Soil Health Assessment and Management Framework for Water-Limited Environments: Examples from the Great Plains of the USA
Abstract
:1. Introduction
2. Approaches for Soil Health Assessment
3. Linking Soil Health with Essential Water Functions
4. Implementing Soil Health Management to Improve Water Functions
4.1. Minimizing Soil Disturbance
4.2. Keeping the Soil Covered
4.3. Cropping Systems Intensification and Diversification
4.4. Role of Organic Amendments in Soil Health and Water Dynamics
5. Challenges and Opportunities in Soil Health Assessment and Management in Water-Limited Regions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrickson, J.R.; Liebig, M.A.; Sassenrath, G.F. Environment and integrated agricultural systems. Renew. Agric. Food Syst. 2008, 23, 304–313. [Google Scholar] [CrossRef]
- Liebig, M.A.; Tanaka, D.L.; Krupinsky, J.M.; Merrill, S.D.; Hanson, J.D. Dynamic cropping systems: Contributions to improve agroecosystem sustainability. Agron. J. 2007, 99, 899–903. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality. In Defining and Assessing Soil Quality; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1994; pp. 1–21. [Google Scholar] [CrossRef] [Green Version]
- Romig, D.E.; Garlynd, M.J.; Harris, R.F.; McSweeney, K. How farmers assess soil health and quality. J. Soil Water Conserv. 1995, 50, 229–236. [Google Scholar]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Kelly, C.; Schipanski, M.; Kondratieff, B.; Sherrod, L.; Schneekloth, J.; Fonte, S.J. The effects of dryland cropping system intensity on soil function and associated changes in macrofauna communities. Soil Sci. Soc. Am. J. 2020, 84, 1854–1870. [Google Scholar] [CrossRef]
- Cano, A.; Núñez, A.; Acosta-Martinez, V.; Schipanski, M.; Ghimire, R.; Rice, C.; West, C. Current knowledge and future research directions to link soil health and water conservation in the Ogallala Aquifer region. Geoderma 2018, 328, 109–118. [Google Scholar] [CrossRef]
- Melman, D.A.; Kelly, C.; Schneekloth, J.; Calderón, F.; Fonte, S.J. Tillage and residue management drive rapid changes in soil macrofauna communities and soil properties in a semi-arid cropping system of Eastern Colorado. Appl. Soil Ecol. 2019, 143, 98–106. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Ghimire, R.; Ghimire, B.; Mesbah, A.O.; Sainju, U.M.; Idowu, O.J. Soil health response of cover crops in winter wheat–fallow system. Agron. J. 2019, 111, 2108–2115. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Martínez, V.; Lascano, R.; Calderón, F.; Booker, J.D.; Zobeck, T.M.; Upchurch, D.R. Dryland cropping systems influence the microbial biomass and enzyme activities in a semi-arid sandy soil. Biol. Fertil. Soils 2011, 47, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Jacinthe, P.-A.; Shukla, M.K.; Ikemura, Y. Carbon pools and soil biochemical properties in manure-based organic farming systems of semi-arid New Mexico. Soil Use Manag. 2011, 27, 453–463. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Cotton, J.; Gardner, T.; Moore-Kucera, J.; Zak, J.; Wester, D.; Cox, S. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl. Soil Ecol. 2014, 84, 69–82. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Acosta-Martínez, V.; Marsalis, M.A.; Schipanski, M.E. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semi-arid cropping systems. Appl. Soil Ecol. 2021, 157, 103735. [Google Scholar] [CrossRef]
- Ghimire, R.; Norton, J.B.; Stahl, P.D.; Norton, U. Soil microbial substrate properties and microbial community responses under irrigated organic and reduced-tillage crop and forage production systems. PLoS ONE 2014, 9, e103901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzluebbers, A.J.; Stuedemann, J.A.; Schomberg, H.H.; Wilkinson, S.R. Soil organic C and N pools under long-term pasture management in the Southern, Piedmont USA. Soil Biol. Biochem. 2000, 32, 469–478. [Google Scholar] [CrossRef]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Altern. Agric. 2003, 18, 3–17. [Google Scholar] [CrossRef]
