Local Calibration of TDR Measurements for Determining Water and Organic Carbon Contents of Peaty Soils
Abstract
:1. Introduction
2. Methods
2.1. TDR System
2.2. Study Site and Sampling Procedure
2.3. Experimental Setup
2.4. Calibration and Site-Specific Calibration Model
2.5. Prediction of SOM-Derived Organic Carbon Contents from Measurements of ε, Z, and θcor
- (1)
- ε and θcor, as well as a categorical predictor variable (Equation (3)), and
- (2)
- ε, θcor, and Z, as well as a categorical predictor variable (Equation (4)).
3. Results and Discussion
3.1. A Common Calibration Equation across Gradients of Organic Carbon Contents Is Feasible
3.2. Organic Carbon Contents Can Be Determined Using TDR
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van den Pol-van Dasselaar, A.; Van Beusichem, M.L.; Oenema, O. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils. Plant Soil 1998, 204, 213–222. [Google Scholar] [CrossRef]
- Panday, D.; Nkongolo, N.V. Effect of Soil Air and Water on Greenhouse Gases Emissions in a Corn-Soybean Rotation. Procedia Environ. Sci. 2015, 29, 293–294. [Google Scholar] [CrossRef]
- Evans, C.D.; Peacock, M.; Baird, A.J.; Artz, R.R.E.; Burden, A.; Callaghan, N.; Chapman, P.J.; Cooper, H.M.; Coyle, M.; Craig, E.; et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 2021, 593, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Wessolek, G.; Schwärzel, K.; Renger, M.; Sauerbrey, R.; Siewert, C. Soil hydrology and CO2 release of peat soils. J. Plant Nutr. Soil Sci. 2002, 165, 494–500. [Google Scholar] [CrossRef]
- Kluge, B.; Wessolek, G.; Facklam, M.; Lorenz, M.; Schwärzel, K. Long-term carbon loss and CO2-C release of drained peatland soils in northeast Germany. Eur. J. Soil Sci. 2008, 59, 1076–1086. [Google Scholar] [CrossRef]
- Topp, G.C.; Ferre, P.A. Measuring Water Content in Soil using TDR: A state-of-the-art in 1998 (1011-4289). International Atomic Energy Agency (IAEA): 2000. Available online: http://inis.iaea.org/search/search.aspx?orig_q=RN:31014390 (accessed on 13 October 2022).
- Calamita, G.; Brocca, L.; Perrone, A.; Piscitelli, S.; Lapenna, V.; Melone, F.; Moramarco, T. Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites. J. Hydrol. 2012, 454–455, 101–112. [Google Scholar] [CrossRef]
- He, H.; Aogu, K.; Li, M.; Xu, J.; Sheng, W.; Jones, S.B.; González-Teruel, J.D.; Robinson, D.A.; Horton, R.; Bristow, K.; et al. A review of time domain reflectometry (TDR) applications in porous media. Adv. Agron. 2021, 168, 83–155. [Google Scholar] [CrossRef]
- Malicki, M.A.; Kotliński, J. Dielectric determination of moisture of cereals grain using time domain reflectometry. Int. Agrophysics 1998, 12, 209–215. [Google Scholar]
- Platt, I.G.; Woodhead, I.; Richards, S.; Tan, A.; Hagedorn, M.; Herrington, P.; Cook, S. Time Domain Reflectometry Measurements of Road Basecourse Moisture Content. Int. J. Smart Sens. Intell. Syst. 2014, 7, 1–5. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Jacobsen, O.H.; Schjønning, P. A laboratory calibration of time domain reflectometry for soil water measurement including effects of bulk density and texture. J. Hydrol. 1993, 151, 147–157. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Brandyk, T.; Gnatowski, T.; Szatyłowicz, J. Calibration of TDR for moisture determination in peat de-posits. Int. Agrophysics 2004, 18, 145–151. [Google Scholar]
- Dettmann, U.; Bechtold, M. Evaluating Commercial Moisture Probes in Reference Solutions Covering Mineral to Peat Soil Conditions. Vadose Zone J. 2018, 17, 1–6. [Google Scholar] [CrossRef]
- Pepin, S.; Plamondon, A.P.; Stein, J. Peat water content measurement using time domain reflectometry. Can. J. For. Res. 1992, 22, 534–540. [Google Scholar] [CrossRef]
- Kritz, G.; Khaled, T. Water Content Determination with TDR in Peat Substrates. Acta Hortic. 2004, 644, 313–317. [Google Scholar] [CrossRef]
- Singh, J.; Lo, T.; Rudnick, D.; Irmak, S.; Blanco-Canqui, H. Quantifying and correcting for clay content effects on soil water measurement by reflectometers. Agric. Water Manag. 2019, 216, 390–399. [Google Scholar] [CrossRef]
- Szypłowska, A.; Lewandowski, A.; Yagihara, S.; Saito, H.; Furuhata, K.; Szerement, J.; Kafarski, M.; Wilczek, A.; Majcher, J.; Woszczyk, A.; et al. Dielectric models for moisture determination of soils with variable organic matter content. Geoderma 2021, 401, 115288. [Google Scholar] [CrossRef]
