.; Behera, U.K.; Saharawat, Y.S.; Sahoo, P.K.; Pathak, H.; Vyas, A.K.; et al. Effects of conservation agriculture on crop productivity and water-use efficiency under an irrigated pigeonpea–wheat cropping system in the western Indo-Gangetic Plains. J. Agric. Sci. 2016, 154, 1327–1342. [Google Scholar] [CrossRef]
- Rockström, J.; Kaumbutho, P.; Mwalley, J.; Nzabi, A.W.; Temesgen, M.; Mawenya, L.; Barron, J.; Mutua, J.; Damgaard-Larsen, S. Conservation farming strategies in East and Southern Africa: Yields and rain water productivity from on-farm action research. Soil Tillage Res. 2009, 103, 23–32. [Google Scholar] [CrossRef]
- Milgroom, J.; Soriano, M.A.; Garrido, J.M.; Gómez, J.A.; Fereres, E. The influence of a shift from conventional to organic olive farming on soil management and erosion risk in Southern Spain. Renew. Agric. Food Syst. 2007, 22, 1–10. [Google Scholar] [CrossRef]
- Correia, C.M.; Brito, C.; Sampaio, A.; Dias, A.A.; Bacelar, E.; Gonçalves, B.; Ferreira, H.; Moutinho, P.J.; Rodrigues, M.A. Leguminous cover crops improve the profitability and the sustainability of rainfed olive (Olea europaea L.) orchards: From soil biology to physiology of yield determination. Procedia Environ. Sci. 2015, 29, 282–283. [Google Scholar] [CrossRef] [Green Version]
- Arampatzis, G.; Hatzigiannakis, E.; Pisinaras, V.; Kourgialas, N.; Psarras, G.; Kinigopoulou, V.; Panagopoulos, A.; Koubouris, G. Soil water content and olive tree yield responses to soil management, irrigation, and precipitation in a hilly Mediterranean area. J. Water Clim. Chang. 2018, 9, 672–678. [Google Scholar] [CrossRef]
- Krstić, Đ.; Vujić, S.; Jaćimović, G.; D’Ottavio, P.; Radanović, Z.; Erić, P.; Ćupina, B. The effect of cover crops on soil water balance in rain-fed conditions. Atmosphere 2018, 9, 492. [Google Scholar] [CrossRef] [Green Version]
- Durán, Z.V.H.; Rodríguez, P.C.R.; Arroyo, P.L.; Martínez, R.A.; Francia, M.J.R.; Cárceles, R.B. Soil conservation measures in rainfed olive orchards in South-Eastern Spain: Impacts of plant strips on soil water dynamics. Pedosphere 2009, 19, 453–464. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Mastrangelo, M.; Caputo, F.; Manici, L.M. Estimating the soil hydraulic functions of some olive orchards: Soil management implications for water saving in soils of Salento peninsula (southern Italy). Agronomy 2020, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Abazi, U.; Lorite, I.J.; Cárceles, R.B.; Martínez, R.A.; Durán, Z.V.H.; Francia, M.J.R.; Gómez, J.A. WABOL: A conceptual water balance model for analyzing rainfall water use in olive orchards under different soil and cover crop management strategies. Comput. Electron. Agric. 2013, 91, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Rusinamhodzi, L.; Corbeels, M.; van Wijk, M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657. [Google Scholar] [CrossRef] [Green Version]
- Thierfelder, C.; Wall, P.C. Effects of conservation agriculture on soil quality and productivity in contrasting agro-ecological environments of Zimbabwe. Soil Use Manag. 2012, 28, 209–220. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [Green Version]
- Cárceles, R.B.; Durán, Z.V.H.; Soriano, R.M.; Cermeño, S.P.; Gálvez, R.B.; Carbonell, B.R.; Ordoñez, F.R.; García, T.I.F. Soil and water conservation measures for Mediterranean fruit crops in rainfed hillslopes. In Resources Use Efficiency in Agriculture; Kumar, S., Meena, R.S., Jhariya, M.K., Eds.; Springer: Singapore, 2020; pp. 427–480. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Rodríguez, P.C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Thierfelder, C.; Wall, P.C. Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res. 2009, 105, 217–227. [Google Scholar] [CrossRef]
- Kurothe, R.S.; Kumar, G.; Singh, R.; Singh, H.B.; Tiwari, S.P.; Vishwakarma, A.K.; Sena, D.R.; Pande, V.C. Effect of tillage and cropping systems on runoff, soil loss and crop yields under semiarid rainfed agriculture in India. Soil Tillage Res. 2014, 140, 126–134. [Google Scholar] [CrossRef]
- Panachuki, E.; Bertol, I.; Alves Sobrinho, T.; Sanches de Oliveira, P.T.; Bicca Rodrigues, D.B.B. Soil and water loss and water infiltration in red latosol under different management systems. Rev. Bras. Cienc. Solo 2011, 35, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Araya, T.; Cornelis, W.M.; Nyssen, J.; Govaerts, B.; Bauer, H.; Gebreegziabher, T.; Oicha, T.; Raes, D.; Sayre, K.D.; Haile, M.; et al. Effects of conservation agriculture on runoff, soil loss and crop yield under rainfed conditions in Tigray, Northern Ethiopia. Soil Use Manag. 2011, 27, 404–414. [Google Scholar] [CrossRef]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 2017, 37, 26. [Google Scholar] [CrossRef] [Green Version]
- Scopel, E.; Findeling, A.; Chavez Guerra, E.; Corbeels, M. Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield. Agron. Sustain. Dev. 2005, 25, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Jian, J.; Du, C.; Stewart, R.D. Conservation management decreases surface runoff and soil erosion. Int. Soil Water Conserv. Res. 2022, 10, 188–196. [Google Scholar] [CrossRef]
- Gebreegziabher, T.; Nyssen, J.; Govaerts, B.; Getnet, F.; Behailu, M.; Haile, M.; Deckers, J. Contour furrows for in situ soil and water conservation, Tigray, Northern Ethiopia. Soil Tillage Res. 2009, 103, 257–264. [Google Scholar] [CrossRef]
