Organic C Fractions in Topsoil under Different Management Systems in Northeastern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling and Chemical Analysis
2.3. Analysis of SOC Fractions
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coyle, C.; Creamer, R.E.; Schulte, R.P.O.; O’Sullivan, L.; Jordan, P.A. Functional Land Management conceptual framework under soil drainage and land use scenarios. Environ. Sci. Pol. 2016, 56, 39–48. [Google Scholar] [CrossRef]
- Parsapour, M.K.; Kooch, Y.; Hosseini, S.M.; Alavi, S.J. Litter and topsoil in Alnus subcordata plantation on former degraded natural forest land: A synthesis of age-sequence. Soil Tillage Res. 2018, 179, 1–10. [Google Scholar] [CrossRef]
- Olorunfemi, I.E.; Fasinmirin, J.T.; Olufayo, A.A.; Komolafe, A.A. Total carbon and nitrogen stocks under different land use/land cover types in the Southwestern region of Nigeria. Geoderma Reg. 2020, 22, e00320. [Google Scholar] [CrossRef]
- Guareschi, R.F.; Pereira, M.G.; Perin, A. Densimetric fractionation of organic matter in an agricultural chronosequence in no-till areas in the Cerrado region, Brazil. Semin. Cienc. Agr. 2016, 37, 595–610. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. USA 2017, 114, 9575–9580. [Google Scholar] [CrossRef]
- Zalles, V.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Pickens, A.; Song, X.-P.; Adusei, B.; Okpa, C.; Aguilar, R.; et al. Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl. Acad. Sci. USA 2019, 8, 428–435. [Google Scholar] [CrossRef]
- Wuaden, C.R.; Nicoloso, R.S.; Barros, E.C.; Grave, R.A. Early adoption of no-till mitigates soil organic carbon and nitrogen losses due to land use change. Soil Tillage Res. 2020, 204, 104728. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The Ability of Conservation Agriculture to Conserve Soil Organic Carbon and the Subsequent Impact on Soil Physical, Chemical, and Biological Properties and Yield. Front. Sust. Food Syst. 2020, 18, 31. [Google Scholar] [CrossRef]
- Bayer, C.; Martin-Neto, L.; Mielniczuk, J.; Pavinato, A.; Dieckow, J. Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Tillage Res. 2006, 86, 237–245. [Google Scholar] [CrossRef]
- Bongiorno, G.; Bünemann, E.K.; Oguejiofor, C.U.; Meier, J.; Gort, G.; Comans, R.; Mäder, P.; Brussaard, L.; de Goede, R. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol. Indic. 2019, 99, 38–50. [Google Scholar] [CrossRef]
- Kooch, Y.; Ehsani, S.; Akbarinia, M. Stratification of soil organic matter and biota dynamics in natural and anthropogenic ecosystems. Soil Tillage Res. 2020, 200, 104621. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Debaene, G.; Smreczak, B. Particle and structure characterization of fulvic acids from agricultural soils. J. Soils Sedim. 2018, 18, 2833–2843. Available online: http://link.springer.com/10.1007/s11368-018-2008-1 (accessed on 1 November 2022). [CrossRef]
- Liu, H. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil. Sci. Total Environ. 2016, 566–567, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Baldock, J.; Nelson, P. Soil organic matter. In Handbook of Soil Science; Taylor and Francis Group: London, UK; New York, NY, USA; CRC Press: Boca Raton, FL, USA, 2000; pp. B25–B84. [Google Scholar]
- Kaiser, K.; Kalbitz, K. Cycling downwards—Dissolved organic matter in soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Angers, D.A.; Eriksen-Hamel, N.S. Full-Inversion Tillage and Organic Carbon Distribution in Soil Profiles: A Meta-Analysis. Soil Sci. Soc. Am. J. 2008, 72, 1370–1374. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2017, 18, 30. Available online: https://environmentalevidencejournal.biomedcentral.com/articles/10.1186/s13750-017-0108-9 (accessed on 1 November 2022). [CrossRef]
- Franzluebbers, A. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0167198702000181 (accessed on 1 November 2022). [CrossRef]
