Assessment of the Interrelationships of Soil Nutrient Balances with the Agricultural Soil Emissions and Food Production
Abstract
:1. Introduction
2. Literature Survey
3. Materials and Methods
4. Spatial Autocorrelation Analysis
5. Identifying Indices for an Integrated Agricultural Soil Management
6. Panel Data Regressions
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kone, B.; Diatta, S.; Sylvester, O.; Yoro, G.; Mameri, C.; Desire, D.D.; Ayemou, A. Estimating the inherent fertility of ferralsol using color. Can. J. Soil Sci. 2009, 89, 331–342. [Google Scholar] [CrossRef]
- Barrios, E.; Trejo, M.T. Implications of Local Soil Knowledge for Integrated Soil Management in Latin America. Geoderma 2003, 111, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Cardelus, C.L.; Mekonnen, A.B.; Jensen, K.H.; Woods, C.L.; Baez, M.C.; Montufar, M.; Bazany, K.; Tsegay, B.A.; Scull, P.R.; Peck, W.H. Edge Effects and Human Disturbance Influence Soil Physical and Chemical Properties in Sacred Church Forests in Ethiopia. Plant Soil 2020, 453, 329–342. [Google Scholar] [CrossRef]
- Carsky, R.J.; Oyewole, B.; Tian, G. Integrated Soil Management for the Savanna Zone of W. Africa: Legume Rotation and Fertilizer, N. Nutr. Cycl. Agroecosyst. 1999, 55, 95–105. [Google Scholar] [CrossRef]
- Fujisao, K.; Khanthavong, P.; Oudthachit, S.; Matsumoto, N.; Homma, K.; Asai, H.; Shiraiwa, T. Impacts of the Continuous Maize Cultivation on Soil Properties in Sainyabuli Province, Laos. Sci. Rep. 2020, 10, 11231. [Google Scholar] [CrossRef]
- Kintomo, A.A.; Akintoye, H.A.; Alasiri, K.O. Role of Legume Fallow in Intensified Vegetable-Based Systems. Commun. Soil Sci. Plant Anal. 2008, 39, 1261–1268. [Google Scholar] [CrossRef]
- Santos, M.; Galindro, A.; Santos, C.; Marta-Costa, A.; Martinho, V. Sustainability Evolution of North and Alentejo Vineyard Regions. Rev. Port. De Estud. Reg. 2019, 50, 49–63. [Google Scholar]
- Zhao, Z.; Gao, S.; Lu, C.; Li, X.; Li, F.; Wang, T. Effects of Different Tillage and Fertilization Management Practices on Soil Organic Carbon and Aggregates under the Rice-Wheat Rotation System. Soil Tillage Res. 2021, 212, 105071. [Google Scholar] [CrossRef]
- Shaheen, A.; Naeem, M.A.; Jilani, G.; Shafiq, M. Integrated Soil Management in Eroded Land Augments the Crop Yield and Water-Use Efficiency. Acta Agric. Scand. Sect. B Soil Plant Sci. 2010, 60, 274–282. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, W.; Ma, Y.; Wang, X.; Li, Z.; Zhai, B.; Wang, Z. Responses of Soil Water, Nitrate and Yield of Apple Orchard to Integrated Soil Management in Loess Plateau, China. Agric. Water Manag. 2020, 240, 106325. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Singh, S. Citrus Decline: Soil Fertility and Plant Nutrition. J. Plant Nutr. 2009, 32, 197–245. [Google Scholar] [CrossRef]
- Scamell, J.M. Healthy Land for Healthy Cattle. Cattle Pract. 2006, 14, 143–152. [Google Scholar]
