Characterization of Phosphate Compounds along a Catena from Arable and Wetland Soil to Sediments in a Baltic Sea lagoon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Area, Soil and Sediment Collection
2.2. Determination of Water Contents and the Total Concentrations of C, N, S, CaCO3, P, Ca, Mg, Al, Fe
2.3. Sequential P Fractionation
2.4. P K-Edge XANES Analysis
2.5. Statistical Analysis
3. Results
3.1. Soil and Sediment Characteristics
3.2. Sequentially Extracted P Fractions
3.3. Bulk P K-Edge XANES Spectra
4. Discussion
4.1. Elemental Characteristics
4.2. Sequential Chemical P Fractionation
4.3. P XANES Spectroscopy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreu, V.; Gimeno-García, E.; Pascual, J.A.; Vazquez-Roig, P.; Picó, Y. Presence of pharmaceuticals and heavy metals in the waters of a Mediterranean coastal wetland: Potential interactions and the influence of the environment. Sci. Total Environ. 2016, 540, 278–286. [Google Scholar] [CrossRef]
- Perillo, G.M.E.; Wolanski, E.; Cahoon, D.; Brinson, M. Coastal Wetlands: An Integrated Ecosystem Approach; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Reddy, K.R.; Kadlec, R.H.; Flaig, E.; Gale, P.M. Phosphorus retention in streams and wetlands: A review. Crit. Rev. Environ. Sci. Technol. 1999, 29, 83–146. [Google Scholar] [CrossRef]
- Correll, D.L. Role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 1998, 27, 261–267. [Google Scholar] [CrossRef]
- Bonsdorff, E.; Blomqvist, E.M.; Mattila, J.; Norkko, A. Coastal eutrophication: Causes, consequences and perspectives in the archipelago areas of the Northern Baltic Sea. Estuar. Coast. Shelf Sci. 1997, 44, 63–72. [Google Scholar] [CrossRef]
- Hansen, N.C.; Daniel, T.C.; Sharpley, A.N.; Lemunyon, J.L. The fate and transport of phosphorus in agricultural systems. J. Soil Water Conserv. 2002, 57, 408–417. [Google Scholar]
- Sims, J.T.; Pierzynski, G.M. Chemistry of phosphorus in soils. In Chemical Processes in Soils; Tabatabai, M.A., Sparks, D.L., Eds.; SSSA Book Series; Soil Science Society of America, Inc.: Madison, WI, USA, 2005. [Google Scholar]
- Karstens, S.; Buczko, U.; Glatzel, S. Phosphorus storage and mobilization in coastal Phragmites wetlands: Influence of local-scale hydrodynamics. Estuar. Coastatl Shelf Sci. 2015, 164, 124–133. [Google Scholar] [CrossRef]
- Weyers, E.; Strawn, D.G.; Peak, D.; Moore, A.D.; Baker, L.L.; Cade-Menun, B. Phosphorus speciation in calcareous soils following annual dairy manure amendments. Soil Sci. Am. J. 2016, 80, 1531–1542. [Google Scholar] [CrossRef]
- Koch, M.; Kruse, J.; Eichler-Löbermann, B.; Zimmer, D.; Wilbold, S.; Leinweber, P.; Siebers, N. Phosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: Evidence from sequential fractionation, P K-edge XANES, and 31P NMR spectroscopy. Geoderma 2018, 316, 115–126. [Google Scholar] [CrossRef]
- Schmieder, F.; Gustafsson, J.P.; Klysubun, W.; Zehetner, F.; Riddle, M.; Kirchmann, H.; Bergström, L. Phosphorus speciation in cultivated organic soils revealed by P K-edge XANES spectroscopy. J. Plant Nutr. Soil Sci. 2020, 183, 367–381. [Google Scholar] [CrossRef]
- Turner, B.L. Soil organic phosphorus in tropical forests: An assessment of the NaOH-EDTA extraction procedure for quantitative analysis by solution 31P NMR spectroscopy. Eur. J. Soil Sci. 2008, 59, 453–466. [Google Scholar] [CrossRef]
