Exploring Operational Procedures to Assess Ecosystem Services at Farm Level, including the Role of Soil Health
Abstract
:1. Introduction
1.1. Sustainable Development Goals
1.2. Research on Wicked Problems
1.3. Objective of This Paper
2. Materials and Methods
2.1. Characterizing Ecosystem Services and Corresponding Thresholds
2.2. Characterizing Soil Health as It Contributes to Ecosystem Services
2.3. Arable Farming in Flevoland on Calcareous Light Clay Soils
3. Results
3.1. Ecosystem Services and Soil Contributions to SDG2 & 3 (No More Hunger and Health) Focusing on Priduction of Healthy Food
3.1.1. Actual Conditions and Thresholds
3.1.2. Soil Health Contributions
3.1.3. Future Prospects
3.2. Ecosystem Services Contributing to SDG6 (Clean Water and Sanitation) Focusing on Clean Surface and Groundwater
3.2.1. Actual Conditions and Thresholds
3.2.2. Future Prospects
3.3. Ecosystem Services Contributing to SDG7 (Energy Use)
3.3.1. Actual Conditions and Thresholds
3.3.2. Future Prospects
3.4. Ecosystem Services Contributing to SDG13 Focusing on Carbon Sequestration and GHG Emission Reduction
3.4.1. Actual Conditions and Thresholds
3.4.2. Future Prospects
3.5. Ecosystem Services Contributing to SDG15 Focusing on Reduction in Land Degradation and Biodiversity Preservation
3.5.1. Actual Condition and Thresholds
3.5.2. Future Prospects
4. Discussion
4.1. Implications for Environmental Rules and Regulations and Support Programs
4.2. Need for Operational Measuring and Monitoring Methods
4.2.1. Ecosystem Services for Farming Systems
4.2.2. Soil Contributions to Ecosystem Services
4.3. Need for a Paradigm Shift in Research
5. Conclusions
- The proposed joint establishment of “Living Labs” and system experiments at research farms to develop sustainable land use systems in line with the SDGs and the Green Deal requires an as-yet not existing methodology that allows the assessment of ecosystem services and thresholds to assess system functioning. “Lighthouses” can only be established when these thresholds are satisfied.
- Soils can make crucial contributions to ecosystem services by assessing and improving soil health, to be demonstrated in interdisciplinary case studies.
- The development of new innovative monitoring techniques is essential to assess the sustainable development of land-use systems, where farms constitute the largest group. The current laboratory tests are often too costly and time-consuming. Studies on new monitoring techniques, among them proximal and remote sensing, need strong support.
- A focus on documenting indicators and thresholds for ecosystem services when working with farmers is particularly relevant, as the future Common Agricultural Policy (CAP) intends to focus its support partly on the provision of such services.
- Adaptive management by farmers implies not only producing heathy food but also protecting ground and surface water quality, restricting greenhouse gas emissions, increasing carbon capture, combatting land degradation and protecting and improving biodiversity. This presents a “wicked” problem that cannot be approached by linear research, but needs more stakeholder-oriented holistic approaches and can be expressed by well documented “storylines” that are also effective for communication with the policy arena, farmers and citizens at large.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- European Commission (EC). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on European Missions (COM (2021), 609 Final); European Commission (EC): Brussels, Belgium, 2021. [Google Scholar]
- Bouma, J. Soil science contributions towards Sustainable Development Goals and their implementation: Linking soil functions with ecosystem services. J. Plant Nutr. Soil Sci. 2014, 177, 111–120. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Bampa, F.; O’Sullivan, L.; Madena, K.; Sanden, T.; Spiegel, H.; Henriksen, C.B.; Ghaley, B.B.; Jones, A.; Staes, J.; Sturel, S.; et al. Harvesting European knowledge on soil functions and land management using multi-criteria decision analysis. Soil Use Manag. 2019, 1, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Schröder, J.J.; ten Berge, H.F.M.; Bampa, F.; Creamer, R.E.; Giraldez-Cervera, J.V.; Henriksen, C.B.; Olesen, J.E.; Rutgers, M.; Sandén, T.; Spiegel, H. Multi-functional land use is not self-evident for European farmers: A critical review. Front. Environ. Sci. 2020, 8, 156. [Google Scholar] [CrossRef]