- Stewart, R.D.; Jian, J.; Gyawali, A.J.; Thomason, W.E.; Badgley, B.D.; Reiter, M.S.; Strickland, M.S. What we talk about when we talk about soil health. Agric. Environ. Lett. 2018, 3, 180033. [Google Scholar] [CrossRef] [Green Version]
- Moebius-Clune, B.N. Comprehensive Assessment of Soil Health: The Cornell Framework Manual; Cornell University: Geneva, NY, USA, 2016. [Google Scholar]
- Thapa, V.R.; Ghimire, R.; VanLeeuwen, D.; Acosta-Martínez, V.; Shukla, M. Response of soil organic matter to cover cropping in water-limited environments. Geoderma 2022, 406, 115497. [Google Scholar] [CrossRef]
- Rosenzweig, S.T.; Fonte, S.J.; Schipanski, M.E. Intensifying rotations increases soil carbon, fungi, and aggregation in semi-arid agroecosystems. Agric. Ecosyst. Environ. 2018, 258, 14–22. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Johnson, G.L.; Schwartz, R.C. Residue and long-term tillage and crop rotation effects on simulated rain infiltration and sediment transport. Soil Sci. Soc. Am. J. 2012, 76, 1370–1378. [Google Scholar] [CrossRef]
- Lehman, R.M.; Acosta-Martinez, V.; Buyer, J.S.; Cambardella, C.A.; Collins, H.P.; Ducey, T.F.; Halvorson, J.J.; Jin, V.L.; Johnson, J.M.; Kremer, R.J.; et al. Soil biology for resilient, healthy soil. J. Soil Water Conserv. 2015, 70, 12A–18A. [Google Scholar] [CrossRef]
- Soil, Health Institute—Enriching Soil, Enhancing Life n.d. Available online: https://soilhealthinstitute.org/ (accessed on 5 July 2022).
- Soil, Health|NRCS Soils n.d. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 5 July 2022).
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The Soil Management, Assessment Framework. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Haney, R.L.; Haney, E.B.; Smith, D.R.; Harmel, R.D.; White, M.J. The soil health tool—Theory and initial broad-scale application. Appl. Soil Ecol. 2018, 125, 162–168. [Google Scholar] [CrossRef]
- Nunes, M.R.; Veum, K.S.; Parker, P.A.; Holan, S.H.; Karlen, D.L.; Amsili, J.P.; van Es, H.M.; Wills, S.A.; Seybold, C.A.; Moorman, T.B. The soil health assessment protocol and evaluation applied to soil organic carbon. Soil Sci. Soc. Am. J. 2021, 85, 1196–1213. [Google Scholar] [CrossRef]
- Zvomuya, F.; Janzen, H.H.; Larney, F.J.; Olson, B.M. A long-term field bioassay of soil quality indicators in a semi-arid environment. Soil Sci. Soc. Am. J. 2008, 72, 683–692. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern, California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Ikemura, Y.; Shukla, M.K. Soil quality in organic and conventional farms for an arid ecosystem of New Mexico. J. Org. Syst. 2009, 4, 34–47. [Google Scholar]
- Cherubin, M.R.; Karlen, D.L.; Cerri, C.E.P.; Franco, A.L.C.; Tormena, C.A.; Davies, C.A.; Cerri, C.C. Soil, Quality Indexing, Strategies for Evaluating, Sugarcane Expansion in Brazil. PLoS ONE 2016, 11, e0150860. [Google Scholar] [CrossRef]
- Rillig, M.C.; Aguilar-Trigueros, C.A.; Bergmann, J.; Verbruggen, E.; Veresoglou, S.D.; Lehmann, A. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 2015, 205, 1385–1388. [Google Scholar] [CrossRef]
- Lavelle, P.; Spain, A.; Fonte, S.; Bedano, J.C.; Blanchart, E.; Galindo, V.; Grimaldi, M.; Jimenez, J.J.; Velasquez, E.; Zangerlé, A. Soil aggregation, ecosystem engineers and the C cycle. Acta Oecologica 2020, 105, 103561. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Burow, G.; Zobeck, T.M.; Allen, V.G. Soil microbial communities and function in alternative systems to continuous cotton. Soil Sci. Soc. Am. J. 2010, 74, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- NRCS. Soil, Health Key, Points. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1082147.pdf. (accessed on 5 July 2022).
