The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage
Abstract
:1. Introduction
2. Organic Matter and the Cycling of Mineral Plant Nutrients
3. Ecological Effects of Soil Organic Carbon
3.1. Soil Organic Matter Management
3.2. Soil Organic Matter and Soil Fertility
3.3. Soil Organic Matter and Greenhouse Gas Emissions
3.3.1. First: Carbon Dioxide Emission Sources!
3.3.2. Second: The 4 per 1000 Initiative of the Paris Agreement!
3.3.3. Third: According to the 4 per 1000 Goal, the Increase in SOC Should Be Higher in Soils Where the SOC Is High Compared to Other Soils!
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gocke, M.I.; Don, A.; Heidkamp, A.; Schneider, F.; Amelung, W. The phosphorus status of German cropland—An inventory of top–and subsoils. J. Plant Nutr. Soil Sci. 2021, 184, 51–64. [Google Scholar] [CrossRef]
- Gerke, J. The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots. A critical review. J. Plant Nutr. Soil Sci. 2015, 178, 351–364. [Google Scholar] [CrossRef]
- Römer, W. AnsätzefüreineEffizienteNutzung des Phosphors auf der Basis experimentellerBefunde. Ber. Landw. 2009, 87, 5–30. [Google Scholar]
- Cordell, D.; White, S. Peak phosphorus. Clarifying the key issues of a rigorous debate about long-term security. Sustainability 2011, 3, 2027–2049. [Google Scholar] [CrossRef] [Green Version]
- Cordell, D.; White, S. Life´s bottleneck: Sustaining the world´s phosphorus for a food secure future. Environ. Res. 2014, 39, 161–168. [Google Scholar]
- Barber, S.A. Soil Nutrient Bioavailability; John Wiley: New York, NY, USA, 1995. [Google Scholar]
- Tinker, P.B.; Nye, P.H. Solute Movement in the Rhizosphere; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Jungk, A. Dynamics of Nutrient Movement at the Soil-Root Interface. In Plant Roots, the Hidden Half; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; Dekker: New York, NY, USA, 2002; pp. 587–616. [Google Scholar]
- Schwertmann, U. Solubility and dissolution of iron oxides. Plant Soil 1991, 130, 1–25. [Google Scholar] [CrossRef]
- Gerke, J. Mathematical modeling of iron uptake by graminaceous species as affected by iron forms in soil and phytosiderophore efflux. J. Plant Nutr. 2000, 23, 1579–1587. [Google Scholar] [CrossRef]
- Gerke, J. The effect of humic substances on phosphate and iron acquisition by higher plants: Qualitative and quantitative aspects. J. Plant Nutr. Soil Sci. 2021, 184, 329–338. [Google Scholar] [CrossRef]
- Gerke, J. Aluminum and iron (III) species in the soil solution including organic complexes with citrate and humic substances. J. Plant Nutr. Soil Sci. 1997, 160, 427–432. [Google Scholar] [CrossRef]
- Zanin, L.; Tomasi, N.; Cesco, S.; Varanini, Z.; Pinton, R. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front. Plant Sci. 2019, 10, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponisio, L.C.; M´Gonigle, L.K.; Mace, K.C.; Palomino, J.; deValpine, P.; Kremen, L. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 2014, 282, 1396–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrama, M.; De Haan, J.J.; Kroonen, M.; Verstegen, H.; Van der Putten, W.H. Crop yield gap and stability in organic and conventional farming systems. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Gerke, J. Humic (organic matter)-Al(Fe)-phosphate complexes: An underestimated phosphate form in soils and source of plant available phosphate. Soil Sci. 2010, 175, 417–425. [Google Scholar] [CrossRef]