- Jayne, T.S.; Snapp, S.; Place, F.; Sitko, N. Sustainable Agricultural Intensification in an Era of Rural Transformation in Africa. Glob. Food Secur. Agric. Policy 2019, 20, 105–113. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D. Output Impacts of the Single Payment Scheme in Portugal: A Regression with Spatial Effects. Outlook Agric. 2015, 44, 109–118. [Google Scholar] [CrossRef]
- Killham, K. Integrated Soil Management—Moving towards Globally Sustainable Agriculture. J. Agric. Sci. 2011, 149, 29–36. [Google Scholar] [CrossRef]
- Takoutsing, B.; Weber, J.; Aynekulu, E.; Rodriguez Martin, J.A.; Shepherd, K.; Sila, A.; Tchoundjeu, Z.; Diby, L. Assessment of Soil Health Indicators for Sustainable Production of Maize in Smallholder Farming Systems in the Highlands of Cameroon. Geoderma 2016, 276, 64–73. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Gomez, J.A.; Infante Amate, J.; Gonzalez de Molina, M.; Vanderlinden, K.; Guzman, G.; Laguna, A.; Giraldez, J.V. Impact of Historical Land Use and Soil Management Change on Soil Erosion and Agricultural Sustainability during the Anthropocene. Anthropocene 2017, 17, 13–29. [Google Scholar] [CrossRef]
- Komatsuzaki, M.; Ohta, H. Soil Management Practices for Sustainable Agro-Ecosystems. Sustain. Sci. 2007, 2, 103–120. [Google Scholar] [CrossRef]
- Xue, J.; Lyu, D.; Wang, D.; Wang, Y.; Yin, D.; Zhao, Z.; Mu, Z. Assessment of Soil Erosion Dynamics Using the GIS-Based RUSLE Model: A Case Study of Wangjiagou Watershed from the Three Gorges Reservoir Region, Southwestern China. Water 2018, 10, 1817. [Google Scholar] [CrossRef] [Green Version]
- Alonso, A.; Froidevaux, M.; Javaux, M.; Laloy, E.; Mattern, S.; Roisin, C.; Vanclooster, M.; Bielders, C. A Hybrid Method for Characterizing Tillage-Induced Soil Physical Quality at the Profile Scale with Fine Spatial Details. Soil Tillage Res. 2022, 216, 105236. [Google Scholar] [CrossRef]
- Weninger, T.; Kreiselmeier, J.; Chandrasekhar, P.; Julich, S.; Feger, K.-H.; Schwaerzel, K.; Bodner, G.; Schwen, A. Effects of Tillage Intensity on Pore System and Physical Quality of Silt-Textured Soils Detected by Multiple Methods. Soil Res. 2019, 57, 703–711. [Google Scholar] [CrossRef]
- Fernandez-Romero, M.L.; Parras-Alcantara, L.; Lozano-Garcia, B.; Clark, J.M.; Collins, C.D. Soil Quality Assessment Based on Carbon Stratification Index in Different Olive Grove Management Practices in Mediterranean Areas. Catena 2016, 137, 449–458. [Google Scholar] [CrossRef]
- Sun, H.Y.; Koai, P.; Gerl, G.; Schro, R.; Joergensen, R.G.; Munch, J.C. Water-Extractable Organic Matter and Its Fluorescence Fractions in Response to Minimum Tillage and Organic Farming in a Cambisol. Chem. Biol. Technol. Agric. 2017, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Fiener, P.; Wilken, F.; Aldana-Jague, E.; Deumlich, D.; Gomez, J.A.; Guzman, G.; Hardy, R.A.; Quinton, J.N.; Sommer, M.; Van Oost, K.; et al. Uncertainties in Assessing Tillage Erosion—How Appropriate Are Our Measuring Techniques? Geomorphology 2018, 304, 214–225. [Google Scholar] [CrossRef] [Green Version]