- Frankowski, L.; Bolałek, J.; Szostek, A. Phosphorus in bottom sediments of Pomeranian Bay (Southern Baltic—Poland). Estuar. Coast. Shelf Sci. 2002, 54, 1027–1038. [Google Scholar] [CrossRef]
- Kraal, P.; Slomp, C.P. Rapid and extensive alteration of phosphorus speciation during oxic storage of wet sediment samples. PLoS ONE 2014, 9, e96859. [Google Scholar] [CrossRef]
- Łukawska-Matuszewska, K.; Bolałek, J. Spatial distribution of phosphorus forms in seduments in the Gulf of Gdańsk (southern Baltic Sea). Cont. Shelf Res. 2008, 28, 977–990. [Google Scholar] [CrossRef]
- Gunnars, A.; Blomqvist, S. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions—An experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 1997, 37, 203–226. [Google Scholar] [CrossRef]
- Xie, L.Q.; Xie, P.; Tang, H.J. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms—An enclosure experiment in a hyper-eutrophic, subtropical Chinese lake. Environ. Pollut. 2003, 122, 391–399. [Google Scholar] [CrossRef]
- Zwolsman, J.J.G. Seasonal variability and biogeochemistry of Phosphorus in the Scheldt Estuary, South-west Netherlands. Estuar. Coast. Shelf Sci. 1994, 39, 227–248. [Google Scholar] [CrossRef]
- Iglesias, M.L.; Devesa-Rey, R.; Pérez-Moreira, R.; Díaz-Fierros, F.; Barrai, M.T. Phosphorus transfer across boundaries: From basin soils to river bed sediments. J. Soils Sediments 2011, 11, 1125–1134. [Google Scholar] [CrossRef]
- Audette, Y.; O’Halloran, I.P.; Nowell, P.M.; Dyer, R.; Kelly, R.; Voroney, R.P. Speciation of phosphorus from agricultural muck soils to stream and lake sediments. J. Environ. Qual. 2018, 47, 884–892. [Google Scholar] [CrossRef]
- Prüter, J.; Leipe, T.; Michalik, D.; Klysubun, W.; Leinweber, P. Phosphorus speciation in sediments from the Baltic Sea, evaluated by a multi-method approach. J. Soils Sediments 2020, 20, 1676–1691. [Google Scholar] [CrossRef]
- Karstens, S.; Buczko, U.; Jurasinski, G.; Peticzka, R.; Glatzel, S. Impact of adjacent land use on coastal wetland sediments. Sci. Total Environ. 2016, 550, 337–348. [Google Scholar] [CrossRef]
- Prüter, J.; Hu, Y.; Leinweber, P. Influence of sample pretreatment on P speciation in sediments evaluated with sequential fractionation and P K-edge XANES spectroscopy. Commun. Soil Sci. Plant Anal. 2022, 53, 1712–1730. [Google Scholar] [CrossRef]
- Bitschofsky, F.; Forster, S.; Powillait, M.; Gebhardt, C. Role of macrofrauna for the exchange processes between sediment and water column in an inner coastal water of southern Baltic Sea (Darss-Zingst Bodden Chain, Grabow). Rostock. Meeresbiol. Beiträge 2015, 25, 27–39. [Google Scholar]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations. Soil Sci. Soc. Am. J. 1982, 46, 970. [Google Scholar] [CrossRef]
- Tiessen, H.; Moir, J.O. Characterization of available P by sequential extraction. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 75–86. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Psenner, R. Fractionation of phosphorus in suspended matter and sediment. Ergeb. Limnol. 1988, 30, 98–113. [Google Scholar]
- Klysubun, W.; Sombunchoo, P.; Deenan, W.; Kongmark, C. Performance and status of beamline BL8 at SLRI for X-ray absorption spectroscopy. J. Synchrotron Radiat. 2012, 19, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef]