- Urrutia, O.; Erro, J.; Guardado, L.; San Francisco, S.; Mandado, M.; Baigorri, R.; Claude Yvin, J.; Garcia-Mina, J. Physico-chemical characterization of humic-metal-phosphate complexes and their potential application to the manufacture of new types of phosphate-based fertilizers. J. Plant Nutr. Soil Sci. 2014, 177, 128–136. [Google Scholar] [CrossRef]
- Gerke, J. Chemische Prozesse der Nährstoffmobilisierung in der Rhizosphäre und ihre Bedeutung für den Übergang vom Boden in die Pflanze; Cuivillier-Verlag: Göttingen, Germany, 1995. [Google Scholar]
- Gerke, J.; Jungk, A. Separation of phosphorus bound to organic matrices from inorganic phosphorus in alkaline soil extracts by ultrafiltration. Commun. Soil Sci. Plant Anal. 1991, 22, 1621–1630. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. 2014, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Körschens, M.; Albert, E.; Baumecker, M.; Ellmer, F.; Grunert, M.; Hoffmann, S.; Kismanyoky, T.; Kubat, J.; Kunzova, E.; Marx, M.; et al. Humus und Klimaveränderung–Ergebnisseaus 15 längjährigenDauerfeldversuchen. Arch. Agron. Soil Sci. 2014, 60, 1485–1517. [Google Scholar] [CrossRef]
- Gerke, J. Carbon accumulation in arable soils: Mechanisms and the effect of cultivation practices and organic fertilizers. Agronomy 2021, 11, 1079. [Google Scholar] [CrossRef]
- Inbar, Y.; Chen, Y.; Hadar, Y. Humic substances formed during composting of organic matter. Soil Sci. Soc. Am. J. 1990, 54, 1316–1323. [Google Scholar] [CrossRef]
- Fuentes, M.; Baigorri, R.; Garcia-Mina, J. Maturation in composting process, an incipient humification-like step as multivariate statistical analysis of spectroscopic data shows. Environ. Res. 2020, 189, 109981. [Google Scholar] [CrossRef]
- Chen, Y.; Inbar, Y. Chemical and spectroscopic analyses of organic matter transformation during composting in relation to compost maturity. In Science and Engineering of Composting: Design, Environmental, Microbial and Utilization Aspects; Hoitink, H.A.J., Keener, H.M., Eds.; Ohio State University: Wooster, OH, USA, 1993; pp. 551–600. [Google Scholar]
- Baddi, G.A.; Hafidi, M.; Gilard, V.; Revel, J.C. Characterization of humic acids produced during composting olive mill wastes: Elemental and spectroscopic analyses (FTIR and 13C NMR). Agronomie 2003, 23, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.F.; Wu, Q.T.; Wang, J.W.C.; Naggar, B.B. Transformation of organic matter during co-composting pig manure with saw dust. Biores. Technol. 2006, 97, 1834–1842. [Google Scholar] [CrossRef]
- Adani, F.; Genevini, P.L.; Tambone, F.; Montoneri, E. Compost effect on soil humic acid. A NMR study. Chemosphere 2006, 65, 1414–1418. [Google Scholar] [CrossRef] [PubMed]
- Adani, F.; Spagnol, M. Hunmic acid formation in artificial soils amended with compost at different stages of organic matter evolution. J. Environ. Qual. 2008, 37, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Smidt, E.; Meissl, K.; Schmutzer, M.; Hinterstoisser, B. Co-Composting of lignin to build up humic substances–strategies in waste management to improve compost quality. Industr. Crop Product. 2008, 27, 196–201. [Google Scholar] [CrossRef]
- Gerke, J. Concepts and misconceptions of humic substances as a stable part of soil organic matter: A review. Agronomy 2018, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, A.; Spaccini, R.; Nieder, R.; Richter, J. Sequestration of biologically labile organic carbon in soils by humified organic matter. Clim. Change 2004, 67, 329–343. [Google Scholar] [CrossRef]