- Urbanek, E.; Hallett, P.; Feeney, D.; Horn, R. Water Repellency and Distribution of Hydrophilic and Hydrophobic Compounds in Soil Aggregates from Different Tillage Systems. Geoderma 2007, 140, 147–155. [Google Scholar] [CrossRef]
- Schulten, H.; Leinweber, P. Influence of the Mineral Matrix on the Formation and Molecular Composition of Soil Organic-Matter in a Long-Term, Agricultural Experiment. Biogeochemistry 1993, 22, 1–22. [Google Scholar] [CrossRef]
- Gravuer, K.; Scow, K.M. Invader-Resident Relatedness and Soil Management History Shape Patterns of Invasion of Compost Microbial Populations into Agricultural Soils. Appl. Soil Ecol. 2021, 158, 103795. [Google Scholar] [CrossRef]
- Guemene, D.; Germain, K.; Aubert, C.; Bouvarel, I.; Cabaret, J.; Chapuis, H.; Corson, M.; Jondreville, C.; Juin, H.; Lessire, M.; et al. Organic poultry production in France: Status, bottlenecks, advantages and perspectives. Prod. Anim. 2009, 22, 161–178. [Google Scholar]
- Hernandez, T.; Berlanga, J.G.; Tormos, I.; Garcia, C. Organic versus Inorganic Fertilizers: Response of Soil Properties and Crop Yield. AIMS Geosci. 2021, 7, 415–439. [Google Scholar] [CrossRef]
- Le Guillou, C.; Prevost-Boure, N.C.; Karimi, B.; Akkal-Corfini, N.; Dequiedt, S.; Nowak, V.; Terrat, S.; Menasseri-Aubry, S.; Viaud, V.; Maron, P.-A.; et al. Tillage Intensity and Pasture in Rotation Effectively Shape Soil Microbial Communities at a Landscape Scale. MicrobiologyOpen 2019, 8, e676. [Google Scholar] [CrossRef]
- Tan, H.; Barret, M.; Mooij, M.J.; Rice, O.; Morrissey, J.P.; Dobson, A.; Griffiths, B.; O’Gara, F. Long-Term Phosphorus Fertilisation Increased the Diversity of the Total Bacterial Community and the PhoD Phosphorus Mineraliser Group in Pasture Soils. Biol. Fertil. Soils 2013, 49, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land 2020, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Mo, F.; Yu, K.-L.; Crowther, T.W.; Wang, J.-Y.; Zhao, H.; Xiong, Y.-C.; Liao, Y.-C. How Plastic Mulching Affects Net Primary Productivity, Soil C Fluxes and Organic Carbon Balance in Dry Agroecosystems in China. J. Clean Prod. 2020, 263, 121470. [Google Scholar] [CrossRef]
- Navarrete, A.A.; Kuramae, E.E.; de Hollander, M.; Pijl, A.S.; van Veen, J.A.; Tsai, S.M. Acidobacterial Community Responses to Agricultural Management of Soybean in Amazon Forest Soils. FEMS Microbiol. Ecol. 2013, 83, 607–621. [Google Scholar] [CrossRef] [Green Version]
- Shan, A.; Pan, J.; Kang, K.J.; Pan, M.; Wang, G.; Wang, M.; He, Z.; Yang, X. Effects of Straw Return with N Fertilizer Reduction on Crop Yield, Plant Diseases and Pests and Potential Heavy Metal Risk in a Chinese Rice Paddy: A Field Study of 2 Consecutive Wheat-Rice Cycles. Environ. Pollut. 2021, 288, 117741. [Google Scholar] [CrossRef]
- Thuerig, B.; Fliessbach, A.; Berger, N.; Fuchs, J.G.; Kraus, N.; Mahlberg, N.; Nietlispach, B.; Tamm, L. Re-Establishment of Suppressiveness to Soil- and Air-Borne Diseases by Re-Inoculation of Soil Microbial Communities. Soil Biol. Biochem. 2009, 41, 2153–2161. [Google Scholar] [CrossRef]