- Prietzel, J.; Harrington, G.; Häusler, W.; Heister, K.; Werner, F.; Klysubun, W. Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy. J. Synchrotron Radiat. 2016, 23, 532–544. [Google Scholar] [CrossRef] [PubMed]
- Werner, F.; Prietzel, J. Standard protocol and quality assessment of soil phosphorus speciation by P K-edge XANES spectroscopy. Environ. Sci. Technol. 2015, 49, 10521–10528. [Google Scholar] [CrossRef]
- Calivn, S. XAFS for Everyone; CRC Press: Boca Raton, FL, USA, 2013; p. 427. [Google Scholar]
- Wang, S.; Jin, X.; Zhao, H.; Wu, F. Phosphorus fractions and ist release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area in China. Colloids Surf. A Physicochem. Eng. Asp. 2006, 273, 109–116. [Google Scholar] [CrossRef]
- Bryl, Ł.; Sobczyński, T. Phosphorus and its fractionation in bottom sediments of selected lakes of Wielkopolskie Lakeland in Central and Western Poland. Middle Pomeranian Sci. Soc. Environ. Prot. 2019, 21, 1515–1532. [Google Scholar]
- Neidhardt, H.; Achten, F.; Kern, S.; Schwientek, M.; Oelmann, Y. Phosphorus pool composition in soils and sediments of transitional ecotones under the influence of agriculture. J. Environ. Qual. 2019, 48, 1325–1335. [Google Scholar] [CrossRef]
- Negassa, W.; Michalik, D.; Klysubun, W.; Leinweber, P. Phosphorus speciation in long-term drained and rewetted peatlands of Northern Germany. Soil Syst. 2020, 4, 11. [Google Scholar] [CrossRef]
- Daly, K.; Jeffrey, D.; Tunney, H. The effect of soil type on phosphorus sorption capacity and desorption dynamics in Irish grassland soils. Soil Use Manag. 2001, 17, 12–20. [Google Scholar] [CrossRef]
- González Jiménez, J.L.; Healy, M.G.; Daly, K. Effects of fertiliser on phosphorus pools in soils with contrasting organic matter content: A fractionation and path analysis study. Geoderma 2019, 338, 128–135. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, F.; He, Z.; Guo, J.; Qu, X.; Xie, F.; Giesy, J.P.; Liao, H.; Guo, F. Characterization of organic phosphorus in lake sediments by sequential fractionation and enzymatic hydrolysis. Environ. Sci. Technol. 2013, 47, 7679–7687. [Google Scholar] [CrossRef]
- Kisand, A. Distribution of sediment phosphorus fractions in hypertrophic strongly straified Lake Verevi. Hydrobiology 2005, 547, 33–39. [Google Scholar] [CrossRef]
- Gerke, J. The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots. A critical review. J. Plant Nutr. Soil Sci. 2015, 178, 351–364. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, R.; Wu, F.; Qu, X.; Xie, F.; Fu, Z. Phosphorus fractions and bioavailability in relation to particle size characteristics in sediments from Lake Hongfeng, Southwest China. Environ. Earth Sci. 2013, 68, 1041–1052. [Google Scholar] [CrossRef]
- Akçay, İ.; Yücel, M. Distinct patterns of sedimentary phosphorus fractionation and mobilization in the seafloor of the Black Sea, Marmar Sea and Mediterranean Sea. Sci. Total Environ. 2023, 863, 160936. [Google Scholar] [CrossRef] [PubMed]
- Condron, L.M.; Newman, S. Revisiting the fundamentals of phosphorus fractionation of sediments and soils. J. Soils Sediments 2011, 11, 830–840. [Google Scholar] [CrossRef]
- Schlichting, A.; Leinweber, P.; Meer, R.; Alterman, M. Sequentially extracted phosphorus fractions in peat-derived soils. J. Plant Nutr. Soil Sci. 2002, 165, 290–298. [Google Scholar] [CrossRef]