- Verma, L.; Martin, J.P.; Haider, K. Decomposition of 14C-labelled proteins, peptides and amino acids: Free and complexed with humic polymers. Proc. Soil Sci. Soc. Am. 1975, 39, 279–284. [Google Scholar] [CrossRef]
- Martin, J.P.; Haider, K. Influence of Mineral Colloids on Turnover Rates of Soil Organic Carbon. In Interactions of Soil Minerals with Natural Organics and Microbes; Huang, P.M., Schnitzer, M., Eds.; Soil Science Society America: Madison, WI, USA, 1986; pp. 283–304. [Google Scholar]
- Chen, Y.; Chefetz, B.; Hadar, Y. Formation and properties of humic substances originating from composts. In The Science of Composting; De Bertoldi, M., Sequi, P., Leumes, B., Papi, T., Eds.; Springer: Dorderecht, NL, USA, 1996; pp. 382–393. [Google Scholar]
- Ikeya, K.; Sleighter, R.L.; Hatcher, P.G.; Watanabe, A. Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance spectroscopy. Geochim. Cosmochim. Acta 2015, 153, 169–182. [Google Scholar] [CrossRef]
- Ikeya, K.; Maie, N.; Han, X.; Wang, G.; Watanabe, A. Comparison of skeletal structures in black humic acids from different soil origins. Soil Sci. Plant Nutr. 2019, 65, 109–113. [Google Scholar] [CrossRef]
- Waggoner, D.C.; Chen, H.; Willoughby, A.S.; Hatcher, P.G. Formation of black carbon-like and alicyclic aliphatic compounds by hydroxyl radical initiated degradation of lignin. Org. Geochem. 2015, 82, 69–76. [Google Scholar] [CrossRef]
- Di Donato, N.; Chen, H.; Waggoner, D.; Hatcher, P. Potential origin and formation for molecule components of humic acids in soils. Geochim. Cosmochim. Acta 2016, 178, 201–222. [Google Scholar]
- Waggoner, D.C.; Hatcher, P.G. Hydroxyl radical alteration of HPLC fractionated lignin: Formation of new compounds from terrestrial organic matter. Org. Geochem. 2017, 113, 315–325. [Google Scholar] [CrossRef]
- Chang, Z.; Tian, L.; Li, F.; Zhou, Y.; Wu, N.; Steinberg, C.; Dong, X.; Pan, B.; Xing, B. Benzene carboxylic acid—A useful marker for condensed organic matter but not only for pyrogenic black carbon. Sci. Tot. Environ. 2018, 626, 660–667. [Google Scholar] [CrossRef]
- Yang, F.; Tang, C.; Antonietti, M. Natural and artificial humic substances to manage mineral ions, water, and soil microorganisms. Chem. Soc. Rev. 2021, 50, 6221–6239. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Yoon, H.Y.; Chu, J.-Y.; Kim, W.-Y.; Kim, P.J.; Jeon, J.-R. Artificial humification of lignin architecture: Top-down and bottom-up approaches. Biotechnol. Abv. 2019, 37, 107416. [Google Scholar] [CrossRef]
- Könnecke, G. Fruchtfolgen; DeutscherLandwirtschaftsverlag: Ostberlin, Germany, 1967. [Google Scholar]
- Gattinger, A.; Müller, A.; Haeni, M.; Skinner, C.; Fließbach, A.; Buchmann, N. Enhanced topsoil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [Green Version]
- Forstreuter, T. Bodenfruchtbarkeitskennwerte und Kulturpflanzenertrag in zwei Bodennutungssystemen. Ph.D. Thesis, Georg-August-Universität, Göttingen, Germany, 1999. [Google Scholar]
- Ghabbour, E.A.; Davies, G.; Misiewicz, T.; Alami, R.A.; Askounis, E.M.; Cuozzo, N.P.; Filice, A.J.; Haskell, J.M.; Moy, A.K.; Roach, A.C.; et al. National comparison of the total and sequestered organic matter contents of conventional and organic farm soils. Adv. Agron. 2017, 146, 1–35. [Google Scholar]