- Hossain, M.; Chen, W.; Zhang, Y. Bulk density of mineral and organic soils in the Canada’s arctic and sub-arctic. Inf. Process. Agric. 2015, 2, 183–190. [Google Scholar] [CrossRef]
- Zaccone, C.; D’Orazio, V.; Shotyk, W.; Miano, T.M. Chemical and spectroscopic investigation of porewater and aqueous extracts of corresponding peat samples throughout a bog core (Jura Mountains, Switzerland). J. Soils Sediments 2009, 9, 443–456. [Google Scholar] [CrossRef]
- Gnatowski, T.; Szatyłowicz, J.; Pawluśkiewicz, B.; Oleszczuk, R.; Janicka, M.; Papierowska, E.; Szejba, D. Field Cali-bration of TDR to Assess the Soil Moisture of Drained Peatland Surface Layers. Water 2018, 10, 1842. [Google Scholar] [CrossRef]
- Kimmel, K.; Mander, Ü. Ecosystem services of peatlands: Implications for restoration. Prog. Phys. Geogr. Earth Environ. 2010, 34, 491–514. [Google Scholar] [CrossRef]
- Zak, D.; McInnes, R.J. A call for refining the peatland restoration strategy in Europe. J. Appl. Ecol. 2022, 59, 2698–2704. [Google Scholar] [CrossRef]
- Young, D.M.; Baird, A.J.; Morris, P.J.; Holden, J. Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resour. Res. 2017, 53, 6510–6522. [Google Scholar] [CrossRef]
- Minasny, B.; Berglund, Ö.; Connolly, J.; Hedley, C.; de Vries, F.; Gimona, A.; Kempen, B.; Kidd, D.; Lilja, H.; Malone, B.; et al. Digital mapping of peatlands—A critical review. Earth-Sci. Rev. 2019, 196, 102870. [Google Scholar] [CrossRef]
- Thomsen, A. ManTDR Software for Making Manual TDR Measurements. Intern. Rep. Plant Prod. 2006. Available online: https://dcapub.au.dk/djfpdf/intrma3.pdf (accessed on 29 September 2022).
- Nielsen, C.K.; Stødkilde, L.; Jørgensen, U.; Lærke, P.E. Effects of Harvest and Fertilization Frequency on Protein Yield and Extractability from Flood-Tolerant Perennial Grasses Cultivated on a fen Peatland. Front. Environ. Sci. 2021, 9, 619258. [Google Scholar] [CrossRef]
- Malinowski, R.; Groom, G.; Schwanghart, W.; Heckrath, G. Detection and Delineation of Localized Flooding from WorldView-2 Multispectral Data. Remote Sens. 2015, 7, 14853–14875. [Google Scholar] [CrossRef]
- Klingenfuß, C.; Roßkopf, N.; Walter, J.; Heller, C.; Zeitz, J. Soil organic matter to soil organic carbon ratios of peatland soil substrates. Geoderma 2014, 235, 410–417. [Google Scholar] [CrossRef]
- von Post, L. Sveriges Geologiska Undersöknings Torvinventering och Några av dess Hittills Vunna Resultat; Svenska Mosskulturföreningens Tidskrift: Jönköping, Sweden, 1992; pp. 1–27. [Google Scholar]
- Petersen, L.W.; Thomsen, A.; Moldrup, P.; Jacobsen, O.H.; Rolston, D.E. High-resolution time domain reflectrometry: Sensitivity dependency on probe-design. Soil Sci. 1995, 159, 149–154. [Google Scholar] [CrossRef]
- Evett, S. The Tacq Computer Program for Automatic Time Domain Reflectometry Measurements: II. Waveform Interpretation Methods. Trans. ASAE 2000, 43, 1947–1956. [Google Scholar] [CrossRef]
- Thomsen, A.; Schelde, K.; Drøscher, P.; Steffensen, F. Mobile TDR for geo-referenced measurement of soil water content and electrical conductivity. Precis. Agric. 2007, 8, 213–223. [Google Scholar] [CrossRef]
- Dalton, F.; Van Genuchten, M. The time-domain reflectometry method for measuring soil water content and salinity. Geoderma 1986, 38, 237–250. [Google Scholar] [CrossRef]
- Myllys, M.; Simojoki, A.J.S. Calibration of time domain reflectometry (TDR) for soil moisture measurements in cultivated peat soils. Suo 1996, 47, 1–6. [Google Scholar]
- Oleszczuk, R.; Brandyk, T.; Szatylowicz, J. Analiza możliwości zastosowania metody TDR do pomiaru uwilgotnienia w glebie torfowo-murszowej. Zesz. Probl. Postępów Nauk. Rol. 1998, 458, 263–274. [Google Scholar]
- Marra, G.; Wood, S.N. Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 2011, 55, 2372–2387. [Google Scholar] [CrossRef]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2010, 73, 3–36. [Google Scholar] [CrossRef]
- Wood, S.N.; Pya, N.; Säfken, B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 2016, 111, 1548–1563. [Google Scholar] [CrossRef]
- Wood, S.N. Mgcv: Mixed Gam Computation Vehicle with Automatic Smoothness Estimation. R Package Version 1.8-41. 2022. Available online: https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (accessed on 11 November 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 3 October 2022).