- Val-Moraes, S.P.; de Macedo, H.S.; Kishi, L.T.; Pereira, R.M.; Navarrete, A.A.; Mendes, L.W.; de Figueiredo, E.B.; La Scala, N.; Tsai, S.M.; de Macedo Lemos, E.G.; et al. Liming in the Sugarcane Burnt System and the Green Harvest Practice Affect Soil Bacterial Community in Northeastern So Paulo, Brazil. Antonie Van Leeuwenhoek 2016, 109, 1643–1654. [Google Scholar] [CrossRef] [Green Version]
- Valadares-Pereira, A. de A.; Alves Martins Oliveira, E.C.; Navarrete, A.A.; de Oliveira, W.P.; Tsai, S.M.; Peluzio, J.M.; de Morais, P.B. Fungal Community Structure as an Indicator of Soil Agricultural Management Effects in the Cerrado. Rev. Bras. Cienc. Solo 2017, 41, e0160489. [Google Scholar] [CrossRef] [Green Version]
- Stahl, P.D.; Parkin, T.B.; Christensen, M. Fungal Presence in Paired Cultivated and Uncultivated Soils in Central Iowa, USA. Biol. Fertil. Soils 1999, 29, 92–97. [Google Scholar] [CrossRef]
- Wipf, H.M.-L.; Xu, L.; Gao, C.; Spinner, H.B.; Taylor, J.; Lemaux, P.; Mitchell, J.; Coleman-Derr, D. Agricultural Soil Management Practices Differentially Shape the Bacterial and Fungal Microbiomes of Sorghum Bicolor. Appl. Environ. Microbiol. 2021, 87, e02345-20. [Google Scholar] [CrossRef]
- Yakupoglu, T.; Rodrigo-Comino, J.; Cerda, A. Potential Benefits of Polymers in Soil Erosion Control for Agronomical Plans: A Laboratory Experiment. Agronomy 2019, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, L.; Tian, Y.; Wu, X.; Yang, J.; Luo, Y.; Li, H.; Awasthi, M.K.; Zhao, Z. Temporal and Spatial Variation of Soil Microorganisms and Nutrient under White Clover Cover. Soil Tillage Res. 2020, 202, 104666. [Google Scholar] [CrossRef]
- Garger, E.K.; Paretzke, H.G.; Tschiersch, J. Measurement of Resuspended Aerosol in the Chernobyl Area Part III. Size Distribution and Dry Deposition Velocity of Radioactive Particles during Anthropogenic Enhanced Resuspension. Radiat. Environ. Biophys. 1998, 37, 201–208. [Google Scholar] [CrossRef]
- Holman, I.P.; Hess, T.M.; Rose, S.C. A Broad-Scale Assessment of the Effect of Improved Soil Management on Catchment Baseflow Index. Hydrol. Process. 2011, 25, 2563–2572. [Google Scholar] [CrossRef]
- Endo, T.; Sadahiro, Y.; Haruta, T.; Kitamura, Y.; Li, Z.; Li, P.; Honna, T. Soil Salinization Related to Soil Morphological and Physicochemical Characteristics in the Luohui Irrigation Scheme, China. Arid Land Res. Manag. 2012, 26, 122–136. [Google Scholar] [CrossRef]
- Koch, A.; Chappell, A.; Eyres, M.; Scott, E. Monitor Soil Degradation or Triage for Soil Security? An Australian Challenge. Sustainability 2015, 7, 4870–4892. [Google Scholar] [CrossRef] [Green Version]
- Tiefenbacher, A.; Sanden, T.; Haslmayr, H.-P.; Miloczki, J.; Wenzel, W.; Spiegel, H. Optimizing Carbon Sequestration in Croplands: A Synthesis. Agronomy 2021, 11, 882. [Google Scholar] [CrossRef]