- Song, X.; Fang, C.; Yuan, Z.-Q.; Li, F.-M. Long-term growth of alfalfa increased soil organic matter accumulation and nutrient mineralization in a semi-arid environment. Front. Environ. Sci. 2021, 9, 649346. [Google Scholar] [CrossRef]
- Yuan, Z.-Q.; Yu, K.-L.; Epstein, H.; Fang, C.; Li, J.-T.; Lui, Q.-Q.; Lin, X.-W.; Guo, W.-J.-; Li, F.-M. Effects of legume species introduction on vegetation and soil nutrient development on abandoned croplands in a semi-arid environment on the loess plateau, China. Sci. Tot. Environ. 2016, 541, 692–700. [Google Scholar] [CrossRef]
- Swift, R.S. Sequestration of carbon by soils. Soil Sci. 2001, 166, 858–871. [Google Scholar] [CrossRef]
- Piccolo, A.; Spaccini, R.; Drosos, M.; Vinci, M.; Cozzolino, V. The molecular composition of humus carbon: Recalcitrance and reactivity in soils. In The Future of Soil Carbon; Garcia, C., Nannipieri, P., Hernandez, T., Eds.; Academic Press: London, UK, 2018; pp. 87–124. [Google Scholar]
- Nardi, S.; Ertani, A.; Francisco, O. Soil-root crosstalking: The role of humic substances. J. Plant Nutr. Soil Sci. 2017, 180, 5–13. [Google Scholar] [CrossRef]
- Urrutia, O.; Erro, J.; Fuentes, M.; Olaetxea, M.; Garnica, M.; Baigorri, R.; Zamarreno, A.M.; Movila, M.; De Hita, D.; Garcia-Mina, J. The effect of soil organic matter on plant mineral nutrition. In Achieving Sustainable Crop Nutrition; Rengel, Z., Ed.; Burleigh Dodds: Cambridge, UK, 2020; pp. 1–11. [Google Scholar]
- Zandonadi, D.B.; Canellas, L.P.; Facanha, A.R. Indole-acetic acid and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pump activation. Planta 2007, 225, 1583–1595. [Google Scholar] [CrossRef]
- Zandonadi, D.B.; Santos, M.P.; Dobbss, L.B.; Olivares, F.L.; Canellas, L.P.; Binzel, M.L.; Okorokova-Façanha, A.L.; Façanha, A.R. Nitric oxide mediates humic acid induced root development and plasma membrane H+-ATPase activation. Planta 2010, 231, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, S.; Pizzeghello, D.; Ruperti, B.; Francioso, O.; Sassi, A.; Palme, K.; Quaggiotti, S.; Nardi, S. Humic substances induce lateral root formation and expression of the early auxin-responsive IAA 19 gene and DR 5 synthetic element in Arabidopsis. Plant Biol. 2010, 12, 604–614. [Google Scholar]
- Pinton, R.; Cesco, S.; Iacolettig, G.; Astolfi, S.; Varanini, Z. Modulation of NO3-uptake by water-extractable humic substances: Involvement of root plasma membrane H+-ATPase. Plant Soil 1999, 215, 155–161. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebioso, A.; Massei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 30, 15–27. [Google Scholar] [CrossRef]
- Canellas, L.P.; Teixeira Junior, L.R.L.; Dobbs, L.B.; Silva, C.A.; Medici, L.O.; Zandonadi, D.B.; Facanha, A.R. Humic acids crossinteractions with root and organic acids. Ann. Appl. Biol. 2008, 153, 157–166. [Google Scholar] [CrossRef]
- Spark, K.M.; Wells, J.D.; Johnson, B.B. The interaction of humic acid with heavy metals. Aust. J. Soil Res. 1997, 35, 89–101. [Google Scholar] [CrossRef]
- Haynes, R.J.; Mokolobate, M.S. Amelioration of Al toxicity and P deficiency in acid soils by addition of organic residues: A critical review on the phenomena and the mechanisms involved. Nutr. Cycl. Agroecosyst. 2004, 59, 47–63. [Google Scholar] [CrossRef]
- Suthipradit, S.; Edwards, D.G.; Asher, C.J. Effects of aluminum on tap-root elongation of soybean (Glycine max), cowpea (Vigna unguiculata) and green gram (Vigna radiata) grown in the presence of organic acids. Plant Soil 1990, 124, 233–237. [Google Scholar] [CrossRef]