- Bouma, J. How to reach multifunctional land use as a contribution to sustainable development. Front. Environ. Sci. 2021, 9, 620285. [Google Scholar] [CrossRef]
- Veerman, C.; Pinto Correia, T.; Bastioli, C.; Biro, B.; Bouma, J.; Cienciala, E.; Emmett, B.; Frison, E.A.; Grand, A.; Hristov, L.; et al. Caring for Soil Is Caring for Life—Ensure 75% of Soils Are Healthy by 2030 for Food, People, Nature and Climate, Independent Expert Report; European Commission (EC): Luxembourg, 2020. [Google Scholar]
- Wijnands, F.; Vereijken, P. Region-wise development of prototypes of integrated arable farming and outdoor horticulture. Neth. J. Agric. Sci. 1992, 40, 225–238. [Google Scholar] [CrossRef]
- De Haan, J.J.; Sukkel, W. Evaluation of methodology as applied in the VEGINECO project. In Manual on Prototyping Methodology and Multifunctional Crop Rotation; VEGINECO Report; No. 2; Applied Plant Research B.V.: Wageningen, The Netherlands, 2002; pp. 37–39. Available online: https://edepot.wur.nl/11926 (accessed on 22 February 2022).
- Langeveld, J.; van Keulen, H.; de Haan, J.; Kroonen-Backbier, B.; Oenema, J. The nucleus and pilot farm research approach: Experiences from The Netherlands. Agric. Syst. 2005, 84, 227–252. [Google Scholar] [CrossRef]
- Wageningen University and Research. KWIN-AGV 2018; PPO—Publicatienummer 776; Wageningen University and Research: Wageningen, The Netherlands, 2018. [Google Scholar]
- Van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Hack ten Broeke, M.J.D.; Mulder, H.M.; Bartholomeus, J.G.; van Brakel, P.T.G.; Supit, I.; de Wit, A.J.W.; Ruijtenberg, R. Quantitative land evaluation implemented in Dutch water management. Geoderma 2019, 338, 536–545. [Google Scholar] [CrossRef]
- European Union (EU). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Union (EU): Brussels, Belgium, 2000. [Google Scholar]
- Smith, P.; Soussana, J.-F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Chang. Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arets, E.J.M.M.; Van Der Kolk, J.W.H.; Hengeveld, G.M.; Lesschen, J.P.; Kramer, H.; Kuikman, P.J.; Schelhaas, N.J. Greenhouse Gas Reporting of the LULUCF Sector in the Netherlands. Methodological Background, Update 2021. WOt Technical Report 201; Statutory Research Tasks Unit for Nature and the Environment (WOT Natuur and Milieu): Wageningen, The Netherlands, 2021; Available online: https://edepot.wur.nl/539898 (accessed on 20 February 2022).
- Soil Science Society of America (SSSA). Part 4. Physical methods. In Methods of Soil Analysis; Dane, J.H., Top, G.C., Eds.; Soil Science Society of America (SSSA): Madison, WI, USA, 2002. [Google Scholar]
- Soil Science Division Staff. USDA Handbook 18—Soil Survey Manual; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; U.S. Government Publishing Office: Washington, DC, USA, 2017.
- Pulleman, M.M.; Bouma, J.; van Essen, E.A.; Meijles, E.W. Soil organic matter content as a function of different land use history. Soil Sci. Soc. Am. J. 2000, 64, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Sonneveld, M.; Bouma, J.; Veldkamp, A. Refining soil survey information for a Dutch soil series using land use history. Soil Use Manag. 2002, 18, 157–163. [Google Scholar] [CrossRef]
- Moebius-Clune, B.N.; Moebius-Clune, D.J.; Gugino, B.K.; Idowu, O.J.; Schindelbeck, R.R.; Ristow, A.J.; van Es, H.M.; Thies, J.E.; Shayler, H.A.; McBride, M.B.; et al. Comprehensive Assessment of Soil Health: The Cornell Framework Manual, 3.1th ed.; Cornell University: Ithaca, NY, USA, 2016. [Google Scholar]
- Crittenden, S. Biophysical Soil Quality of Tillage Systems in Conventional and Organic Farming; Wageningen University: Wageningen, The Netherlands, 2015; Available online: https://edepot.wur.nl/364181 (accessed on 20 February 2022).