- Lanckriet, S.; Araya, T.; Cornelis, W.; Verfaillie, E.; Poesen, J.; Govaerts, B.; Bauer, H.; Deckers, J.; Haile, M.; Nyssen, J. Impact of conservation agriculture on catchment runoff and soil loss under changing climate conditions in May Zeg-zeg (Ethiopia). J. Hydrol. 2012, 475, 336–349. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Zhang, G.; Liu, Y.; Nie, X.; Li, Z.; Liu, J.; Zhu, D. Advantages and disadvantages of terracing: A comprehensive review. Int. Soil Water Conserv. Res. 2021, 9, 344–359. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Aguilar, R.J.; Martínez, R.A.; Franco, T.D. Impact of erosion in the taluses of subtropical orchard terraces. Agric. Ecosyst. Environ. 2005, 107, 199–210. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Rodríguez, P.C.R.; Martin, P.F.J.; de Graaff, J.; Francia, M.J.R.; Flanagan, D.C. Environmental impact of introducing plant covers in the taluses of terraces: Implications for mitigating agricultural soil erosion and runoff. Catena 2011, 84, 79–88. [Google Scholar] [CrossRef]
- Francia, M.J.R.; Durán, Z.V.H.; Martínez, R.A. Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci. Total Environ. 2006, 358, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.A.; Sobrinho, T.A.; Giráldez, J.V.; Fereres, E. Soil management effects on runoff, erosion and soil properties in an olive grove of Southern Spain. Soil Tillage Res. 2009, 102, 5–13. [Google Scholar] [CrossRef]
- Cárceles, B.; Durán, Z.V.H.; Soriano, R.M.; Gálvez, R.B.; García, T.I.F. Soil erosion and the effectiveness of the conservation measures in Mediterranean hillslope farming (SE Spain). Eurasian Soil Sci. 2021, 54, 792–806. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Sarkar, S.; Paramanick, M.; Goswami, S.B. Soil temperature, water use and yield of yellow sarson (Brassica napus L. var. glauca) in relation to tillage intensity and mulch management under rainfed lowland ecosystem in eastern India. Soil Tillage Res. 2007, 93, 94–101. [Google Scholar] [CrossRef]
- Rai, V.; Pramanik, P.; Das, T.K.; Aggarwal, P.; Bhattacharyya, R.; Krishnan, P.; Sehgal, V.K. Modelling soil hydrothermal regimes in pigeon pea under conservation agriculture using Hydrus-2D. Soil Tillage Res. 2019, 190, 92–108. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Campbell, G.S. Radiation balance of a soil-straw surface modified by straw color. Agron. J. 1994, 86, 200–203. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Verachtert, E.; Castellanos-Navarrete, A.; Mezzalama, M.; Wall, P.; Deckers, J.; Sayre, K.D. Conservation agriculture, improving soil quality for sustainable production systems? In Advances in Soil Science: Food Security and Soil Quality; Lal, R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 137–208. [Google Scholar]
- Li, R.; Hou, X.; Jia, Z.; Han, Q.; Ren, X.; Yang, B. Effects on soil temperature, moisture, and corn yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agric. Water Manag. 2013, 116, 101–109. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Pei, D.; Sun, H.Y. Effects of corn straw mulching on soil temperature and soil evaporation of winter wheat field. Trans. CSAE 2005, 21, 171–173. [Google Scholar]
- Acharya, C.L.; Kapur, O.C.; Dixit, S.P. Moisture conservation for rainfed wheat production with alternative mulches and conservation tillage in the hills of north-west India. Soil Tillage Res. 1998, 46, 153–163. [Google Scholar] [CrossRef]
- Gupta, S.C.; Larson, W.E.; Linden, D.R. Tillage and surface residue effects on soil upper boundary temperatures. Soil Sci. Soc. Am. J. 1983, 47, 1212–1218. [Google Scholar] [CrossRef]
- Guzman, J.G.; Al-Kaisi, M. Residue removal and management practices effects on soil environment and carbon budget. Soil Sci. Soc. Am. J. 2014, 78, 609–623. [Google Scholar] [CrossRef]
- Oliveira, J.; Timm, L.; Tominaga, T.; Cássaro, F.A.M.; Reichardt, K.; Bacchi, O.O.S.; Dourado-Neto, D.; Câmara, G.M. de S. Soil temperature in a sugar-cane crop as a function of the management system. Plant Soil 2001, 230, 61–66. [Google Scholar] [CrossRef]
- Steward, P.R.; Dougill, A.J.; Thierfelder, C.; Pittelkow, C.M.; Stringer, L.C.; Kudzala, M.; Sheckelford, G.E. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields. Agric. Ecosyst. Environ. 2018, 251, 194–202. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Erbach, D.C.; Cruse, R.M. Corn response to seed-row residue removal. Soil Sci. Soc. Am. J. 1990, 54, 1112–1117. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Pei, D.; Sun, H.Y.; Chen, S. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Ann. Appl. Biol. 2007, 150, 261–268. [Google Scholar] [CrossRef]
- Fortin, M.C. Soil temperature, soil water, and no-till corn development following in-row residue removal. Agron. J. 1993, 85, 571–576. [Google Scholar] [CrossRef]
- Radke, J.K. Managing early season soil temperatures in the northern corn belt using configured soil surfaces and mulches. Soil Sci. Soc. Am. J. 1982, 46, 1067–1071. [Google Scholar] [CrossRef]
- Shen, Y.; McLaughlin, N.; Zhang, X.; Xu, M.; Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 2018, 8, 4500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzluebbers, A.J.; Hons, F.M.; Zuberer, D.A. Tillage-induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping. Soil Tillage Res. 1995, 34, 41–60. [Google Scholar] [CrossRef]