- Li, B.; Wang, C.; Gu, X.; Zhou, X.; Ma, M.; Li, L.; Feng, Z.; Ding, T.; Li, X.; Jiang, T.; et al. Accuracy calibration and evaluation of capacitance-based soil moisture sensors for a variety of soil properties. Agric. Water Manag. 2022, 273, 107913. [Google Scholar] [CrossRef]
- Qiu, C.; Ciais, P.; Zhu, D.; Guenet, B.; Peng, S.; Petrescu, A.M.R.; Lauerwald, R.; Makowski, D.; Gallego-Sala, A.V.; Charman, D.J.; et al. Large historical carbon emissions from cultivated northern peatlands. Sci. Adv. 2021, 7, eabf1332. [Google Scholar] [CrossRef]
- Ju, Z.; Liu, X.; Liu, X. An Improved Calibration Determining Soil Bulk Density with Time Domain Reflectometry. Commun. Soil Sci. Plant Anal. 2013, 44, 1072–1079. [Google Scholar] [CrossRef]
- Thring, L.; Boddice, D.; Metje, N.; Curioni, G.; Chapman, D.; Pring, L. Factors affecting soil permittivity and proposals to obtain gravimetric water content from time domain reflectometry measurements. Can. Geotech. J. 2014, 51, 1303–1317. [Google Scholar] [CrossRef]
- Greenberg, I.; Seidel, M.; Vohland, M.; Koch, H.-J.; Ludwig, B. Performance of in situ vs laboratory mid-infrared soil spectroscopy using local and regional calibration strategies. Geoderma 2022, 409, 115614. [Google Scholar] [CrossRef]
- Zaccone, C.; Plaza, C.; Ciavatta, C.; Miano, T.M.; Shotyk, W. Advances in the determination of humification degree in peat since: Applications in geochemical and paleoenvironmental studies. Earth-Sci. Rev. 2018, 185, 163–178. [Google Scholar] [CrossRef]
Plot | Distance to River (m) | Distance to Ditch (m) | BD (g cm−3) | OC (%) | pH | Colour | Silt | Von Post | Vegetation (Dominating) |
---|---|---|---|---|---|---|---|---|---|
12 | 136 | 12 | 0.323 | 44.7 | 4.9 | 4 | 0 | 3 | Holcus lanatus |
13 | 99 | 72 | 0.356 | 26.8 | 5.7 | 2 | 1 | 5 | Phalaris arundinacea |
19 | 80 | 45 | 0.344 | 23.9 | 6.0 | 2 | 1 | 5 | Phalaris arundinacea |
22 | 52 | 59 | 0.316 | 36.8 | 6.2 | 3 | 1 | 4 | Phalaris arundinacea |
Site average: | 0.336 | 33.1 | 5.7 | 2.8 | 0.8 | 4.2 | Varying |
Model Name | Continuous Variables Included (Smooth Terms) | Categorical Variables Included (Parametric Coefficients) |
---|---|---|
WK | θcor (W), ε (K) | - |
WKV | θcor (W), ε (K) | Vegetation (V) |
WKD | θcor (W), ε (K) | Distance to river and ditch (D) |
WKS | θcor (W), ε (K) | Silt content (S) |
WKC | θcor (W), ε (K) | Peat colour (C) |
WKCV | θcor (W), ε (K) | Peat colour + Vegetation (CV) |
WKvP | θcor (W), ε (K) | Von Post scale of humification (vP) |
WKBD | θcor (W), ε (K) | Bulk density (BD) |
WKI | θcor (W), ε (K), Z (I) | - |
WKVI | θcor (W), ε (K), Z (I) | Vegetation (V) |
WKDI | θcor (W), ε (K), Z (I) | Distance to river and ditch (D) |
WKSI | θcor (W), ε (K), Z (I) | Silt content (S) |
WKCI | θcor (W), ε (K), Z (I) | Peat colour (C) |