- Norén, I.S.; Verstand, D.; de Haan, J.J. Effecten van Bodemmaatregelen op Bodemfunkties en Bodemkwaliteit. Integrale Analyse van de Resultaten uit de PPs Beter Bodembeheer en Eerste Vertaalslag naar Praktische Boodschappen. Rapport WPR-854; Wageningen Research: Wageningen, The Netherlands, 2021. [Google Scholar]
- De Nederlandse Voedsel-en Warenautoriteit (NVWA). Residuen van Gewasbeschermingsmiddelen in Levensmiddelen. Overzicht van Uitkomsten NVWA-Inspecties Januari–December 2019; De Nederlandse Voedsel-en Warenautoriteit (NVWA): Utrecht, The Netherlands, 2020; Available online: https://www.nvwa.nl/onderwerpen/inspectieresultaten-bestrijdingsmiddelen-in-voedingsmiddelen/documenten/consument/eten-drinken-roken/bestrijdingsmiddelen/publicaties/residuen-van-gewasbeschermingsmiddelen-op-groente-en-fruit-januari---december-2019 (accessed on 20 February 2022).
- De Vries, F. Karakterisering van Nederlandse Gronden naar Fysisch-Chemische Kenmerken; Report 654; DLO-Staring Centrum: Wageningen, The Netherlands, 1999. [Google Scholar]
- De Ponti, T.; Rijk, B.; van Ittersum, M. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Juventia, S.D.; Rossing, W.A.; Ditzler, L.; van Apeldoorn, D.F. Spatial and genetic crop diversity support ecosystem service delivery: A case of yield and biocontrol in Dutch organic cabbage production. Field Crops Res. 2020, 261, 108015. [Google Scholar] [CrossRef]
- De Buck, A.J.; de Ruijter, F.J.; Wijnands, F.G.; van Enckevort, P.L.A.; van Dijk, W.; Pronk, A.A.; de Haan, J.J.; Booij, R. Voorwaarts met de Milieuprestaties van de Nederlandse Open-Teelt Sectoren: Een Verkenning Naar 2020. (Plant Research International Rapport No. 6); Plant Research International: Wageningen, The Netherlands, 2000; Available online: https://edepot.wur.nl/31047 (accessed on 20 February 2022).
- Sival, F.P.; Noij, I.G.A.M.; de Haan, J.J.; van der Schoot, J.R. Constructed Wetlands for Agricultural Drainwater; Wageningen University and Research: Wageningen, The Netherlands, 2010; Available online: https://edepot.wur.nl/158080 (accessed on 20 February 2022).
- Mendes, L.R.D. Nitrogen removal from agricultural subsurface drainage by surface-flow wetlands: Variability. Processes 2021, 9, 156. [Google Scholar] [CrossRef]
- Bos, J.F.; de Haan, J.; Sukkel, W.; Schils, R.L. Energy use and greenhouse gas emissions in organic and conventional farming systems in the Netherlands. NJAS Wagening. J. Life Sci. 2014, 68, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Koopmans, C.; Timmermans, B.; de Haan, J.; van Opheusden, M.; Selin Noren, I.; Slier, T.; Wagenaar, J.P. Evaluatie van Maatregelen voor het Vastleggen van Koolstof in Minerale Gronden 2019–2023: Voortgangsrapportage 2020; Louis Bolk Instituut: Bunnik, The Netherlands, 2020; Available online: https://edepot.wur.nl/534917 (accessed on 20 February 2022).