- Kahimba, F.; Sri Ranjan, R.; Froese, J.; Entz, M.; Nason, R. Cover crop effects on infiltration, soil temperature, and soil moisture distribution in the Canadian prairies. Appl. Eng. Agric. 2008, 24, 321–333. [Google Scholar] [CrossRef]
- Al-Darby, A.M.; Lowery, B.; Daniel, T.C. Corn leaf water potential and water use efficiency under three conservation tillage systems. Soil Tillage Res. 1987, 9, 241–254. [Google Scholar] [CrossRef]
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Fageria, N.K. Role of soil organic matter in maintaining sustainability of cropping systems. Commun. Soil Sci. Plant Anal. 2012, 43, 2063–2113. [Google Scholar] [CrossRef]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2018, 188, 41–52. [Google Scholar] [CrossRef]
- Valkama, E.; Kunypiyaeva, G.; Zhapayev, R.; Karabayev, M.; Zhusupbekov, E.; Perego, A.; Schillaci, C.; Sacco, D.; Moretti, B.; Grignani, C.; et al. Can conservation agriculture increase soil carbon sequestration? A modelling approach. Geoderma 2020, 369, 114298. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Thierfelder, K.C.; Rodger, P.; White, R.P.; Jat, M.L. Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agric. Ecosyst. Environ. 2016, 220, 164–174. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Repullo-Ruibérriz de Torres, M.A.; Carbonell, B.R.M.; Moreno, G.M.; Ordóñez, F.R.; Rodríguez, L.A. Soil organic matter and nutrient improvement through cover crops in a Mediterranean olive orchard. Soil Tillage Res. 2021, 210, 104977. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Six, J.; Ogle, S.M.; Breidt, F.J.; Conant, R.T.; Mosiers, A.R.; Paustian, K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Chang. Biol. 2004, 10, 155–160. [Google Scholar] [CrossRef] [Green Version]
- González-Sánchez, E.J.; Ordóñez, F.R.; Carbonell, B.R.; Veroz, G.O.; Gil, R.J.A. Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res. 2012, 122, 52–60. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D.; Bandyopadhyay, K.; Aggarwal, P.; Rana, D.S. A global analysis of the impact of zero-tillage on soil physical condition, organic carbon content, and plant root response. Land Degrad. Dev. 2020, 31, 557–567. [Google Scholar] [CrossRef]
- Camarotto, C.; Piccoli, I.; Dal Ferro, N.; Polese, R.; Chiarini, F.; Furlan, L.; Morari, F. Have we reached the turning point? Looking for evidence of SOC increase under conservation agriculture and cover crop practices. Eur. J. Soil Sci. 2020, 71, 1050–1063. [Google Scholar] [CrossRef]
- Pooniya, V.; Biswakarma, N.; Parihar, C.M.; Swarnalakshmi, K.; Lama, A.; Zhiipao, R.R.; Nath, A.; Pal, M.; Jat, S.L.; Satyanarayana, T.; et al. Six years of conservation agriculture and nutrient management in maize–mustard rotation: Impact on soil properties, system productivity and profitability. Field Crops Res. 2021, 260, 108002. [Google Scholar] [CrossRef]
- VandenBygaart, A.J.; Angers, D.A. Towards accurate measurements of soil organic carbon stock change in agroecosystems. Can. J. Soil. Sci. 2006, 86, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Repullo-Ruibérriz de Torres, M.A.; Moreno, G.M.; Ordóñez, F.R.; Rodríguez, L.A.; Cárceles, R.B.; García, T.I.F.; Durán, Z.V.H.; Carbonell, B.R.M. Cover crop contributions to improve the soil nitrogen and carbon sequestration in almond orchards (SW Spain). Agronomy 2021, 11, 387. [Google Scholar] [CrossRef]
- Roy, D.; Datta, A.; Jat, H.S.; Choudhary, M.; Sharma, P.C.; Singh, P.K.; Jat, M.L. Impact of long term conservation agriculture on soil quality under cereal based systems of North West India. Geoderma 2022, 405, 115391. [Google Scholar] [CrossRef]
- Perego, A.; Rocca, A.; Cattivelli, V.; Tabaglio, V.; Fiorini, A.; Barbieri, S.; Schillaci, C.; Chiodini, M.E.; Brenna, S.; Acutis, M. Agro-environmental aspects of conservation agriculture compared to conventional systems: A 3-year experience on 20 farms in the Po valley (Northern Italy). Agric. Syst. 2019, 168, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.; Julich, S.; Feger, K.H.; Jat, M.L.; Sharma, P.C.; Schwärzel, K. Effect of conservation agriculture on stratification of soil organic matter under cereal-based cropping systems. Arch. Agron. Soil Sci. 2019, 65, 2013–2028. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Chang, S.X.; Cui, S.; Jagadamma, S.; Zhang, Q.; Cai, Y. Residue retention promotes soil carbon accumulation in minimum tillage systems: Implications for conservation agriculture. Sci. Total Environ. 2020, 740, 140147. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, T.B.; Jat, R.K.; Singh, R.G.; Jat, M.L.; Stirling, C.M.; Jat, M.K.; Bijarniya, D.; Kumar, M.; Saharawat, Y.S.; Gupta, R.K. Soil organic carbon changes after seven years of conservation agriculture in a rice–wheat system of the eastern Indo-Gangetic Plains. Soil Use Manag. 2017, 33, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Butterly, C.R.; Kaudal, B.B.; Baldock, J.A.; Tang, C. Contribution of soluble and insoluble fractions of agricultural residues to short-term pH changes. Eur. J. Soil Sci. 2011, 62, 718–727. [Google Scholar] [CrossRef]
- Xu, R.K.; Coventry, D.R. Soil pH changes associated with lupin and wheat plant materials incorporated in a red-brown earth soil. Plant Soil 2003, 250, 113–119. [Google Scholar] [CrossRef]
- Xu, J.M.; Tang, C.; Chen, Z.L. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol. Biochem. 2006, 38, 709–719. [Google Scholar] [CrossRef]