WKCVI | θcor (W), ε (K), Z (I) | Peat colour + Vegetation (CV) |
WKvPI | θcor (W), ε (K), Z (I) | Von Post scale of humification (vP) |
WKBDI | θcor (W), ε (K), Z (I) | Bulk density (BD) |
WK | WKV | WKD | WKS | WKC | WKCV | WKvP | WKBD | ||
---|---|---|---|---|---|---|---|---|---|
Smooth terms: | |||||||||
ε * θcor | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Parametric coefficients: | |||||||||
Vegetation (V) | p < 0.001 | ||||||||
Distance (D) | p < 0.001 | ||||||||
Silt (S) | p < 0.001 | ||||||||
Colour (C) | p < 0.001 | ||||||||
Colour * Vegetation (CV) | p < 0.001 | ||||||||
von Post (vP) | p < 0.001 | ||||||||
Bulk density (BD) | p < 0.001 | ||||||||
R2 | 0.192 | 0.733 | 0.526 | 0.733 | 0.939 | 0.939 | 0.939 | 0.544 | |
Deviance explained (%) | 95.4 | 98.5 | 97.4 | 98.5 | 99.6 | 99.6 | 99.6 | 97.5 | |
GCV | 63.0 | 21.7 | 38.5 | 21.7 | 4.6 | 4.6 | 4.6 | 36.7 | |
AIC | 3350.5 | 2835.1 | 3109.3 | 2835.1 | 2096.8 | 2096.8 | 2096.8 | 3088.5 |
WKI | WKVI | WKDI | WKSI | WKCI | WKCVI | WKvPI | WKBDI | ||
---|---|---|---|---|---|---|---|---|---|
Smooth terms: | |||||||||
ε * θcor | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Parametric coefficients: | |||||||||
Impedance (I) | p < 0.001 | p < 0.01 | p < 0.001 | p < 0.01 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.001 | |
Vegetation (V) | p < 0.001 | ||||||||
Distance (D) | p < 0.001 | ||||||||
Silt (S) | p < 0.001 | ||||||||
Colour (C) | p < 0.001 | ||||||||
Colour * Vegetation (CV) | p < 0.001 | ||||||||
von Post (vP) | p < 0.001 | ||||||||
Bulk density (BD) | p < 0.001 | ||||||||
R2 | 0.349 | 0.729 | 0.564 | 0.729 | 0.939 | 0.939 | 0.939 | 0.625 | |
Deviance explained (%) | 96.3 | 98.5 | 97.5 | 98.5 | 99.6 | 99.6 | 99.6 | 97.9 | |
GCV | 50.8 | 21.41 | 34.4 | 21.4 | 4.6 | 4.6 | 4.6 | 30.3 | |
AIC | 3247.1 | 2831.2 | 3058.4 | 2831.2 | 2096.1 | 2096.1 | 2096.1 | 2995.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nielsen, C.K.; Thomsen, A.G. Local Calibration of TDR Measurements for Determining Water and Organic Carbon Contents of Peaty Soils. Soil Syst. 2023, 7, 10. https://doi.org/10.3390/soilsystems7010010
Nielsen CK, Thomsen AG. Local Calibration of TDR Measurements for Determining Water and Organic Carbon Contents of Peaty Soils. Soil Systems. 2023; 7(1):10. https://doi.org/10.3390/soilsystems7010010
Chicago/Turabian StyleNielsen, Claudia Kalla, and Anton Gårde Thomsen. 2023. "Local Calibration of TDR Measurements for Determining Water and Organic Carbon Contents of Peaty Soils" Soil Systems 7, no. 1: 10. https://doi.org/10.3390/soilsystems7010010
APA StyleNielsen, C. K., & Thomsen, A. G. (2023). Local Calibration of TDR Measurements for Determining Water and Organic Carbon Contents of Peaty Soils. Soil Systems, 7(1), 10. https://doi.org/10.3390/soilsystems7010010