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Limited effect of organic matter on soil available water capacity. Eur. J. Soil Sci. 2018, 69, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Bagnall, D.K.; Morgan, C.L.S.; Cope, M.; Bean, G.M.; Cappellazzi, S.; Greub, K.; Liptzin, D.; Norris, C.L.; Rieke, E.; Tracy, P.; et al. Carbon-sensitive pedotransfer functions for plant available water. Soil Sci. Soc. Am. J. 2022, 86, 612–629. [Google Scholar] [CrossRef]
- Rosenzweig, S.T.; Carolan, M.S.; Schipanski, M.E. A dryland cropping revolution? Linking an emerging soil health paradigm with shifting social fields among wheat growers of the High Plains. Rural Sociol. 2020, 85, 545–574. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Nilahyane, A.; Ghimire, R.; Thapa, V.R.; Sainju, U.M. Cover crop effects on soil carbon dioxide emissions in a semi-arid cropping system. Agrosyst. Geosci. Environ. 2020, 3, e20012. [Google Scholar] [CrossRef] [Green Version]
- Deleon, E.; Bauder, T.A.; Wardle, E.; Fonte, S.J. Conservation tillage supports soil macrofauna communities, infiltration, and farm profits in an irrigated maize-based cropping system of Colorado. Soil Sci. Soc. Am. J. 2020, 84, 1943–1956. [Google Scholar] [CrossRef]
- Sainju, U.M.; Jabro, J.D.; Stevens, W.B. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. J. Environ. Qual. 2008, 37, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Thapa, V.R.; Ghimire, R.; Mikha, M.M.; Idowu, O.J.; Marsalis, M.A. Land use effects on soil health in semi-arid drylands. Agric. Environ. Lett. 2018, 3, 180022. [Google Scholar] [CrossRef]
- Mikha, M.M.; Vigil, M.F.; Benjamin, J.G. Long-term tillage impacts on soil aggregation and carbon dynamics under wheat-fallow in the central Great Plains. Soil Sci. Soc. Am. J. 2013, 77, 594–605. [Google Scholar] [CrossRef]
- Shaver, T.M.; Peterson, G.A.; Ahuja, L.R.; Westfall, D.G.; Sherrod, L.A.; Dunn, G. Surface soil physical properties after twelve years of dryland no-till management. Soil Sci. Soc. Am. J. 2002, 66, 1296–1303. [Google Scholar] [CrossRef] [Green Version]
- Shaver, T.M.; Peterson, G.A.; Ahuja, L.R.; Westfall, D.G. Soil sorptivity enhancement with crop residue accumulation in semi-arid dryland no-till agroecosystems. Geoderma 2013, 192, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Schneekloth, J.; Calderón, F.; Nielsen, D.; Fonte, S.J. Tillage and residue management effects on irrigated maize performance and water cycling in a semi-arid cropping system of Eastern Colorado. Irrig. Sci. 2020, 38, 547–557. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil. Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Holman, J.D.; Schlegel, A.J.; Tatarko, J.; Shaver, T.M. Replacing fallow with cover crops in a semi-arid soil: Effects on soil properties. Soil Sci. Soc. Am. J. 2013, 77, 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.N. Improving Your Success in No-Till. Cover Your Acres Proceedings; Kansas State University: Manhattan, KS, USA, 2008; pp. 22–26. [Google Scholar]
- Malhi, S.S.; Lemke, R.; Wang, Z.H.; Chhabra, B.S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res. 2006, 90, 171–183. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Ceballos-Ramirez, J.M.; Luna-Guido, M.L.; Limon-Ortega, A.; Deckers, J.; Dendooven, L. Conventionally tilled and permanent raised beds with different crop residue management: Effects on soil C and N dynamics. Plant Soil 2006, 280, 143–155. [Google Scholar] [CrossRef]