- Muchabi, J.; Lungu, O.I.; Mweetwa, A.M. Conservation agriculture in Zambia: Effects on selected soil properties and biological nitrogen fixation in soya beans (Glycine max (L.) Merr). Sustain. Agric. Res. 2014, 3, 28–36. [Google Scholar] [CrossRef]
- Duiker, S.W.; Beegle, D.B. Soil fertility distributions in long-term no-till, chisel/disk and moldboard plow/disk systems. Soil Tillage Res. 2006, 88, 30–41. [Google Scholar] [CrossRef]
- Umar, B.B.; Aune, B.J.; Johnsen, H.F.; Lungu, I.O. Options for improving smallholder conservation agriculture in Zambia. J. Agric. Sci. 2011, 3, 50–62. [Google Scholar] [CrossRef]
- Sinha, A.K.; Ghosh, A.; Dhar, T.; Bhattacharya, P.M.; Mitra, B.; Rakesh, S.; Paneru, P.; Shrestha, S.R.; Manandhar, S.; Beura, S.; et al. Trends in key soil parameters under conservation agriculture-based sustainable intensification farming practices in the Eastern Ganga Alluvial Plains. Soil Res. 2019, 57, 883–893. [Google Scholar] [CrossRef]
- Limousin, G.; Tessier, D. Effects of no-tillage on chemical gradients and topsoil acidification. Soil Tillage Res. 2007, 92, 167–174. [Google Scholar] [CrossRef]
- Sithole, N.J.; Magwaza, L.S. Long-term changes of soil chemical characteristics and maize yield in no-till conservation agriculture in a semi-arid environment of South Africa. Soil Tillage Res. 2019, 194, 104317. [Google Scholar] [CrossRef]
- Butterly, C.R.; Baldock, J.A.; Tang, C. The contribution of crop residues to changes in soil pH under field conditions. Plant Soil 2013, 366, 185–198. [Google Scholar] [CrossRef]
- Husson, O.; Brunet, A.; Babre, D.; Charpentier, H.; Durand, M.; Sarthou, J.P. Conservation agriculture systems alter the electrical characteristics (Eh, pH and EC) of four soil types in France. Soil Tillage Res. 2018, 176, 57–68. [Google Scholar] [CrossRef]
- Ligowe, S.I.; Nalivata, C.P.; Njoloma, J.; Makumba, W.; Thierfelder, C. Medium-term effects of conservation agriculture on soil quality. Afr. J. Agric. Res. 2017, 12, 2412–2420. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, M.; Seilsepour, M. Modeling of soil cation exchange capacity based on soil organic carbon. ARPN J. Agric. Biol. Sci. 2008, 3, 41–45. [Google Scholar]
- Sá, J.C.D.; Cerri, C.C.; Lal, R.; Dick, W.A.; Piccolo, M.D.; Feigl, B.E. Soil organic carbon and fertility interactions affected by a tillage chronosequence in a Brazilian Oxisol. Soil Tillage Res. 2009, 104, 56–64. [Google Scholar] [CrossRef]
- Ben Moussa-Machraoui, S.; Errouissi, F.; Ben-Hammonda, M.; Nouira, S. Comparative effects of conventional and no-tillage management on some soil properties under Mediterranean semi-arid conditions in north western Tunisia. Soil Tillage Res. 2010, 106, 247–253. [Google Scholar] [CrossRef]
- Williams, A.; Jordan, N.R.; Smith, R.G.; Hunter, M.C.; Kammerer, M.; Kane, D.A.; Koide, R.T.; Davis, A.S. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability. Sci. Rep. 2018, 8, 8467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, F.T.; Dores, E.F.d.C.; Weber, O.L.d.S.; Beber, D.C.; Campelo, J.H., Jr.; Maia, J.C.d.S. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. J. Sci. Food Agric. 2018, 98, 3595–3602. [Google Scholar] [CrossRef] [PubMed]
- Govaerts, B.; Sayre, K.D.; Lichter, K.; Dendooven, L.; Deckers, J. Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant Soil 2007, 291, 39–54. [Google Scholar] [CrossRef]
- Kumari, D.; Kumar, S.; Parveen, H.; Pradhan, A.K.; Kumar, S.; Kumari, R. Long-term impact of conservation agriculture on chemical properties of soil. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2144–2153. [Google Scholar] [CrossRef]
- Mohanty, A.; Mishra, K.N.; Roul, P.K.; Dash, S.N.; Panigrahi, K.K. Effects of conservation agriculture production system (CAPS) on soil organic carbon, base exchange characteristics and nutrient distribution in a tropical rainfed agro-ecosystem. Int. J. Plant Anim. Environ. Sci. 2015, 5, 310–314. [Google Scholar]
- Zerihun, A.B.; Tadesse, B.; Shiferaw, T.; Kifle, D. Conservation agriculture: Maize-legume intensification for yield, profitability and soil fertility improvement in maize belt areas of western Ethiopia. Int. J. Plant Soil Sci. 2014, 3, 969–985. [Google Scholar] [CrossRef]
- Fonteyne, S.; Burgueño, J.; Albarrán Contreras, B.A.; Andrio Enríquez, E.; Castillo Villaseñor, L.; Enyanche Velázquez, F.; Escobedo Cruz, H.; Espidio Balbuena, J.; Espinosa Solorio, A.; Garcia Meza, P.; et al. Effects of conservation agriculture on physicochemical soil health in 20 maize-based trials in different agro-ecological regions across Mexico. Land Degrad. Dev. 2021, 32, 2242–2256. [Google Scholar] [CrossRef]
- Mrabet, R.; Moussadek, R.; Fadlaoui, A.; van Ranst, E. Conservation agriculture in dry areas of Morocco. Field Crops Res. 2012, 132, 84–94. [Google Scholar] [CrossRef]
- Thomas, G.A.; Dalal, R.C.; Standley, J. No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Tillage Res. 2007, 94, 295–304. [Google Scholar] [CrossRef]
- Alam, M.K.; Bell, R.W.; Haque, M.E.; Islam, M.A.; Kader, M.A. Soil nitrogen storage and availability to crops are increased by conservation agriculture practices in rice–based cropping systems in the Eastern Gangetic Plains. Field Crops Res. 2020, 250, 107764. [Google Scholar] [CrossRef]
- Camarotto, C.; Dal Ferro, N.; Piccoli, I.; Polese, R.; Furlan, L.; Chiarini, F.; Morari, F. Conservation agriculture and cover crop practices to regulate water, carbon and nitrogen cycles in the low-lying Venetian plain. Catena 2018, 167, 236–249. [Google Scholar] [CrossRef]