- Negassa, W.; Leinweber, P. How does the Hedley sequential phsophorus fractionation reflect impacts of land use and management on soil phosphorus: A review. J. Plant Nutr. Soil Sci. 2009, 172, 305–325. [Google Scholar] [CrossRef]
- Noll, M.R.; Szatkowski, A.E.; Magee, E.A. Phosphorus fractionation in soil and sediments along a continuum from agricultural fields to nearshore lake sediments: Potential ecologial impacts. J. Great Lakes Res. 2009, 35, 56–63. [Google Scholar] [CrossRef]
- Sulieman, S.; Mühling, K.H. Utilization of soil organic phosphorus as a strategic approach for sustainable agriculture. J. Plant Nutr. Soil Sci. 2021, 184, 311–319. [Google Scholar] [CrossRef]
- Ajiboye, B.; Akinremi, O.O.; Hu, Y.; Jürgensen, A. XANES speciation of phosphorus in organically amended and fertilized vertisol and mollisol. Soil Sci. Soc. Am. J. 2008, 72, 1256. [Google Scholar] [CrossRef]
- Prüter, J.; McLaren, T.I.; Pätzig, M.; Hu, Y.; Leinweber, P. Phosphorus speciation along a soil to kettle hole transect: Sequential P fractionation, P XANES, and 31P NMR spectroscopy. Geoderma 2023, 429, 116215. [Google Scholar] [CrossRef]
Label | Sample Type | Origin | Sampling Depth in cm | Coordinates |
---|---|---|---|---|
A1 | Soil | arable field | 0–30 | N 54°22′08.00″ |
A2 | Soil | arable field | 30–60 | E 12°48′08.00″ |
W1 | Soil | Wetland | 0–10 | N 54°22′08.30″ |
W2 | Soil | Wetland | 30–50 | E 12°48′12.60″ |
S1 | Sediment | water depth 52 cm | 0–5 | N 54°22′09.00″ |
S2 | Sediment | water depth 52 cm | 5–10 | E 12°48′17.60″ |
S3 | Sediment | water depth 63 cm | 0–5 | N 54°22′09.20″ |
S4 | Sediment | water depth 63 cm | 5–10 | E 12°48′20.00″ |
S5 | Sediment | water depth 230 cm | 0–5 | N 54°22′09.31″ |
S6 | Sediment | water depth 230 cm | 5–10 | E 12°48′33.50″ |
Sample | Water Content | CaCO3 | C | N | S | P | Ca | P/Ca | Mg | P/Mg | Al | P/Al | Fe | P/Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | % | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | ||||||||
A1 | 05 | 6 | 14,583 | 842 | 375 | 430 e | 27,835 b | 0.02 | 2974 c | 0.14 | 10,982 bx | 0.04 | 13,738 e | 0.03 |
A2 | 09 | 14 | 24,400 | 272 | 327 | 390 e | 72,935 a | 0.01 | 4134 b | 0.09 | 10,768 bc | 0.04 | 13,603 e | 0.03 |
W1 | 62 | 0 | 136,917 | 12,580 | 3648 | 2258 a | 6944 c | 0.33 | 4869 a | 0.46 | 18,380 ax | 0.12 | 34,382 a | 0.07 |
W2 | 46 | 0 | 48,683 | 4578 | 1963 | 728 b | 3589 d | 0.20 | 3002 c | 0.24 | 11,344 bx | 0.06 | 15,056 d | 0.05 |
S1 | 20 | 0 | 2600 | 345 | 525 | 140 f | 909 e | 0.15 | 325 d | 0.43 | 737 dx | 0.19 | 861 f | 0.16 |
S2 | 20 | 0 | 2900 | 375 | 560 | 137 f | 1173 e | 0.12 | 404 d | 0.34 | 913 dx | 0.15 | 1104 f | 0.12 |
S3 | 21 | 0 | 2550 | 340 | 475 | 132 f | 639 e | 0.21 | 289 d | 0.46 | 681 dx | 0.19 | 847 f | 0.16 |
S4 | 20 | 0 | 2450 | 315 | 450 | 135 f | 445 e | 0.30 | 285 d | 0.47 | 750 dx | 0.18 | 1018 f | 0.13 |
S5 | 65 | 0 | 67,050 | 7475 | 15,650 | 602 c | 4839 d | 0.12 | 4830 a | 0.12 | 9940 cx | 0.06 | 17,637 c | 0.03 |
S6 | 75 | 0 | 59,550 | 6190 | 14,740 | 551 d | 3652 d | 0.15 | 4751 a | 0.12 | 10,489 bc | 0.05 | 18,452 b | 0.03 |