- Babur, E.; Kara, O.; Fathi, R.A.; Susam, Y.E.; Riaz, M.; Arif, M.; Akhtar, K. Wattle fencing improved soil aggregate stability, organic carbon stocks and biochemical quality by restoring highly eroded mountain region soil. J. Environ. Manag. 2021, 288, 112489. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Klimkowicz-Pawlas, A.; Smreczak, B. Characterization of organic matter fractions in the top layer of soils under different land uses in Central-Eastern Europe. Soil Use Manag. 2019, 35, 595–606. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, B.; Lü, Y.; Chen, L. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. Catena 2011, 85, 58–66. [Google Scholar] [CrossRef]
- Ozlu, E.; Arriaga, F.J.; Bilen, S.; Gozukara, G.; Babur, E. Carbon Footprint Management by Agricultural Practices. Biology 2022, 11, 1453. [Google Scholar] [CrossRef] [PubMed]
- Leite, L.F.C.; Galvão, S.R.S.; Holanda Neto, M.R.; Araújo, F.S.; Iwata, B.F. Atributos químicos e estoques de carbono em Latossolo sob plantio direto no cerrado do Piauí. Rev. Bras. Eng. Agríc. Amb. 2010, 14, 1273–1280. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662010001200004&lng=pt&tlng=pt (accessed on 1 November 2022). [CrossRef]
- Fujisaki, K.; Perrin, A.-S.; Desjardins, T.; Bernoux, M.; Balbino, L.C.; Brossard, M. From forest to cropland and pasture systems: A critical review of soil organic carbon stocks changes in Amazonia. Glob. Change Biol. 2015, 21, 2773–2786. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.S.F.; Silva, E.F.L.; Nunes, L.A.P.L.; Carneiro, R.F.V. The effect of converting tropical native savanna to Eucalyptus grandis forest on soil microbial biomass. Land Degrad. Develop. 2010, 21, 540–545. Available online: https://onlinelibrary.wiley.com/doi/10.1002/ldr.993 (accessed on 1 November 2022). [CrossRef]
- Battaglia, M.L.; Thomason, W.E.; Fike, J.H.; Evanylo, G.K.; Stewart, R.D.; Gross, C.D.; Seleiman, M.F.; Babur, E.; Sadeghpour, A.; Harrison, M.T. Corn and wheat residue management effects on greenhouse gas emissions in the mid-Atlantic USA. Land 2022, 11, 846. [Google Scholar] [CrossRef]
- INMET. Instituto Nacional de Meteorologia. 2022. Available online: http://www.inmet.gov.br/portal/ (accessed on 1 November 2022).
- Sousa, D.M.G.; Lobato, E. Cerrado: Correção do Solo e Adubação; Embrapa Cerrados: Planaltina, Brasil, 2004; 416p. [Google Scholar]
- Silva, F.C.; Abreu, M.F.; Pérez, D.V.; Eira, P.A.; Abreu, C.A.; Raij, B.V.; Gianello, C.; Coelho, A.M.; Quaggio, J.A.; Tedesco, M.J.; et al. Métodos de análises químicas para avaliação da fertilidade do solo. In Manual de Análises Químicas de Solos, Plantas e Fertilizantes; Embrapa Informação Tecnológica: Brasilia, Brasil, 2009; pp. 107–190. [Google Scholar]
- Islam, K.R.; Weil, R.R. A rapid microwave digestion method for colorimetric measurement of soil organic carbon. Commun. Soil Sci. Plant Anal. 1998, 29, 2269–2284. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Camargo, F.A.O.; Vidor, C. Utilização de microondas na avaliação da biomassa microbiana do solo. Rev. Bras. Cienc. Solo 1999, 23, 991–996. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06831999000400026&lng=pt&tlng=pt (accessed on 1 November 2022). [CrossRef]
- Alef, K. Estimation of the hydrolysis of fluorescein diacetate. In Methods in Applied Soil Microbiology and Biochemistry; Academic Press: London, UK, 1995; pp. 232–238. [Google Scholar]
- Mendonça, E.S.; Matos, E.S. Matéria Orgânica do Solo: Métodos de Análises; UFV: Viçosa, Brasil, 2005. [Google Scholar]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. Available online: http://www.nrcresearchpress.com/doi/10.4141/cjss95-075 (accessed on 1 November 2022). [CrossRef]
- Swift, R.S. Organic matter characterization. In Methods of Soil Analysis; SSSA: Madison, WI, USA, 1996; pp. 1011–1069. [Google Scholar]
- Diekow, J.; Mielniczuk, J.; Knicker, H.; Bayer, C.; Dick, D.P.; Kögel-Knabner, I. Carbon and nitrogen stocks in physical fractions of a subtropical Acrisol as influenced by long-term no-till cropping systems and N fertilisation. Plant Soil 2005, 268, 319–328. [Google Scholar] [CrossRef]
- R Core Team. R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.r-project.org/ (accessed on 1 November 2022).