- Haokip, I.C.; Dwivedi, B.S.; Meena, M.C.; Datta, S.P.; Jat, H.S.; Dey, A.; Tigga, P. Effect of conservation agriculture and nutrient management options on soil phosphorus fractions under maize-wheat cropping system. J. Indian Soc. Soil Sci. 2020, 68, 45–53. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Sharma, P.C.; Kumar, V.; Yadav, A.K.; Choudhary, M.; Choudhary, V.; Gathala, M.K.; Sharma, D.K.; Jat, M.L.; et al. Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Arch. Agron. Soil Sci. 2018, 64, 531–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, K.Y.; Roberts, W.P.; Heenan, D.P. Organic carbon and associated properties of a red earth after 10 years rotation under different stubble and tillage practices. Aust. J. Soil Res. 1992, 30, 71–83. [Google Scholar] [CrossRef]
- Sharma, V.; Irmak, S.; Padhi, J. Effects of cover crops on soil quality: Part II. Soil exchangeable bases (potassium, magnesium, sodium, and calcium), cation exchange capacity, and soil micronutrients (zinc, manganese, iron, copper, and boron). J. Soil Water Conserv. 2018, 73, 652–668. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S.; Parveen, H.; Priyanka; Kumar, R.; Kumari, D. Effect of establishment techniques and cropping systems on transformation of zinc in alluvial soil under conservation agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2585–2594. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Q.; Tan, C.; Yang, G.; Qin, X.; Xiang, Y. Water and nutrient conservation effects of different tillage treatments in sloping fields. Arid Land Res. Manag. 2014, 28, 14–24. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Ceballos, R.J.M.; Luna, G.M.L.; Limon, O.A.; Deckers, L.; Dendooven, L. Conventionally tilled and permanent raised beds with different crop residue management: Effects on soil C and N dynamics. Plant Soil 2006, 280, 143–155. [Google Scholar] [CrossRef]
- Sato, S.; Comerford, N.B. Influence of soil pH on inorganic phosphorus sorption and desorption in a humid Brazilian Ultisol. Rev. Bras. Cienc. Solo 2005, 29, 685–694. [Google Scholar] [CrossRef]
- Deubel, A.; Hofmann, B.; Orzessek, D. Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loess chernozem. Soil Tillage Res. 2011, 117, 85–92. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Clayton, G.W.; O’Donovan, J.T.; Harker, K.N.; Turkington, T.K.; Soon, Y.K. Soil nutrient stratification and uptake by wheat after seven years of conventional and zero tillage in the Northern Grain belt of Canada. Can. J. Soil Sci. 2006, 86, 767–778. [Google Scholar] [CrossRef]
- Obour, A.K.; Holman, J.D.; Simon, L.M.; Schlegel, A.J. Strategic tillage effects on crop yields, soil properties, and weeds in dryland no-tillage systems. Agronomy 2021, 11, 662. [Google Scholar] [CrossRef]
- Hu, Z.H.; Ling, H.; Chen, S.T.; Shen, S.H.; Zhang, H.; Sun, Y.Y. Soil respiration, nitrification, and denitrification in a wheat farmland soil under different managements. Commun. Soil Sci. Plant Anal. 2013, 44, 3092–3102. [Google Scholar] [CrossRef]
- Morugán, C.A.; Linares, P.C.; Gómez, L.M.D.; Faz, A.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Sujatha, D.V.; Kavitha, P.; Naidu, M.V.S. Influence of green manure and potassium nutrition on soil potassium fractions and yield of rice crop. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 13–23. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Cárceles, B.; García-Tejero, I.F.; Gálvez, R.B.; Cuadros, T.S. Benefits of organic olive rainfed systems to control soil erosion and runoff and improve soil health restoration. Agron. Sustain. Dev. 2020, 40, 41. [Google Scholar] [CrossRef]
- Belay, S.A.; Assefa, T.T.; Prasad, P.V.V.; Schmitter, P.; Worqlul, A.W.; Steenhuis, T.S.; Reyes, M.R.; Tilahun, S.A. The response of water and nutrient dynamics and of crop yield to conservation agriculture in the Ethiopian highlands. Sustainability 2020, 12, 5989. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Martínez, R.A.; Aguilar, R.J. Nutrient losses by runoff and sediment from the taluses of orchard terraces. Water Air Soil Pollut. 2004, 153, 355–373. [Google Scholar] [CrossRef]
- Issaka, F.; Zhang, Z.; Zhao, Z.Q.; Asenso, E.; Li, J.H.; Li, Y.T.; Wang, J.J. Sustainable conservation tillage improves soil nutrients and reduces nitrogen and phosphorous losses in maize farmland in southern China. Sustainability 2019, 11, 2397. [Google Scholar] [CrossRef] [Green Version]
- Nummer, A.S.; Qian, S.S.; Harmel, D.R. A meta-analysis on the effect of agricultural conservation practices on nutrient loss. J. Environ. Qual. 2018, 47, 1172–1178. [Google Scholar] [CrossRef]
- Smith, D.R.; Francesconi, W.; Livingston, S.J.; Huang, C. Phosphorus losses from monitored fields with conservation practices in the Lake Erie Basin, USA. Ambio 2015, 44, 319–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, V.W.; Leake, A.R.; Ogilvy, S.E. Agronomic and environmental implications of soil management practices in integrated farming systems. Asp. Appl. Biol. 2000, 62, 61–66. [Google Scholar]
- Liu, Y.; Tao, Y.; Wan, K.; Zhang, G.; Liu, D.; Xiong, G.Y.; Chen, F. Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China. Agric. Water Manag. 2012, 110, 34–40. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, P.; Wang, X.; Chen, Y.; Zhenyao, S. Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agric. Water Manag. 2013, 117, 9–18. [Google Scholar] [CrossRef]