Sample | H2O-Pmr | H2O-Pmu | Resin-Pmr | Resin-Pmu | NaHCO3-Pmr | NaHCO3-Pmu | NaOH-Pmr | NaOH-Pmu | H2SO4-Pmr | H2SO4-Pmu | Residual-P | Pt | Sum Pmr | Sum Pmu | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg kg−1 | (%) | mg kg−1 | (%) | mg kg−1 | (%) | mg kg−1 | (%) | mg kg−1 | (%) | mg kg−1 | (%) | mg kg−1 | (%) | mg kg−1 | (%) | mg kg−1 | (%) | mg kg−1 | (%) | mg kg−1 | (%) | mg kg−1 | mg kg−1 | (%) | mg kg−1 | (%) | |
A1 | 13 c | (3) | 2 cx | (0) | 18 dex | (4) | 1 a | (0) | 15 b | (3) | 13 de | (3) | 12 c | (3) | 14 bx | (3) | 222 bx | (52) | 37 ab | (9) | 83 bcd | (19) | 430 e | 280 | (65) | 67 | (16) |
A2 | 9 c | (2) | 0 cx | (0) | 11 exx | (3) | 0 a | (0) | 47 b | (12) | 2 ex | (1) | 9 c | (2) | 0 bx | (0) | 261 bx | (67) | 29 ab | (7) | 22 cdx | (6) | 390 e | 337 | (86) | 31 | (8) |
W1 | 26 a | (1) | 23 ax | (1) | 143 axx | (6) | 6 a | (0) | 275 a | (12) | 162 ax | (7) | 443 a | (20) | 156 ax | (7) | 401 ax | (18) | 116 ax | (5) | 505 axx | (22) | 2258 a | 1288 | (57) | 464 | (21) |
W2 | 26 a | (4) | 8 bc | (1) | 40 bcd | (5) | 0 a | (0) | 50 b | (7) | 51 bx | (7) | 75 b | (10) | 92 ab | (13) | 183 bc | (25) | 55 ab | (8) | 149 bxx | (20) | 728 b | 374 | (51) | 206 | (28) |
S1 | 14 c | (10) | 7 bc | (5) | 26 cde | (18) | 6 a | (4) | 20 b | (14) | 1 ex | (1) | 9 c | (6) | 0 bx | (0) | 49 cd | (35) | 14 bx | (10) | 0 dxx | (0) | 140 f | 118 | (81) | 28 | (19) |
S2 | 13 c | (9) | 10 bc | (7) | 33 cde | (24) | 4 a | (3) | 15 b | (11) | 1 ex | (1) | 9 c | (6) | 0 bx | (0) | 53 cd | (39) | 15 bx | (11) | 0 dxx | (0) | 137 f | 122 | (81) | 29 | (19) |
S3 | 27 a | (21) | 16 ab | (12) | 18 dex | (14) | 0 a | (0) | 7 b | (5) | 1 ex | (1) | 9 c | (7) | 0 bx | (0) | 44 dx | (34) | 10 bx | (8) | 0 dxx | (0) | 132 f | 105 | (79) | 28 | (21) |
S4 | 19 b | (14) | 10 bc | (7) | 17 dex | (13) | 0 a | (0) | 15 b | (11) | 1 ex | (1) | 11 c | (8) | 0 bx | (0) | 60 cd | (45) | 11 bx | (8) | 0 dxx | (0) | 135 f | 123 | (85) | 22 | (15) |
S5 | 20 b | (3) | 15 ab | (2) | 57 bxx | (9) | 4 a | (1) | 8 b | (1) | 42 bc | (7) | 18 c | (3) | 57 ab | (9) | 265 bx | (44) | 0 bx | (0) | 115 bcx | (19) | 602 c | 368 | (61) | 119 | (20) |
S6 | 20 b | (4) | 17 ab | (3) | 47 bcx | (9) | 3 a | (1) | 3 b | (1) | 27 cd | (5) | 12 c | (2) | 35 bx | (6) | 199 bx | (36) | 77 ab | (14) | 111 bcd | (20) | 551 d | 282 | (51) | 158 | (29) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prüter, J.; Schumann, R.; Klysubun, W.; Leinweber, P. Characterization of Phosphate Compounds along a Catena from Arable and Wetland Soil to Sediments in a Baltic Sea lagoon. Soil Syst. 2023, 7, 15. https://doi.org/10.3390/soilsystems7010015
Prüter J, Schumann R, Klysubun W, Leinweber P. Characterization of Phosphate Compounds along a Catena from Arable and Wetland Soil to Sediments in a Baltic Sea lagoon. Soil Systems. 2023; 7(1):15. https://doi.org/10.3390/soilsystems7010015
Chicago/Turabian StylePrüter, Julia, Rhena Schumann, Wantana Klysubun, and Peter Leinweber. 2023. "Characterization of Phosphate Compounds along a Catena from Arable and Wetland Soil to Sediments in a Baltic Sea lagoon" Soil Systems 7, no. 1: 15. https://doi.org/10.3390/soilsystems7010015
APA StylePrüter, J., Schumann, R., Klysubun, W., & Leinweber, P. (2023). Characterization of Phosphate Compounds along a Catena from Arable and Wetland Soil to Sediments in a Baltic Sea lagoon. Soil Systems, 7(1), 15. https://doi.org/10.3390/soilsystems7010015