- Pinheiro, F.M.; Nair, P.K.R.; Nair, V.D.; Tonucci, R.G.; Venturin, R.P. Soil carbon stock and stability under Eucalyptus-based silvopasture and other land-use systems in the Cerrado biodiversity hotspot. J. Environ. Manag. 2021, 299, 113676. [Google Scholar] [CrossRef] [PubMed]
- Gmach, M.-R.; Dias, B.O.; Silva, C.A.; Nóbrega, J.C.A.; Lustosa-Filho, J.F.; Siqueira-Neto, M. Soil organic matter dynamics and land-use change on Oxisols in the Cerrado, Brazil. Geoderma Reg. 2018, 14, e00178. [Google Scholar] [CrossRef]
- Sá, J.C.S.; Gonçalves, D.R.P.; Ferreira, L.A.; Mishra, U.; Inagaki, T.M.; Furlan, F.J.F.; Moro, R.S.; Floriani, N.; Briedis, C.; Ferreira, A.D.O. Soil carbon fractions and biological activity based indices can be used to study the impact of land management and ecological successions. Ecol. Indic. 2018, 84, 96–105. [Google Scholar] [CrossRef]
- Almeida, L.L.S.; Frazão, L.A.; Lessa, T.A.M.; Fernandes, L.A.; Veloso, Á.L.C.; Lana, A.M.Q.; de Souza, I.A.; Pegoraro, R.F.; Ferreira, E.A. Soil carbon and nitrogen stocks and the quality of soil organic matter under silvopastoral systems in the Brazilian Cerrado. Soil Tillage Res. 2021, 205, 104785. [Google Scholar] [CrossRef]
- Monroe, P.H.M.; Berreto-Garcia, P.A.B.; Barros, W.T.; Oliveira, F.G.R.B.; Pereira, M.G. Physical protection of soil organic carbon through aggregates in different land use systems in the semi-arid region of Brazil. J. Arid Environ. 2021, 186, 104427. [Google Scholar] [CrossRef]
- Lark, R.M. Changes in the variance of a soil property along a transect, a comparison of a non-stationary linear mixed model and a wavelet transform. Geoderma 2016, 266, 84–97. [Google Scholar] [CrossRef]
- Dalal, R.C.; Thornton, C.M.; Allen, D.E.; Owens, J.S.; Kopittke, P.M. Long-term land use change in Australia from native forest decreases all fractions of soil organic carbon, including resistant organic carbon, for cropping but not sown pasture. Agric. Ecosyst. Environ. 2021, 311, 107326. [Google Scholar] [CrossRef]
- Torn, M.S.; Swanston, C.W.; Castanha, C.; Trumbore, S.E. Storage and turnover of organic matter in soil. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; Wiley: Hoboken, NJ, USA, 2009; pp. 219–272. [Google Scholar]
- Liu, X.; Wu, X.; Liang, G.; Zheng, F.; Zhang, M.; Li, S. A global meta-analysis of the impacts of no-tillage on soil aggregation and aggregate-associated organic carbon. Land Degrad. Develop. 2021, 32, 5292–5305. [Google Scholar] [CrossRef]
- Rasse, D.P.; Rumpel, C.; Dignac, M.-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
- Koga, N.; Shimoda, S.; Shirato, Y.; Kusaba, T.; Shima, T.; Niimi, H.; Yamane, T.; Wakabayashi, K.; Niwa, K.; Kohyama, K.; et al. Assessing changes in soil carbon stocks after land use conversion from forest land to agricultural land in Japan. Geoderma 2020, 377, 114487. [Google Scholar] [CrossRef]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Ramos, F.T.; Dores, E.F.C.; Weber, O.L.S.; Beber, D.C.; Campelo, J.H.; Maia, J.C.S. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. J. Sci. Food Agric. 2018, 98, 3595–3602. [Google Scholar] [CrossRef] [PubMed]