- García-Díaz, A.; Bienes, R.; Sastre, B.; Novara, A.; Gristina, L.; Cerdà, A. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agric. Ecosyst. Environ. 2017, 236, 256–267. [Google Scholar] [CrossRef]
- Dinnes, D.L.; Karlen, D.L.; Jaynes, D.B.; Kaspar, T.C.; Hatfield, J.L.; Colvin, T.S.; Cambardella, C.A. Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron. J. 2002, 94, 153–171. [Google Scholar] [CrossRef]
- Wyland, L.J.; Jackson, L.E.; Chaney, W.E.; Klonsky, K.; Koike, S.T.; Kimple, B. Winter cover crops in a vegetable cropping system: Impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosyst. Environ. 1996, 59, 1–17. [Google Scholar] [CrossRef]
- Colombani, N.; Mastrocicco, M.; Vincenzi, F.; Castaldelli, G. Modeling soil nitrate accumulation and leaching in conventional and conservation agriculture cropping systems. Water 2020, 12, 1571. [Google Scholar] [CrossRef]
- Thiele-Bruhn, S.; Bloem, J.; de Vries, F.T.; Kalbitz, K.; Wagg, C. Linking soil biodiversity and agricultural soil management. Curr. Opin. Environ. Sustain. 2012, 4, 523–528. [Google Scholar] [CrossRef]
- Zornoza, R.; Guerrero, C.; Mataix Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto. J. Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of Eastern Spain. Appl. Soil Ecol. 2009, 42, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agric. Ecosyst. Environ. 2016, 232, 73–84. [Google Scholar] [CrossRef]
- Haichar, F.; El, Z.; Santaella, C.; Heulin, T.; Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 2014, 77, 69–80. [Google Scholar] [CrossRef]
- Lopes, L.D.; Fernandes, M.F. Changes in microbial community structure and physiological profile in a kaolinitic tropical soil under different conservation agricultural practices. Appl. Soil Ecol. 2020, 152. [Google Scholar] [CrossRef]
- Singh, U.; Choudhary, A.K.; Sharma, S. Comparative performance of conservation agriculture vis-a-vis organic and conventional farming, in enhancing plant attributes and rhizospheric bacterial diversity in Cajanus cajan: A field study. Eur. J. Soil Biol. 2020, 99, 103197. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Chen, Q.; Liao, Y. Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agron. Sustain. Dev. 2016, 36, 28. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.P.; Babujia, L.C.; Matsumoto, L.S.; Guimarães, M.F.; Hungria, M. Bacterial diversity under different tillage and crop rotation systems in an oxisol of Southern Brazil. Open Agric. J. 2013, 7, 40–47. [Google Scholar] [CrossRef]
- Dorr de Quadros, P.; Zhalnina, K.; Davis, R.A.; Fagen, J.R.; Drew, J.; Bayer, C.; Camargo, F.A.O.; Triplett, E.W. The effect of tillage system and crop rotation on soil microbial diversity and composition in a subtropical acrisol. Diversity 2021, 4, 375. [Google Scholar] [CrossRef]
- Henneron, L.; Bernard, L.; Hedde, M.; Pelosi, C.; Villenave, C.; Chenu, C.; Bertrand, M.; Girardin, C.; Blanchart, E. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron. Sustain. Dev. 2015, 35, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Baghel, J.K.; Das, T.K.; Raj, R.; Sangeeta, P.; Mukherjee, I.; Bisht, M. Effect of conservation agriculture and weed management on weeds, soil microbial activity and wheat (Triticum aestivum) productivity under a rice (Oryza sativa)-wheat cropping system. Indian J. Agric. Sci. 2018, 88, 1709–1716. [Google Scholar]
- Li, Y.; Chang, S.X.; Tian, L.; Zhang, Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol. Biochem. 2018, 121, 50–58. [Google Scholar] [CrossRef]
- Choudhary, M.; Datta, A.; Jat, H.S.; Yadav, A.K.; Gathala, M.K.; TeSapkota, T.B.; Das, A.K.; Sharma, P.C.; Jat, M.L.; Singh, R.; et al. Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains. Geoderma 2018, 313, 193–204. [Google Scholar] [CrossRef]
- Kumar, B.T.N.; Babalad, H.B. Soil organic carbon, carbon sequestration, soil microbial biomass carbon and nitrogen and soil enzymatic activity as influenced by conservation agriculture in pigeonpea and soybean intercropping system. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 323–333. [Google Scholar] [CrossRef]
- Spedding, T.A.; Hamel, C.; Mehuys, G.R.; Madramootoo, C.A. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol. Biochem. 2004, 36, 499–512. [Google Scholar] [CrossRef]
- Ceja-Navarro, J.A.; Rivera, F.N.; Patiño-Zúñiga, L.; Govaerts, B.; Marsch, R.; Vila-Sanjurjo, A.; Dendooven, L. Molecular characterization of soil bacterial communities in contrasting zero tillage systems. Plant Soil 2010, 329, 127–137. [Google Scholar] [CrossRef]
- Legrand, F.; Picot, A.; Cobo, D.J.F.; Carof, M.; Chen, W.; Le Floch, G. Effect of tillage and static abiotic soil properties on microbial diversity. Appl. Soil Ecol. 2018, 132, 135–145. [Google Scholar] [CrossRef]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of no-tillage and conventional tillage systems on soil microbial communities. Appl. Environ. Soil Sci. 2012, 2012, 548620. [Google Scholar] [CrossRef] [Green Version]
- Habig, J.; Swanepoel, C. Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environments 2015, 2, 358–384. [Google Scholar] [CrossRef]
- Bonini Pires, C.A.; Amado, T.J.C.; Reimche, G.; Schwalbert, R.; Sarto, M.V.M.; Nicoloso, R.S.; Fiorin, J.E.; Rice, C.W. Diversified crop rotation with no-till changes microbial distribution with depth and enhances activity in a subtropical Oxisol. Eur. J. Soil Sci. 2020, 71, 1173–1187. [Google Scholar] [CrossRef]
