Study of Potentially Toxic Metal Adsorption in a Polluted Acid and Alkaline Soil: Influence of Soil Properties and Levels of Metal Concentration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorption Study
2.1.1. Preparation of Solutions and Adsorption Experiments
2.1.2. Competitive Adsorption
2.1.3. Freundlich Isotherm
2.1.4. Langmuir Isotherm
- qmax (mg kg−1) is a constant that expresses the maximum concentration of the studied metal that can be adsorbed to the soil,
- q (mg kg−1) is the amount of metal adsorbed per kg of soil,
- C (mg L−1) is the metal concentration in solution at equilibrium and
- KL (L kg−1) is the Langmuir constant, which, however, expresses the degree of affinity of adsorption sites.
2.2. Physicochemical Analyses of Soil Samples
3. Results and Discussion
3.1. Physicochemical Properties of Soils
3.2. Adsorption of Zn, Pb, Cu, and Cd Using the Freundlich Model
3.3. Adsorption of Zn, Pb, Cu, and Cd Using the Langmuir Model
3.4. Comparison of Freundlich and Langmuir Isotherms
3.5. Competitive Adsorption of Metals in the Soil Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sparks, D.L. Environmental Soil Chemistry, 2nd ed.; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Alloway, B.J. (Ed.) Heavy Metals in Soils, 3rd ed.; Trace Metals and Metalloids in Soils and Their Bioavailability; Blackie Academic and Professional: London, UK, 2013. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor and Francis Group: Ann Arbor, MI, USA, 2010; ISBN 9781420093704. [Google Scholar]
- ISO/DIS 11466; Environment Soil Quality. ISO Standards Compendium: Zurich, Switzerland, 1994.
- Shifaw, E. Review of Heavy Metals Pollution in China in Agricultural and Urban Soils. J. Health Pollut. 2018, 8, 180607. [Google Scholar] [CrossRef]
- Tadesse, A.W.; Gereslassie, T.; Xu, Q.; Tang, X.; Wang, J. Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China. Int. J. Environ. Res. Public Health 2018, 15, 2873. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Chang, C.K.; Tun, H.; Chen, C.C. An Activity-Based Formulation for Langmuir Adsorption Isotherm. Adsorption 2020, 26, 375–386. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Xue, N.; Han, Z. A Meta-Analysis of Heavy Metals Pollution in Farmland and Urban Soils in China over the Past 20 Years. J. Environ. Sci. 2021, 101, 217–226. [Google Scholar] [CrossRef]
- Golia, E.E.; Dimirkou, A.; Floras, S.A. Monitoring the Variability of Nitrogen and Cadmium Concentrations in Soils and Irrigation Water in the Almyros Area of Central Greece. Commun. Soil Sci. Plant Anal. 2009, 40, 376–390. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Golia, E.E.; Tsiropoulos, G.N.; Füleky, G.; Floras, S.; Vleioras, S. Pollution Assessment of Potentially Toxic Elements in Soils of Different Taxonomy Orders in Central Greece. Environ. Monit. Assess 2019, 191, 106. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Pang, H.; Liao, B. Removal of Copper(II) Ions from Aqueous Solution by Modified Bagasse. J. Hazard. Mater. 2009, 164, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.; Pérez-Novo, C.; Osorio, F.; López, E.; Soto, B. Adsorption and Desorption of Copper and Zinc in the Surface Layer of Acid Soils. J. Colloid Interface Sci. 2005, 288, 21–29. [Google Scholar] [CrossRef] [PubMed]