- Aznar-Sanchez, J.A.; Velasco-Munoz, J.F.; Lopez-Felices, B.; del Moral-Torres, F. Barriers and Facilitators for Adopting Sustainable Soil Management Practices in Mediterranean Olive Groves. Agronomy 2020, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Weninger, T.; Kamptner, E.; Dostal, T.; Spiegel, A.; Strauss, P. Detection of Physical Hazards in Soil Profiles Using Quantitative Soil Physical Quality Assessment in the Pannonian Basin, Eastern Austria. Int. Agrophys. 2020, 34, 463–471. [Google Scholar] [CrossRef]
- Lutz, F.; Herzfeld, T.; Heinke, J.; Rolinski, S.; Schaphoff, S.; von Bloh, W.; Stoorvogel, J.J.; Mueller, C. Simulating the Effect of Tillage Practices with the Global Ecosystem Model LPJmL (Version 5.0-Tillage). Geosci. Model Dev. 2019, 12, 2419–2440. [Google Scholar] [CrossRef] [Green Version]
- Schillaci, C.; Perego, A.; Valkama, E.; Marker, M.; Saia, S.; Veronesi, F.; Lipani, A.; Lombardo, L.; Tadiello, T.; Gamper, H.A.; et al. New Pedotransfer Approaches to Predict Soil Bulk Density Using WoSIS Soil Data and Environmental Covariates in Mediterranean Agro-Ecosystems. Sci. Total Environ. 2021, 780, 146609. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Papadopoulos, F.; Tziachris, P.; Metaxa, I.; Iatrou, M. Site Specific Agricultural Soil Management with the Use of New Technologies. Glob. Nest. J. 2014, 16, 59–67. [Google Scholar]
- Boafo, D.K.; Kraisornpornson, B.; Panphon, S.; Owusu, B.E.; Amaniampong, P.N. Effect of Organic Soil Amendments on Soil Quality in Oil Palm Production. Appl. Soil Ecol. 2020, 147, 103358. [Google Scholar] [CrossRef]
- Castro, J.; Fernandez-Ondono, E.; Rodriguez, C.; Lallena, A.M.; Sierra, M.; Aguilar, J. Effects of Different Olive-Grove Management Systems on the Organic Carbon and Nitrogen Content of the Soil in Jaen (Spain). Soil Tillage Res. 2008, 98, 56–67. [Google Scholar] [CrossRef]
- Frkova, Z.; Vystavna, Y.; Koubova, A.; Kotas, P.; Grabicova, K.; Grabic, R.; Kodesova, R.; Chronakova, A. Microbial Responses to Selected Pharmaceuticals in Agricultural Soils: Microcosm Study on the Roles of Soil, Treatment and Time. Soil Biol. Biochem. 2020, 149, 107924. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, W.; Chen, L.; Christie, P.; Luo, Y.; Wu, P. Phthalate Ester Contamination in Intensively Managed Greenhouse Facilities and the Assessment of Carcinogenic and Non-Carcinogenic Risk: A Regional Study. Int. J. Environ. Res. Public Health 2019, 16, 2818. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Xu, Y.; Xu, C.; Yun, L.; Liu, W. Status of Phthalate Esters Contamination in Agricultural Soils across China and Associated Health Risks. Environ. Pollut. 2014, 195, 16–23. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, T.; Liu, L.; Ouyang, X. Impact of Soil Heavy Metal Pollution on Food Safety in China. PLoS ONE 2015, 10, e0135182. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Yang, F.; Xu, C.; Yang, H.; Liu, W. Status of Metal Accumulation in Farmland Soils across China: From Distribution to Risk Assessment. Environ. Pollut. 2013, 176, 55–62. [Google Scholar] [CrossRef]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper Environmental Toxicology, Recent Advances, and Future Outlook: A Review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef]