- Banerjee, T.; Sharma, S.; Thind, H.S.; Yadvinder, S.; Sidhu, H.S.; Jat, M.L. Soil biochemical changes at different wheat growth stages in response to conservation agriculture practices in a rice-wheat system of north-western India. Soil Res. 2017, 56, 91–104. [Google Scholar] [CrossRef]
- Sharma, S.; Vashisht, M.; Singh, Y.; Thind, H.S. Soil carbon pools and enzyme activities in aggregate size fractions after seven years of conservation agriculture in a rice–wheat system. Crop. Pasture Sci. 2019, 70, 473–485. [Google Scholar] [CrossRef]
- Kandeler, E.; Palli, S.; Stemmer, M.; Gerzabek, M.H. Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biol. Biochem. 1999, 31, 1253–1264. [Google Scholar] [CrossRef]
- Roldán, A.; Caravaca, F.; Hernández, M.T.; García, C.; Sánchez, B.C.; Velásquez, M.; Tiscareno, M. No-tillage, crop residue additions and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico). Soil Tillage Res. 2003, 72, 65–73. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, M.; Bohra, J.S. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation. Soil Tillage Res. 2014, 136, 51–60. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef]
- Kooch, Y.; Jalilvand, H. Earthworms as ecosystem engineers and the most important detritivors in forest soils. Pak. J. Biol Sci. 2008, 11, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y. An overview of some tillage impacts on earthworm population abundance and diversity—Implications for functioning in soils. Soil Tillage Res. 2001, 57, 179–191. [Google Scholar] [CrossRef]
- Capowiez, Y.; Cadoux, S.; Bouchant, P.; Ruy, S.; Roger, E.J.; Richard, G.; Boizard, H. The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil Tillage Res. 2009, 105, 209–216. [Google Scholar] [CrossRef]
- Pelosi, C.; Pey, B.; Hedde, M.; Caro, G.; Capowiez, Y.; Guernion, M.; Peigné, J.; Piron, D.; Bertrand, M.; Cluzeau, D. Reducing tillage in cultivated fields increases earthworm functional diversity. Appl. Soil Ecol. 2014, 83, 79–87. [Google Scholar] [CrossRef]
- Baldivieso-Freitas, P.; Blanco, M.J.M.; Gutiérrez, L.M.; Peigné, J.; Pérez, F.A.; Trigo, A.D.; Sans, F.X. Earthworm abundance response to conservation agriculture practices in organic arable farming under Mediterranean climate. Pedobiologia 2018, 66, 58–64. [Google Scholar] [CrossRef]
- Van Capelle, C.; Schrader, S.; Brunotte, J. Tillage-induced changes in functional diversity of soil biota—A review with a focus on German data. Eur. J. Soil Biol. 2012, 50, 165–181. [Google Scholar] [CrossRef]
- Radford, B.J.; Key, A.J.; Robertson, L.N.; Thomas, G.A. Conservation tillage increases soil water storage, soil animal populations, grain yield and response to fertilizer in the semi-arid tropics. Aust. J. Exp. Agric. 1995, 35, 223–232. [Google Scholar] [CrossRef]
- Birkás, M.; Jolánkai, M.; Gyuricza, C.; Percze, A. Tillage effects on compaction, earthworms and other soil quality indicators in Hungary. Soil Tillage Res. 2004, 78, 185–196. [Google Scholar] [CrossRef]
- Errouissi, F.; Ben Moussa-Machraoui, S.; Ben-Hammouda, M.; Nouira, S. Soil invertebrates in durum wheat (Triticum durum L.) cropping system under Mediterranean semi-arid conditions: A comparison between conventional and no-tillage management. Soil Tillage Res. 2011, 112, 122–132. [Google Scholar] [CrossRef]
- Chan, K.Y.; Heenan, D.P. Earthworm population dynamics under conservation tillage systems in southeastern Australia. Aust. J. Soil Res. 2006, 44, 425–431. [Google Scholar] [CrossRef]
- Sharma, S.; Dhaliwal, S.S. Conservation agriculture based practices enhanced micronutrients transformation in earthworm cast soil under rice-wheat cropping system. Ecol. Eng. 2021, 163, 106195. [Google Scholar] [CrossRef]
- Muoni, T.; Mhlanga, B.; Forkman, J.; Sitali, M.; Thierfelder, C. Tillage and crop rotations enhance populations of earthworms, termites, dung beetles and centipedes: Evidence from a long-term trial in Zambia. J. Agric. Sci. 2019, 157, 504–514. [Google Scholar] [CrossRef]
- Bertrand, M.; Barot, S.; Blouin, M.; Whalen, J.; De Oliveira, T.; Roger, E.J. Earthworm services for cropping systems: A review. Appl. Soil Ecol. 2014, 83, 79–87. [Google Scholar] [CrossRef]
- Schmidt, O.; Clements, R.O.; Donaldson, G. Why do cereal-legume intercrops support large earthworm populations? Appl. Soil Ecol. 2003, 22, 181–190. [Google Scholar] [CrossRef]
- Hanson, P.; Edwards, N.; Garten, C.T.; Andrews. J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2001, 48, 115–146. [Google Scholar] [CrossRef]
- Bondlamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- Askari, M.S.; Holden, N.M. Indices for quantitative evaluation of soil quality under grassland management. Geoderma 2014, 230–231, 131–142. [Google Scholar] [CrossRef]
- Xue, H.; Tang, H. Responses of soil respiration to soil management changes in an agropastoral ecotone in Inner Mongolia, China. Ecol. Evol. 2018, 8, 220–230. [Google Scholar] [CrossRef]
- Edralin, D.I.A.; Sigua, G.C.; Reyes, M. Dynamics of Soil Carbon, Nitrogen and Soil Respiration in Farmer’s Field with Conservation Agriculture in Cambodia. Int. J. Plant Sci. 2016, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Zhang, X.; Yang, X.; Drury, C.F.; McLaughlin, N.B.; Liang, A.; Fan, R.; Jia, S. Contribution of winter soil respiration to annual soil CO2 emission in a Mollisol under different tillage practices in northeast China. Glob. Biogeochem. Cycles 2012, 26, GB2007. [Google Scholar] [CrossRef]