- van Thuan, T.; Quynh, B.T.P.; Nguyen, T.D.; Ho, V.T.T.; Bach, L.G. Response Surface Methodology Approach for Optimization of Cu2+, Ni2+ and Pb2+ Adsorption Using KOH-Activated Carbon from Banana Peel. Surf. Terfaces 2017, 6, 209–217. [Google Scholar] [CrossRef]
- Zhou, N.; Chen, H.; Xi, J.; Yao, D.; Zhou, Z.; Tian, Y.; Lu, X. Biochars with Excellent Pb(II) Adsorption Property Produced from Fresh and Dehydrated Banana Peels via Hydrothermal Carbonization. Bioresour. Technol. 2017, 232, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Parmar, M.T.L. Heavy Metal Cu, Ni and Zn: Toxicity, Health Hazards and Their Removal Techniques by Low Cost Adsorbents: A Short Overview. Int. J. Plant Anim. Env. Sci. 2013, 3, 143–157. [Google Scholar]
- Bhattacharya, L.; Elzinga, E.J. A Comparison of the Solubility Products of Layered Me(II)–Al(III) Hydroxides Based on Sorption Studies with Ni(II), Zn(II), Co(II), Fe(II), and Mn(II). Soil Syst. 2018, 2, 20. [Google Scholar] [CrossRef]
- Nikishina, M.; Perelomov, L.; Atroshchenko, Y.; Ivanova, E.; Mukhtorov, L.; Tolstoy, P. Sorption of Fulvic Acids and Their Compounds with Heavy Metal Ions on Clay Minerals. Soil Syst. 2022, 6, 2. [Google Scholar] [CrossRef]
- Artioli, Y. Adsorption. In Encyclopedia of Ecology; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Matos, G.D.; Arruda, M.A.Z. Vermicompost as Natural Adsorbent for Removing Metal Ions from Laboratory Effluents. Process. Biochem. 2003, 39, 81–88. [Google Scholar] [CrossRef]
- Dimirkou, A.; Ioannou, Z.; Golia, E.E.; Danalatos, N.; Mitsios, I.K. Sorption of Cadmium and Arsenic by Goethite and Clinoptilolite. Commun. Soil. Sci. Plant Anal. 2009, 40, 259–272. [Google Scholar] [CrossRef]
- Golia, E.E.; Floras, S.A.; Dimirkou, A. Monitoring the Variability of Zinc and Copper in Surface Soils from Central Greece. Bull. Environ. Contam. Toxicol. 2009, 82, 6–10. [Google Scholar] [CrossRef]
- Golia, E.E.; Dimirkou, A.; Floras, S.A. Spatial Monitoring of Arsenic and Heavy Metals in the Almyros Area, Central Greece. Statistical Approach for Assessing the Sources of Contamination. Environ. Monit. Assess. 2015, 187, 399–412. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Ye, W.; Pan, Y.; He, L.; Chen, B.; Liu, J.; Gao, J.; Wang, Y.; Yang, Y. Design with Modeling Techniques. In Industrial Ventilation Design Guidebook: Volume 2: Engineering Design and Applications, 2nd ed.; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Mu, T.-H.; Sun, H.-N. Sweet Potato Leaf Polyphenols: Preparation, Individual Phenolic Compound Composition and Antioxidant Activity. In Polyphenols in Plants; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Ayawei, N.; Ekubo, A.T.; Wankasi, D.; Dikio, E.D. Adsorption of Congo Red by Ni/Al-CO3: Equilibrium, Thermo-dynamic and Kinetic Studies. Orient. J. Chem. 2015, 31, 1307–1318. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Derbalah, A.S.; Moghanm, F.S. Removal of Heavy Metals from Aqueous Solution by Zeolite in Com-petitive Sorption System. Int. J. Environ. Sci. Dev. 2012, 3, 362–367. [Google Scholar] [CrossRef]