- Porwollik, V.; Rolinski, S.; Heinke, J.; Mueller, C. Generating a Rule-Based Global Gridded Tillage Dataset. Earth Syst. Sci. Data 2019, 11, 823–843. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; DeLonge, M.; Dungait, J.; Ellert, B.; Frank, S.; Goddard, T.; et al. Quantifying Carbon for Agricultural Soil Management: From the Current Status toward a Global Soil Information System. Carbon Manag. 2019, 10, 567–587. [Google Scholar] [CrossRef] [Green Version]
- Kebonye, N.M.; Eze, P.N.; Agyeman, P.C.; John, K.; Ahado, S.K. Efficiency of the T-Distribution Stochastic Neighbor Embedding Technique for Detailed Visualization and Modeling Interactions between Agricultural Soil Quality Indicators. Biosyst. Eng. 2021, 210, 282–298. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Tuffour, H.O.; Oppong, J.C.; Zeraatpisheh, M.; Kumar, V. Dealing with Soil Organic Carbon Modeling: Some Insights from an Agro-Ecosystem in Northeast Iran. Earth Sci. Inform. 2021, 14, 1833–1845. [Google Scholar] [CrossRef]
- Smith, J.; Smith, P.; Wattenbach, M.; Gottschalk, P.; Romanenkov, V.A.; Shevtsova, L.K.; Sirotenko, O.D.; Rukhovich, D.I.; Koroleva, P.V.; Romanenko, I.A.; et al. Projected Changes in the Organic Carbon Stocks of Cropland Mineral Soils of European Russia and the Ukraine, 1990–2070. Glob. Chang. Biol. 2007, 13, 342–356. [Google Scholar] [CrossRef]
- Eranki, P.L.; Devkota, J.; Landis, A.E. Carbon Footprint of Corn-Soy-Oats Rotations in the US Midwest Using Data from Real Biological Farm Management Practices. J. Clean Prod. 2019, 210, 170–180. [Google Scholar] [CrossRef]
- Mummey, D.L.; Smith, J.L.; Bluhm, G. Assessment of Alternative Soil Management Practices on N2O Emissions from US Agriculture. Agric. Ecosyst. Environ. 1998, 70, 79–87. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse Gas Emissions from Soils—A Review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.M.O.; Hauggaard-Nielsen, H.; Justes, E.; Ambus, P.; Mikkelsen, T.N. The Influence of Grain Legume and Tillage Strategies on CO2 and N2O Gas Exchange under Varied Environmental Conditions. Agriculture 2021, 11, 464. [Google Scholar] [CrossRef]
- Paul, C.; Kuhn, K.; Steinhoff-Knopp, B.; Weisshuhn, P.; Helming, K. Towards a Standardization of Soil-Related Ecosystem Service Assessments. Eur. J. Soil Sci. 2021, 72, 1543–1558. [Google Scholar] [CrossRef]
- Thiele-Bruhn, S.; Bloem, J.; de Vries, F.T.; Kalbitz, K.; Wagg, C. Linking Soil Biodiversity and Agricultural Soil Management. Curr. Opin. Environ. Sustain. 2012, 4, 523–528. [Google Scholar] [CrossRef]
- Schulten, H.; Hempfling, R. Influence of Agricultural Soil-Management on Humus Composition and Dynamics—Classical and Modern Analytical Techniques. Plant Soil 1992, 142, 259–271. [Google Scholar] [CrossRef]