- Cooper, R.J.; Hama-Aziz, Z.Q.; Hiscock, K.M.; Lovett, A.A.; Vrain, E.; Dugdale, S.J.; Sünnenberg, G.; Dockerty, T.; Hovesen, P.; Noble, L. Conservation tillage and soil health: Lessons from a 5-year UK farm trial (2013–2018). Soil Tillage Res. 2002, 202, 104648. [Google Scholar] [CrossRef]
- Ye, R.; Parajuli, B.; Szogi, A.A.; Sigua, G.C.; Ducey, T.F. Soil health assessment after 40 years of conservation and conventional tillage management in Southeastern Coastal Plain soils. Soil Sci. Soc. Am. J. 2021, 85, 1214–1225. [Google Scholar] [CrossRef]
- Rusu, T.; Bogdan, I.; Marin, D.I.; Moraru, P.I.; Pop, A.I.; Duda, B.M. Effect of conservation agriculture on yield and protecting environmental resources. Agrolife Sci. J. 2015, 4, 141–145. [Google Scholar]
- Gyawali, A.J.; Strickland, M.S.; Thomason, W.; Reiter, M.; Stewart, R. Quantifying short-term responsiveness and consistency of soil health parameters in row crop systems: Part 1: Developing a multivariate approach. Soil Tillage Res. 2022, 219, 105354. [Google Scholar] [CrossRef]
- Nunes, M.R.; van Es, H.M.; Schindelbeck, R.; Ristow, A.J.; Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 2018, 328, 30–43. [Google Scholar] [CrossRef]
- Demir, Z.; Tursun, N.; Işik, D. Effects of Different Cover Crops on Soil Quality Parameters and Yield in an Apricot Orchard. Int J. Agric. Biol. 2018, 21, 399–408. [Google Scholar] [CrossRef]
- Williams, H.; Colombi, T.; Keller, T. The influence of soil management on soil health: An on-farm study in southern Sweden. Geoderma 2020, 360, 114010. [Google Scholar] [CrossRef]
- Parihar, C.M.; Singh, A.K.; Jat, S.L.; Dey, A.; Nayak, H.S.; Mandal, B.N.; Saharawat, Y.S.; Jat, M.L.; Yadav, O.P. Soil quality and carbon sequestration under conservation agriculture with balanced nutrition in intensive cereal-based system. Soil Tillage Res. 2020, 202, 104653. [Google Scholar] [CrossRef]
- Bera, T.; Sharma, S.; Thind, H.S.; Sidhu, H.S.; Jat, M.L. Changes in soil biochemical indicators at different wheat growth stages under conservation-based sustainable intensification of rice-wheat system. J. Integr. Agric. 2018, 17, 1871–1880. [Google Scholar] [CrossRef]
Economic/Agronomic | Environmental |
---|---|
Labor and fuel savings | Lower CO2 emissions |
Cost and time savings | Erosion and surface runoff reductions |
Yield gains | Improvement of soil properties |
Reduced fertilizer expenditures | Increase in soil biodiversity |
Weed control | Increase in microbial activity |
Lower irrigation needs | Less pollution of downstream water |
Lower risk of pest and disease outbreaks |
Soil Management | Year | pH | MCP | BD | SOC | NT | P | K | CEC |
---|---|---|---|---|---|---|---|---|---|
(H2O) | (%) | (g cm−3) | (g kg−1) | (mg kg−1) | (cmol (+) kg−1) | ||||
Minimum tillage and spontaneous vegetation strips | 1st | 7.5 (±0.1) | 11.4 (±4.3) | 1.17 (±0.04) | 8.4 (±4.8) | 0.45 (±0.03) | 6.4 (±2.6) | 68.7 (±18) | 15.8 (±3.0) |
3rd | 7.6 (±0.2) | 12.6 (±3.6) | 1.24 (±0.08) | 10.2 (±7.5) | 0.68 (0.05) | 7.0 (±3.5) | 77.7 (±26) | 16.7 (±7.8) | |
Minimum tillage and legume strips | 1st | 7.5 (±0.2) | 10.0 (±3.4) | 1.18 (±0.14) | 8.0 (±5.7) | 0.58 (0.01) | 4.6 (±1.7) | 84.4 (±14) | 10.2 (±4.4) |
3rd | 7.7 (±0.5) | 11.3 (±3.2) | 1.26 (±0.07) | 8.9 (±3.4) | 0.67 (0.08) | 5.2 (±4.2) | 94.7 (±22) | 14.7 (±7.1) | |
Conventional tillage | 1st | 7.5 (±0.1) | 11.7 (±2.8) | 1.20 (±0.09) | 8.3 (±3.4) | 0.55 (±0.03) | 6.9 (±3.9) | 67.5 (±18) | 11.8 (±3.5) |
3rd | 7.6 (±0.2) | 10.1 (±3.1) | 1.10 (±0.15) | 7.2 (±2.7) | 0.48 (±0.05) | 7.2 (±2.7) | 63.7 (±26) | 12.7 (±7.4) |
Soil Management | Year | MBN | MBC | Β-GLU | PRO | DHA | PHP |
---|---|---|---|---|---|---|---|
(mg kg−1) | (µg pNP g−1 h−1) | (µg TRS g−1 h−1) | (µg TPF g−1 h−1) | (µg pNP g−1 h−1) | |||
Minimum tillage and spontaneous vegetation strips | 1st | 5.8 (±2.2) | 3.4 (±1.4) | 401 (±1.2) | 12.0 (±1.4) | 99.20 (±1.9) | 131.5 (±11.8) |
3rd | 6.9 (±3.4) | 3.8 (±1.1) | 452 (±2.4) | 12.8 (±1.5) | 111.8 (±3.4) | 139.8 (±22.4) | |
Minimum tillage and legume strips | 1st | 5.0 (±1.2) | 3.1 (±1.0) | 461 (1.9) | 11.9 (±0.9) | 100.7 (±2.7) | 120.4 (±17.1) |
3rd | 6.4 (±0.9) | 4.2 (±2.4) | 483 (±3.5) | 12.7 (±1.6) | 119.1 (±5.2) | 131.4 (±13.7) | |
Conventional tillage | 1st | 5.3 (±0.8) | 2.0 (±0.8) | 131 (±1.2) | 11.7 (±1.4) | 92.43 (±5.1) | 122.0 (±21.5) |
3rd | 4.3 (±0.7) | 1.3 (±0.9) | 196 (±1.8) | 12.4 (±1.9) | 92.78 (±4.9) | 129.6 (±20.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Syst. 2022, 6, 87. https://doi.org/10.3390/soilsystems6040087
Cárceles Rodríguez B, Durán-Zuazo VH, Soriano Rodríguez M, García-Tejero IF, Gálvez Ruiz B, Cuadros Tavira S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Systems. 2022; 6(4):87. https://doi.org/10.3390/soilsystems6040087
Chicago/Turabian StyleCárceles Rodríguez, Belén, Víctor Hugo Durán-Zuazo, Miguel Soriano Rodríguez, Iván F. García-Tejero, Baltasar Gálvez Ruiz, and Simón Cuadros Tavira. 2022. "Conservation Agriculture as a Sustainable System for Soil Health: A Review" Soil Systems 6, no. 4: 87. https://doi.org/10.3390/soilsystems6040087
APA StyleCárceles Rodríguez, B., Durán-Zuazo, V. H., Soriano Rodríguez, M., García-Tejero, I. F., Gálvez Ruiz, B., & Cuadros Tavira, S. (2022). Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Systems, 6(4), 87. https://doi.org/10.3390/soilsystems6040087