- Chianese, S.; Fenti, A.; Iovino, P.; Musmarra, D.; Salvestrini, S. Sorption of organic pollutants by humic acids: A review. Molecules 2020, 25, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; JohnWiley: New York, NY, USA, 1994. [Google Scholar]
- Batjes, N.H. Harmonized soil property values for broad-scale modeling with estimates of global carbon stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- Weber, J.; Chen, Y.; Janroz, E.; Miano, T. Preface: Humic substances in the environment. J. Soils Sediments 2018, 18, 2665–2667. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.H.B.; Clapp, C.E. Humic substances: Considerations of composition, aspects of structure and environmental influences. Soil Sci. 2001, 166, 723–737. [Google Scholar] [CrossRef] [Green Version]
- Oertel, G.; Matschullat, J.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Minasmy, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Rumpel, C.; Asmiraslami, F.; Koutika, L.-S.; Smith, R.; Whitehead, D.; Wollenberg, E. Put more carbon in soils to meet Paris climate pledges. Nature 2018, 564, 32–34. [Google Scholar] [CrossRef] [Green Version]
- Wiesemeier, M.; Mayer, S.; Burmeister, J.; Hübner, K.; Kögl-Knabner, I. Feasibility of the 4 per 1000 initiative in Bavaria: A reality check of agricultural soil management and carbon sequestration scenarios. Geoderma 2020, 369, 11433. [Google Scholar] [CrossRef]
- Klapp, E. Lehrbuch des Acker–und Pflanzenbaus; Paul Parey: Berlin/Hamburg, Germany, 1967. [Google Scholar]
- Baveye, P.C.; White, R.E. The “4p1000” initiative: A new name should be adopted. Ambio 2019, 49, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57–134. [Google Scholar]
- Ghabbour, E.A.; Davis, G.; Daggett, J.L., Jr.; Worgul, C.A.; Wyant, G.A.; Sayedbagheri, M.-M. Measuring the humic acid content of commercial lignites and agricultural top soils in the international soil project. Ann. Environ. Sci. 2012, 6, 1–12. [Google Scholar]
- Hedges, J.I.; Oades, J.M. Comparative organic geochemistry of soils and marine sediments. Org. Geochem. 1997, 27, 319–361. [Google Scholar] [CrossRef]
- Piccolo, A.; Conte, P. Molecular size of humic substances. Supramolecular associations versus macromolecular polymers. Adv. Environ. Res. 2000, 3, 508–521. [Google Scholar]
- Piccolo, A.; Cozzolinio, A.; Conte, P.; Spaccini, R. Polymerization of humic substances by an enzyme catalyzed oxidative coupling. Naturwissenschaften 2000, 87, 391–394. [Google Scholar] [CrossRef]
- Cozzolino, A.; Piccolo, A. Polymerization of dissolved humic substances catalyzed by peroxidase. Effects of pH and humic composition. Org. Geochem. 2002, 33, 281–294. [Google Scholar] [CrossRef]
- Nuzzo, A.; Piccolo, A. Oxidative and photo-oxidative polymerization of humic superstructures by heterogeneous biomimetic catalysis. Biomacromolecules 2013, 14, 1645–1652. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, A.; Spaccini, R.; Cozzolino, V.; Nuzzo, A.; Drosos, M.; Zavattaro, L.; Grignani, C.; Puglisi, E.; Trevisan, M. Effective carbon sequestration in Italian agricultural soils by in situ polymerization of soil organic matter under biomimetic photocatalysis. Land Degrad. Dev. 2018, 29, 485–494. [Google Scholar] [CrossRef]
- Ogle, S.M.; Alsaker, C.; Baldock, J.; Bernoux, M.; Breidt, F.J.; McConkey, B.; Regina, K.; Vazquez-Amabile, G.G. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Sci. Rep. 2019, 9, 11665. [Google Scholar] [CrossRef] [PubMed]