- Campillo-Cora, C.; Conde-Cid, M.; Arias-Estévez, M.; Fernández-Calviño, D.; Alonso-Vega, F. Specific Adsorption of Heavy Metals in Soils: Individual and Competitive Experiments. Agronomy 2020, 10, 1113. [Google Scholar] [CrossRef]
- Elbana, T.A.; Magdi Selim, H.; Akrami, N.; Newman, A.; Shaheen, S.M.; Rinklebe, J. Freundlich Sorption Parameters for Cadmium, Copper, Nickel, Lead, and Zinc for Different Soils: Influence of Kinetics. Geoderma 2018, 324, 80–88. [Google Scholar] [CrossRef]
- He, G.; Zhang, Z.; Wu, X.; Cui, M.; Zhang, J.; Huang, X. Adsorption of Heavy Metals on Soil Collected from Lixisol of Typical Karst Areas in the Presence of CaCO3 and Soil Clay and Their Competition Behavior. Sustainability 2020, 12, 7315. [Google Scholar] [CrossRef]
- Limousin, G.; Gaudet, J.P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M. Sorption Isotherms: A Review on Physical Bases, Modeling and Measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- McLean, E.O. Soil PH and Lime Requirement. In Methods of Soil Analysis Part II—Chemical and Microbiological Properties; American Society of Agronomy: Wisconsin, WI, USA, 1983; Volume 9. [Google Scholar]
- Sidney, W. Official Methods of Analysis of the Association of Official Analytical Chemists. JAOAC 1984, 1, 1–6. [Google Scholar]
- Bouyoucos, G.; McCool, M.M. A New Method of Measuring the Concentration of the Soil Solution around the Soil Particles. Science 1915, 42, 507–508. [Google Scholar] [CrossRef]
- Tokalioğlu, Ş.; Kartal, Ş.; Güneş, A.A. Determination of Heavy Metals in Soil Extracts and Plant Tissues at around of a Zinc Smelter. Int. J. Environ. Anal. Chem. 2001, 80, 201–217. [Google Scholar] [CrossRef]
- Golia, E.E.; Tsiropoulos, N.G.; Vleioras, S.; Antoniadis, V. Investigation of Extraction Methods for the Assessment of the Pseudo-Total Concentration of Potentially Toxic Elements in Moderately Contaminated Soils of Central Greece. Water Air Soil Pollut. 2020, 231, 484. [Google Scholar] [CrossRef]
- Huang, G.; Su, X.; Rizwan, M.S.; Zhu, Y.; Hu, H. Chemical Immobilization of Pb, Cu, and Cd by Phosphate Materials and Calcium Carbonate in Contaminated Soils. Environ. Sci. Pollut. Res. 2016, 23, 16845–16856. [Google Scholar] [CrossRef]
- Mao, L.; Ye, H. Influence of Redox Potential on Heavy Metal Behavior in Soils: A Review. Res. Environ. Sci. 2018, 31, 1669–1676. [Google Scholar]
- Adamczyk-Szabela, D.W.W. The Impact of Soil PH on Heavy Metals Uptake and Photosynthesis Efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules 2022, 27, 4671. [Google Scholar] [CrossRef] [PubMed]
- Sipos, P.; Tóth, A.; Kis, V.K.; Balázs, R.; Kovács, I.; Németh, T. Partition of Cd, Cu, Pb and Zn among Mineral Particles during Their Sorption in Soils. J. Soils Sediments 2019, 19, 1775–1787. [Google Scholar] [CrossRef]