- Bonfante, A.; Bouma, J. The role of soil series in quantitative land evaluation when expressing effects of climate change and crop breeding on future land use. Geoderma 2015, 259–260, 187–195. [Google Scholar] [CrossRef]
- Bonfante, A.; Terribile, F.; Bouma, J. Refining physical aspects of soil quality and soil health when exploring the effects of soil degradation and climate change on biomass production: An Italian case study. Soil 2019, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bonfante, A.; Basile, A.; Bouma, J. Exploring the effect of varying soil organic matter contents on current and future moisture supply capacities of six Italian soils. Geoderma 2019, 361, 114079. [Google Scholar] [CrossRef]
- Bonfante, A.; Basile, A.; Bouma, J. Targeting the soil quality and soil health concepts when aiming for the United Nations Sustainable Development Goals and the EU Green Deal. Soil 2020, 6, 453–466. [Google Scholar] [CrossRef]
- Dupla, X.; Gondret, K.; Sauzet, O.; Verrecchia, E.; Boivin, P. Changes in topsoil organic carbon content in the Swiss leman region cropland from 1993 to present. Insights from large scale on-farm study. Geoderma 2021, 400, 115125. [Google Scholar] [CrossRef]
- De Haan, J.J.; van den Elsen, E.R.; Hanegraaf, M.C.; Visser, S.M. Soil Indicators for Agricultural Fields in The Netherlands (BLN Version 1.1); Wageningen University and Research: Wageningen, The Netherlands, 2021; Available online: https://edepot.wur.nl/553470 (accessed on 20 February 2022).
- White, J.W.; Hunt, L.; Boote, K.J.; Jones, J.W.; Koo, J.; Kim, S.; Porter, C.H.; Wilkens, P.W.; Hoogenboom, G. Integrated description of agricultural field experiments and production: The ICASA Version 2.0 data standards. Comput. Electron. Agric. 2013, 96, 1–12. [Google Scholar] [CrossRef]
- Kroes, J.G.; Van Dam, J.C.; Bartholomeus, R.P.; Groenendijk, P.; Heinen, M.; Hendriks, R.F.A.; Mulder, H.M.; Supit, I.; Van Walsum, P.E.V. Theory Description and User Manual SWAP Version 4; Wageningen University and Research: Wageningen, The Netherlands, 2017; Available online: https://www.swap.alterra.nl/www.wur.eu/environmental-reseach (accessed on 20 February 2022).
- Holzworth, D.; Huth, N.I.; Fainges, J.; Brown, H.; Zurcher, E.; Cichota, R.; Verrall, S.; Herrmann, N.I.; Zheng, B.; Snow, V. APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environ. Model. Softw. 2018, 103, 43–51. [Google Scholar] [CrossRef]
- Bouma, J. Using soil survey data for quantitative land evaluation. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1989; Volume 9, pp. 177–213. [Google Scholar]
- Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Padarian, J.; et al. Pedotransfer functions in Earth system science: Challenges and perspectives. Rev. Geophys. 2017, 55, 1199–1256. [Google Scholar] [CrossRef] [Green Version]
- Viscarra Rossel, R.A.; Bouma, J. Soil sensing: A new paradigm for agriculture. Agric. Syst. 2016, 148, 71–74. [Google Scholar] [CrossRef]
- Viscarra-Rossel, R.A.; Lobsey, C.R.; Sharman, C.; Flick, P.; McLachlan, G. Novel proximal sensing for monitoring soil organic C-stocks and condition. Env. Sci. Technol. 2017, 51, 5630–5641. [Google Scholar] [CrossRef] [Green Version]
- Reijneveld, J.A.; van Oostrum, M.J.; Brolsma, K.M.; Fletcher, D.; Oenema, O. Empower innovations in routine soil testing. Agronomy 2022, 12, 191. [Google Scholar] [CrossRef]
- Stoorvogel, J.J.; Kooistra, L.; Bouma, J. Chapter 2: Managing soil variability at different spatial scales as a basis for precision agriculture. In Soil Specific Farming: Precision Agriculture. Advances in Soil Science; Lal, R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 37–73. [Google Scholar]
- Van der Ploeg, J.D.; Bouma, J.; Rip, A.; Rijkenberg, F.H.; Ventura, F.; Wiskerke, J.S. On regimes, novelties, niches and co-production. In Seeds of Transition. Essays on Novelty Production, Niches and Regimes in Agriculture; Wiskerke, J.S.C., van der Ploeg, J.D., Eds.; Uitgeverij Koninklijke Van Gorcum: Assen, The Netherlands, 2004; pp. 1–20. [Google Scholar]
- Pielke, R.A. The Honest Broker. Making Sense of Science in Policy and Politics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Bouma, J. Contributing pedological expertise towards achieving the United Nations Sustainable Development Goals. Geoderma 2020, 375, 114508. [Google Scholar] [CrossRef]
- Flyvbjerg, B. Five misunderstandings about case-study research. Qual. Inq. 2006, 12, 219–245. [Google Scholar] [CrossRef] [Green Version]
- Brown, G. Dirt to Soil. One Family’s Journey into Regenerative Agriculture; Chelsea Green Publishing: White River Junction, VT, USA; London, UK, 2017. [Google Scholar]
- Global Forum for Food and Agriculture (GFFA). Berlin Agricultural Ministers Communiqué after the Conference Sustainable Land Use: Food Security Starts with the Soil. 2022. Available online: https://www.gov.pl/web/agriculture/berlin-agriculture-ministers-conference-on-sustainable-land-use-and-food-security (accessed on 1 April 2022).