- Erro, J.; Urrutia, O.; Baigorri, R.; Fuentes, M.; Zamerreno, G.; Garcia-Mina, J. Incorporation of humic-derived active molecules into compound NPK granulated fertilizers. Chem. Biol. Technol. Agric. 2016, 3, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Ziechmann, W. Huminstoffe; Verlag Chemie: Weinheim, Germany, 1980. [Google Scholar]
- Vissser, S.A. Oxidation-reduction potentials and capillary activity of humic acids. Nature 1964, 204, 7–11. [Google Scholar] [CrossRef]
- Trommler, U. Einfluss von Huminstoffen auf Chemische Reaktionen bei der Reinigung von Kontaminierten Wässern. Ph.D. Thesis, Universität Leipzig, Leipzig, Germany, 2007. [Google Scholar]
- FAO. Soil Organic Carbon, the Hidden Potential; FAO: Rome, Italy, 2017. [Google Scholar]
- Hayes, M.H.B.; Swift, R.S. Vindication of humic substances as a key component of organic matter in soil and water. Adv. Agron. 2020, 163, 1–37. [Google Scholar]
- Glaser, B.; Haumeier, G.; Guggenberger, G.; Zech, W. The terra pretaphenomen: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.W.I.; Skjemstad, J.O.; Gehrt, E.; Kögl-Knabner, I. Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci. 1999, 50, 351–356. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Skjemstad, J.O.; Jäger, C. Carbon isotope geochemistry and nano morphology of soil black carbon: Black chernozemic soils in central Eurpoe originate from ancient biomass burning. Glob. Biogeochem. Cycles 2002, 16, 1123–1131. [Google Scholar] [CrossRef] [Green Version]
- Skjemstad, J.O.; Reikosky, D.C.; Wilts, A.R.; McGowan, J.A. Charcoal carbon in US agricultural soils. Soil Sci. Soc. Am. J. 2002, 66, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Gerke, J. Black (pyrogenic) carbon in soils and waters: A fragile data basis extensively interpreted. Chem. Biol. Technol. Agric. 2019, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yield. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
Nutrient | Soil Solution Species | Transfer Mechanism |
---|---|---|
Nitrogen (N) | NO3−; NH4+ Organic N | mineralization, nitrification desorption |
Phosphorus/ Phosphate (P) | H2PO4−; HPO42−; organic P, humic-metal- P complexes | desorption; mineralization dissolution of humic-metal- P complexes |
Potassium (K) | K+; humic-K species? | desorption |
Sulfur (S) | SO42−; organic S heterocyclic S? | mineralization; desorption dissolution of humic-S |
Iron (Fe) | Fe(III), Fe(II) species humic-Fe complexes other organic Fe complexes | mineral dissolution, reduction dissolution of humic-Fe complexes desorption |
Copper (Cu) | Cu(II), humic-Cu complexes other organic Cu- complexes | dissolution of humic-Cu complexes desorption, mineralization |
Manganese (Mn) | Mn (II), Mn (III), Mn (IV) organic (humic)-Mn species? | reduction, desorption, dissolution |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerke, J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 2022, 6, 33. https://doi.org/10.3390/soilsystems6020033
Gerke J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Systems. 2022; 6(2):33. https://doi.org/10.3390/soilsystems6020033
Chicago/Turabian StyleGerke, Jörg. 2022. "The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage" Soil Systems 6, no. 2: 33. https://doi.org/10.3390/soilsystems6020033
APA StyleGerke, J. (2022). The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Systems, 6(2), 33. https://doi.org/10.3390/soilsystems6020033