- Laghari, M.; Naidu, R.; Xiao, B.; Hu, Z.; Mirjat, M.S.; Hu, M.; Kandhro, M.N.; Chen, Z.; Guo, D.; Jogi, Q.; et al. Recent Developments in Biochar as an Effective Tool for Agricultural Soil Management: A Review. J. Sci. Food Agric. 2016, 96, 4840–4849. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Huang, X.; Zhao, J.; Zhang, J.; Cai, Z. Characterizing the Key Agents in a Disease-Suppressed Soil Managed by Reductive Soil Disinfestation. Appl. Environ. Microbiol. 2019, 85, e02992-18. [Google Scholar] [CrossRef] [Green Version]
- Wiesmeier, M.; Mayer, S.; Burmeister, J.; Huebner, R.; Koegel-Knabner, I. Feasibility of the 4 per 1000 Initiative in Bavaria: A Reality Check of Agricultural Soil Management and Carbon Sequestration Scenarios. Geoderma 2020, 369, 114333. [Google Scholar] [CrossRef]
- Gustavo Belduma Belduma, R.; Barrezueta-Unda, S.; Vargas Gonzales, O.; Sanchez Romero, O. Management and Use of Agricultural Land in the Rural Area of the Canton Chilla from a Socioeconomic Perspective. Rev. Univ. Soc. 2020, 12, 299–306. [Google Scholar]
- Prager, K.; Schuler, J.; Helming, K.; Zander, P.; Ratinger, T.; Hagedorn, K. Soil Degradation, Farming Practices, Institutions and Policy Responses: An Analytical Framework. Land Degrad. Dev. 2011, 22, 32–46. [Google Scholar] [CrossRef]
- Van der Ploeg, R.R.; Gieska, M.; Schweigert, P. Impact of postwar agricultural soil management on surface hydrology and river peak discharge. Ber. Landwirtsch. 2001, 79, 447–465. [Google Scholar]
- Paul, C.; Techen, A.-K.; Robinson, J.S.; Helming, K. Rebound Effects in Agricultural Land and Soil Management: Review and Analytical Framework. J. Clean Prod. 2019, 227, 1054–1067. [Google Scholar] [CrossRef]
- FAOSTAT Several Statistics. Available online: https://www.fao.org/faostat/en/#home (accessed on 8 January 2022).
- World Bank Several Statistics and Information. Available online: https://www.worldbank.org/en/home (accessed on 16 January 2022).
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- GeoDa. GeoDa Software. Available online: https://geodacenter.github.io/ (accessed on 8 January 2022).
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Eurostat Countries Shapefiles. Available online: https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/countries (accessed on 8 January 2022).
- QGIS.org. QGIS Geographic Information System. QGIS Association. 2022. Available online: https://qgis.org/en/site/ (accessed on 8 January 2022).
- Vincent, J.L. Factor Analysis in International Relations: Interpretation, Problem, Areas, and an Application; Univ of Florida Press: Gainesville, FL, USA, 1971; ISBN 978-0-8130-0315-3. [Google Scholar]
- Torres-Reyna, O. Getting Started in Factor Analysis (Using Stata) (Ver. 1.0 Beta/Draft) n.d. Available online: https://www.princeton.edu/~otorres/Factor.pdf (accessed on 8 January 2022).
- StataCorp. Stata 15 Base Reference Manual; Stata Press: College Station, TX, USA, 2017. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 15; StataCorp LLC: College Station, TX, USA, 2017. [Google Scholar]
- Stata Stata: Software for Statistics and Data Science. Available online: https://www.stata.com/ (accessed on 8 January 2022).