- Strawn, D.G. Sorption Mechanisms of Chemicals in Soils. Soil Syst. 2021, 5, 13. [Google Scholar] [CrossRef]
Title 1 | Alkaline Soil | Acidic Soil |
---|---|---|
pH (1:1) | 8.3 ± 0.5 | 5.9 ± 0.3 |
EC (μS cm−1) | 1281 ± 64 | 1445 ± 24 |
Clay (%) | 39.1 ± 0.4 | 42.1 ± 0.8 |
Sand (%) | 21.7 ± 1.1 | 23.7 ± 2.4 |
CaCO3 (%) | 7.7 ± 0.9 | ND |
CEC (cmolc kg−1) | 31.3 | 22.1 |
Zn (Total) (mg kg−1) | 45 ± 2.9 | 39.3 ± 2.6 |
Zn (available) (mg kg−1) | 3.7 ± 1.1 | 2.7 ± 2.1 |
Pb (Total) (mg kg−1) | 4.5 ± 1.1 | 3.8 ± 2.2 |
Pb (available) (mg kg−1) | 0.7 ± 3.2 | 0.9 ± 4.1 |
Cu (Total) (mg kg−1) | 23 ± 2.4 | 21.3 ± 1.7 |
Cu (available) (mg kg−1) | 2.2 ± 3.2 | 2.2 ± 4.3 |
Cd (Total) (mg kg−1) | 1.1 ± 0.3 | 0.9 ± 0.2 |
Cd (available) (mg kg−1) | ND | ND |
Freundlich Parameters | Langmuir Parameters | ||||||
---|---|---|---|---|---|---|---|
1/n | KF (mg kg−1) | R2 | qmax (mg kg−1) | KL (L kg−1) | R2 | ||
Alkaline soil | Zn | 0.555 | 87.99 | 0.9511 | 714.3 | 0.14 | 0.9904 |
Pb | 0.469 | 117.41 | 0.8869 | 833.3 | 0.18 | 0.9621 | |
Cu | 0.499 | 97.99 | 0.9162 | 555.6 | 0.22 | 0.9924 | |
Cd | 0.484 | 101.03 | 0.9213 | 625.0 | 0.20 | 0.9940 | |
Acidic soil | Zn | 0.637 | 58.99 | 0.9618 | 555.6 | 0.11 | 0.9922 |
Pb | 0.596 | 68.90 | 0.9353 | 909.1 | 0.062 | 0.9157 | |
Cu | 0.617 | 53.10 | 0.9845 | 476.2 | 0.12 | 0.9928 | |
Cd | 0.581 | 58.84 | 0.9496 | 588.2 | 0.094 | 0.9987 |
qmax (mg kg−1) | KL (L kg−1) | R2 | ||
---|---|---|---|---|
Alkaline soil | Zn (Pb) | 666.7 | 0.145 | 0.9904 |
Pb (Zn) | 1000 | 0.118 | 0.8788 | |
Acidic soil | Zn (Pb) | 526.3 | 0.096 | 0.9510 |
Pb (Zn) | 625 | 0.078 | 0.9980 | |
Alkaline soil | Cu (Cd) | 526.3 | 0.23 | 0.9931 |
Cd (Cu) | 666.7 | 0.20 | 0.9869 | |
Acidic soil | Cu (Cd) | 434.8 | 0.09 | 0.9128 |
Cd (Cu) | 454.6 | 0.12 | 0.9913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golia, E.E.; Kantzou, O.-D.; Chartodiplomenou, M.-A.; Papadimou, S.G.; Tsiropoulos, N.G. Study of Potentially Toxic Metal Adsorption in a Polluted Acid and Alkaline Soil: Influence of Soil Properties and Levels of Metal Concentration. Soil Syst. 2023, 7, 16. https://doi.org/10.3390/soilsystems7010016
Golia EE, Kantzou O-D, Chartodiplomenou M-A, Papadimou SG, Tsiropoulos NG. Study of Potentially Toxic Metal Adsorption in a Polluted Acid and Alkaline Soil: Influence of Soil Properties and Levels of Metal Concentration. Soil Systems. 2023; 7(1):16. https://doi.org/10.3390/soilsystems7010016
Chicago/Turabian StyleGolia, Evangelia E., Ourania-Despoina Kantzou, Maria-Anna Chartodiplomenou, Sotiria G. Papadimou, and Nikolaos G. Tsiropoulos. 2023. "Study of Potentially Toxic Metal Adsorption in a Polluted Acid and Alkaline Soil: Influence of Soil Properties and Levels of Metal Concentration" Soil Systems 7, no. 1: 16. https://doi.org/10.3390/soilsystems7010016
APA StyleGolia, E. E., Kantzou, O. -D., Chartodiplomenou, M. -A., Papadimou, S. G., & Tsiropoulos, N. G. (2023). Study of Potentially Toxic Metal Adsorption in a Polluted Acid and Alkaline Soil: Influence of Soil Properties and Levels of Metal Concentration. Soil Systems, 7(1), 16. https://doi.org/10.3390/soilsystems7010016