- Pausch, J.; Kuzyakov, Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Glob. Change Biol. 2018, 24, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, M.; Chen, C.; Lewis, S.; Boyd, S.; Rashti, M.R.; Esfandbod, M.; Garzon-Garcia, A.; Van Zwieten, L.; Kuzyakov, Y. Soil organic matter formation is controlled by the chemistry and bioavailability of organic carbon inputs across different land uses. Sci. Total Environ. 2021, 770, 145307. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Zhu-Barker, X.; Hao, X.-X.; Li, L.-J. Profile distribution of soil organic carbon and its isotopic value following long term land-use changes. Catena 2021, 207, 105623. [Google Scholar] [CrossRef]
- Thangavel, R.; Kanchikerimath, M.; Sudharsanam, A.; Ayyanadar, A.; Karunanithi, R.; Deshmukh, N.A.; Vanao, N.S. Evaluating organic carbon fractions, temperature sensitivity and artificial neural network modeling of CO2 efflux in soils: Impact of land use change in subtropical India (Meghalaya). Ecol. Indic. 2018, 193, 129–141. [Google Scholar] [CrossRef]
- Cardoso, J.A.F.; Lima, A.M.N.; Cunha, T.J.F.; Rodrigues, M.S.; Hernani, L.C.; Amaral, A.J.; Neto, M.B.D.O. Organic matter fractions in a quartzipsamment under cultivation of irrigated mango in the lower são francisco valley region, Brazil. Rev. Bras. Cienc. Solo 2015, 39, 1068–1078. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832015000401068&lng=en&tlng=en (accessed on 1 November 2022). [CrossRef]
- Guimarães, D.V.; Gonzaga, M.I.S.; Melo Neto, J.O. Manejo da matéria orgânica do solo e estoques de carbono em cultivos de frutas tropicais. Rev. Bras. Eng. Agríc. Amb. 2014, 18, 301–306. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662014000300009&lng=pt&tlng=pt (accessed on 1 November 2022). [CrossRef]
- Iqbal, J.; Hu, R.; Lin, S.; Ahamadou, B.; Feng, M. Carbon dioxide emissions from Ultisol under different land uses in mid–subtropical China. Geoderma 2009, 152, 63–73. [Google Scholar] [CrossRef]
- Iqbal, J.; Ronggui, H.; Lijun, D.; Lan, L.; Shan, L.; Tao, C.; Leilei, R. Differences in soil CO2 flux between different land use types in mid-subtropical China. Soil Biol. Biochem. 2008, 40, 2324–2333. Available online: https://linkinghub.elsevier.com/retrieve/pii/S003807170800165X (accessed on 1 November 2022). [CrossRef]
- Santos, V.B.; Araújo, A.S.; Leite, L.F.; Nunes, L.A.; Melom, W.J. Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 2012, 170, 227–231. [Google Scholar] [CrossRef]
- Sparling, G. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Res. 1992, 30, 195. Available online: http://www.publish.csiro.au/?paper=SR9920195 (accessed on 1 November 2022). [CrossRef]
- Haynes, R.J. Labile Organic Matter Fractions as Central Components of the Quality of Agricultural Soils: An Overview. Adv. Agron. 2005, 85, 221–268. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0065211304850053 (accessed on 1 November 2022).