- Wadoux, A.M.J.C.; Heuvelink, G.B.M.; Murray Lark, R.; Lagacherie, P.; Bouma, J.; Mulder, V.L.; Libohova, Z.; Yang, L.; McBratney, A. The challenges for the future of pedometrics. Geoderma 2021, 401, 115155. [Google Scholar] [CrossRef]
Indicator | Conventional Ploughing | Conventional Non-Inversion Tillage | Organic Ploughing |
---|---|---|---|
Bulk density g/cm3 (2–7 cm) | 1.35 (0.08) | 1.35 (0.06) | 1.30 (0.09) |
Bulk density g/cm3 (14–19 cm) | 1.43 (0.07) | 1.47 (0.06) | 1.40 (0.09) |
Penetration resistance MPa (15–30 cm) | 0.67 (0.31) | 1.90 (0.61) | 1.38 (0.58) |
Organic matter % (0–30 cm) | 3.0 (0.3) | 3.1 (0.3) | 3.3 (0.3) |
Reduced Tillage | Organic Farming | ||||
---|---|---|---|---|---|
Crop | Yield | Crop | Yield | ||
Ploughing | Non-Inversion | Conventional Reference | Organic System | ||
Seed potato | 43 | 44 | Ware potatoes | 52 | 39 |
Sugar beet | 99 | 99 | Grass clover | n.a. | 74 |
Spring barley | 7.6 | 7.8 | Cabbage | 84 | 59 |
Onion | 74 | 71 | Spring wheat | 7.3 | 5.0 |
Carrot | 85 | 68 | |||
Wheat-faba bean | n.a. | 5.0 |
Methods for Measuring Ecosystem Services | Methods for Assessing Soil Contributions to Ecosystem Services | |
---|---|---|
SDG 2/3 |
|
|
SDG 6 |
|
|
SDG13 |
|
|
SDG 15 |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouma, J.; de Haan, J.; Dekkers, M.-F.S. Exploring Operational Procedures to Assess Ecosystem Services at Farm Level, including the Role of Soil Health. Soil Syst. 2022, 6, 34. https://doi.org/10.3390/soilsystems6020034
Bouma J, de Haan J, Dekkers M-FS. Exploring Operational Procedures to Assess Ecosystem Services at Farm Level, including the Role of Soil Health. Soil Systems. 2022; 6(2):34. https://doi.org/10.3390/soilsystems6020034
Chicago/Turabian StyleBouma, Johan, Janjo de Haan, and Maria-Franca S. Dekkers. 2022. "Exploring Operational Procedures to Assess Ecosystem Services at Farm Level, including the Role of Soil Health" Soil Systems 6, no. 2: 34. https://doi.org/10.3390/soilsystems6020034
APA StyleBouma, J., de Haan, J., & Dekkers, M. -F. S. (2022). Exploring Operational Procedures to Assess Ecosystem Services at Farm Level, including the Role of Soil Health. Soil Systems, 6(2), 34. https://doi.org/10.3390/soilsystems6020034