- Baltagi, B.H. Econometric Analysis of Panel Data, 4th ed.; Wiley: Chichester, UK; Hoboken, NJ, USA, 2008; ISBN 978-0-470-51886-1. [Google Scholar]
- Torres-Reyna, O. Panel Data Analysis Fixed and Random Effects Using Stata (v. 4.2); Priceton University: Princeton, NJ, USA, 2007. [Google Scholar]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
Agricultural Soil Emissions (kg per ha) | Average Food Production (I$ per Person) | Gross Agricultural Production (I$ per ha) | Cropland Nutrient Flow (kg per ha) | |
---|---|---|---|---|
Agricultural soil emissions (kg per ha) | 1.000 | |||
Average food production (I$ per person) | 0.0920 * | 1.000 | ||
(0.000) | ||||
Gross agricultural production (I$ per ha) | 0.5996 * | 0.2278 * | 1.000 | |
(0.000) | (0.000) | |||
Cropland nutrient flow (kg per ha) | 0.6691 * | 0.2099 * | 0.6560 * | 1.000 |
(0.000) | (0.000) | (0.000) |
Method: Principal-Component Factors; Rotation: Orthogonal Varimax (Kaiser Off) | ||||
Factor | Variance | Difference | Proportion | Cumulative |
Factor1 | 1.668 | 0.834 | 0.834 | |
Rotated Factor Loadings and Unique Variances | ||||
Variable | Factor1 | Uniqueness | ||
Gross agricultural production (I$ per ha) | 0.913 | 0.166 | ||
Cropland nutrient flow (kg per ha) | 0.913 | 0.166 |
Countries | Agricultural Soil Emissions (kg per ha) | Average Food Production (I$ per Person) | Gross Agricultural Production (I$ per ha) | Cropland Nutrient Flow (kg per ha) | Index |
---|---|---|---|---|---|
Belgium | 2812 | 473 | 10,261 | 287 | 3 |
Malta | 2310 | 175 | 10,834 | 260 | 3 |
Switzerland | 2868 | 304 | 9018 | 251 | 2 |
China, Taiwan Province of | 1940 | 209 | 8754 | 224 | 2 |
Luxembourg | 2503 | 341 | 4000 | 298 | 2 |
Egypt | 3635 | 228 | 8658 | 220 | 2 |
United Arab Emirates | 4962 | 100 | 8615 | 191 | 2 |
Trinidad and Tobago | 2945 | 102 | 4055 | 257 | 2 |
Republic of Korea | 1966 | 190 | 8351 | 173 | 2 |
Israel | 1897 | 347 | 9966 | 114 | 1 |
Model | Prais-Winsten Regression, Correlated Panels Corrected Standard Errors (PCSEs) |
---|---|
Constant | −34.717 |
(−0.100) | |
[0.917] | |
Cropland nutrient flow (kg per ha) | 41.279 * |
(5.910) | |
[0.000] | |
Pesaran’s test of cross sectional independence | 3.009 * |
[0.002] | |
Modified Wald test for groupwise heteroskedasticity | 6.2 × 1010 * |
[0.000] | |
Wooldridge test for autocorrelation | 1137.221 * |
[0.000] |
Model | Prais-Winsten Regression, Correlated Panels Corrected Standard Errors (PCSEs) |
---|---|
Constant | 1358.298 * |
(7.970) | |
[0.000] | |
Cropland nutrient flow (kg per ha) | 25.094 * |
(7.610) | |
[0.000] | |
Pesaran’s test of cross sectional independence | 54.380 * |
[0.000] | |
Modified Wald test for groupwise heteroskedasticity | 1.2 × 108 * |
[0.000] | |
Wooldridge test for autocorrelation | 528.496 * |
[0.000] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinho, V.J.P.D.; Pereira, J.L.S.; Gonçalves, J.M. Assessment of the Interrelationships of Soil Nutrient Balances with the Agricultural Soil Emissions and Food Production. Soil Syst. 2022, 6, 32. https://doi.org/10.3390/soilsystems6020032
Martinho VJPD, Pereira JLS, Gonçalves JM. Assessment of the Interrelationships of Soil Nutrient Balances with the Agricultural Soil Emissions and Food Production. Soil Systems. 2022; 6(2):32. https://doi.org/10.3390/soilsystems6020032
Chicago/Turabian StyleMartinho, Vítor João Pereira Domingues, José L. S. Pereira, and José Manuel Gonçalves. 2022. "Assessment of the Interrelationships of Soil Nutrient Balances with the Agricultural Soil Emissions and Food Production" Soil Systems 6, no. 2: 32. https://doi.org/10.3390/soilsystems6020032
APA StyleMartinho, V. J. P. D., Pereira, J. L. S., & Gonçalves, J. M. (2022). Assessment of the Interrelationships of Soil Nutrient Balances with the Agricultural Soil Emissions and Food Production. Soil Systems, 6(2), 32. https://doi.org/10.3390/soilsystems6020032