- Araújo, A.S.F.; Cesarz, S.; Leite, L.F.C.; Borges, C.D.; Tsai, S.M.; Eisenhauer, N. Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil. Soil Biol. Biochem. 2013, 66, 175–181. [Google Scholar] [CrossRef]
- Costantini, M.; Bacenetti, J. Soybean and maize cultivation in South America: Environmental comparison of different cropping systems. Clean. Environ. Syst. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Krauss, M.; Wiesmeier, M.; Don, A.; Cuperus, F.; Gattinger, A.; Gruber, S.; Haagsma, W.; Peigné, J.; Palazzoli, M.C.; Schulz, F.; et al. Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil Tillage Res. 2022, 216, 105262. [Google Scholar] [CrossRef]
- Lyu, M.; Noormets, A.; Ukonmaanaho, L.; Li, Y.; Yang, Y.; Xie, J. Stability of soil organic carbon during forest conversion is more sensitive in deep soil than in topsoil in subtropical forests. Pedobiologia 2021, 84, 150706. [Google Scholar] [CrossRef]
- Balesdent, J.; Basile-Doelsch, I.; Chadoeuf, J.; Cornu, S.; Derrien, D.; Fekiacova, Z.; Hatté, C. Atmosphere–soil carbon transfer as a function of soil depth. Nature 2018, 559, 599–602. [Google Scholar] [CrossRef]
- Basile-Doelsch, I.; Balesdent, J.; Pellerin, S. Reviews and syntheses: The mechanisms underlying carbon storage in soil. Biogeosciences 2020, 17, 5223–5242. Available online: https://bg.copernicus.org/articles/17/5223/2020/ (accessed on 1 November 2022). [CrossRef]
- Medeiros, A.S.; Santos, T.C.; Maia, S.M.F. Effect of long-term and soil depth on soil organic carbon stocks after conversion from native vegetation to conventional tillage systems in Brazil. Soil Tillage Res. 2022, 219, 105336. [Google Scholar] [CrossRef]
- Diekow, J.; Mielniczuk, J.; Knicker, H.; Bayer, C.; Dick, D.P.; Kögel-Knabner, I. Soil C and N stocks as affected by cropping systems and nitrogen fertilisation in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil Tillage Res. 2005, 81, 87–95. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0167198704001357 (accessed on 1 November 2022). [CrossRef]
- Anghinoni, G.; Anghinoni, F.B.G.; Tormena, C.A.; Braccini, A.L.; Mendes, I.C.; Zancanaro, L.; Lal, R. Conservation agriculture strengthen sustainability of Brazilian grain production and food security. Land Use Pol. 2021, 108, 105591. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0264837721003148 (accessed on 1 November 2022). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gualberto, A.V.S.; de Souza, H.A.; Sagrilo, E.; Araujo, A.S.F.; Mendes, L.W.; de Medeiros, E.V.; Pereira, A.P.d.A.; da Costa, D.P.; Vogado, R.F.; da Cunha, J.R.; et al. Organic C Fractions in Topsoil under Different Management Systems in Northeastern Brazil. Soil Syst. 2023, 7, 11. https://doi.org/10.3390/soilsystems7010011
Gualberto AVS, de Souza HA, Sagrilo E, Araujo ASF, Mendes LW, de Medeiros EV, Pereira APdA, da Costa DP, Vogado RF, da Cunha JR, et al. Organic C Fractions in Topsoil under Different Management Systems in Northeastern Brazil. Soil Systems. 2023; 7(1):11. https://doi.org/10.3390/soilsystems7010011
Chicago/Turabian StyleGualberto, Adriano Venicius Santana, Henrique Antunes de Souza, Edvaldo Sagrilo, Ademir Sergio Ferreira Araujo, Lucas William Mendes, Erika Valente de Medeiros, Arthur Prudêncio de Araujo Pereira, Diogo Paes da Costa, Renato Falconeres Vogado, João Rodrigues da Cunha, and et al. 2023. "Organic C Fractions in Topsoil under Different Management Systems in Northeastern Brazil" Soil Systems 7, no. 1: 11. https://doi.org/10.3390/soilsystems7010011
APA StyleGualberto, A. V. S., de Souza, H. A., Sagrilo, E., Araujo, A. S. F., Mendes, L. W., de Medeiros, E. V., Pereira, A. P. d. A., da Costa, D. P., Vogado, R. F., da Cunha, J. R., Teixeira, M. L., & Leite, L. F. C. (2023). Organic C Fractions in Topsoil under Different Management Systems in Northeastern Brazil. Soil Systems, 7(1), 11. https://doi.org/10.3390/soilsystems7010011