- Antosh, E.; Idowu, J.; Schutte, B.; Lehnhoff, E. Winter cover crops effects on soil properties and sweet corn yield in semi-arid irrigated systems. Agron. J. 2020, 112, 92–106. [Google Scholar] [CrossRef]
- Paye, W.S.; Acharya, P.; Ghimire, R. Water productivity of forage sorghum in response to winter cover crops in semi-arid irrigated conditions. Field Crops Res. 2022, 283, 108552. [Google Scholar] [CrossRef]
- Amsili, J.P.; Kaye, J.P. Root traits of cover crops and carbon inputs in an organic grain rotation. Renew. Agric. Food Syst. 2021, 36, 182–191. [Google Scholar] [CrossRef]
- Rumberger, A.; Marschner, P. 2-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil Biol. Biochem. 2003, 35, 445–452. [Google Scholar] [CrossRef]
- Liebig, M.; Carpenter-Boggs, L.; Johnson, J.M.F.; Wright, S.; Barbour, N. Cropping system effects on soil biological characteristics in the Great Plains. Renew Agric. Food Syst. 2006, 21, 36–48. [Google Scholar] [CrossRef]
- Sainju, U.M.; Singh, B.P.; Whitehead, W.F. Tillage, cover crops, and nitrogen fertilization effects on cotton and sorghum root biomass, carbon, and nitrogen. Agron. J. 2005, 97, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Brozović, B.; Jug, D.; Đurđević, B.; Vukadinović, V.; Tadić, V.; Stipešević, B. Influence of winter cover crops incorporation on weed infestation in popcorn maize (Zea mays everta Sturt.) organic production. Agric. Conspec. Sci. 2018, 83, 77–81. [Google Scholar]
- Acosta-Martínez, V.; Zobeck, T.M.; Gill, T.E.; Kennedy, A.C. Enzyme activities and microbial community structure in semi-arid agricultural soils. Biol. Fertil. Soils 2003, 38, 216–227. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Mikha, M.M.; Vigil, M.F. Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat–fallow for the central Great Plains. Appl. Soil Ecol. 2007, 37, 41–52. [Google Scholar] [CrossRef]
- Dou, F.; Wright, A.L.; Hons, F.M. Dissolved and soil organic carbon after long-term conventional and no-tillage sorghum cropping. Commun. Soil Sci. Plant Anal. 2008, 39, 667–679. [Google Scholar] [CrossRef]
- Dou, F.; Wright, A.L.; Hons, F.M. Depth distribution of soil organic C and N after long-term soybean cropping in Texas. Soil Tillage Res. 2007, 94, 530–536. [Google Scholar] [CrossRef]
- Allen, B.L.; Pikul, J.L., Jr.; Waddell, J.T.; Cochran, V.L. Long-term lentil green-manure replacement for fallow in the semi-arid northern Great, Plains. Agron. J. 2011, 103, 1292–1298. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.R.; Lighthiser, E.J.; Jones, C.A.; Holmes, J.A.; Rick, T.L.; Wraith, J.M. Pea green manure management affects organic winter wheat yield and quality in semi-arid Montana. Can. J. Plant Sci. 2011, 91, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Nennich, T.D.; Harrison, J.H.; VanWieringen, L.M.; Meyer, D.; Heinrichs, A.J.; Weiss, W.P.; St-Pierre, N.R.; Kincaid, R.L.; Davidson, D.L.; Block, E. Prediction of manure and nutrient excretion from dairy cattle. J. Dairy Sci. 2005, 88, 3721–3733. [Google Scholar] [CrossRef] [Green Version]
- USDA ERS—Organic Production, n.d. Available online: https://www.ers.usda.gov/data-products/organic-production.aspx (accessed on 5 July 2022).
- Sims, J.T.; Maguie, R.O. Manure management. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 4. [Google Scholar]
- Delgado, J.A.; Follett, R.F. Carbon and nutrient cycles. J. Soil Water Conserv. 2002, 57, 455–464. [Google Scholar]
- Butler, T.J.; Muir, J.P. Dairy manure compost improves soil and increases tall wheatgrass yield. Agron. J. 2006, 98, 1090–1096. [Google Scholar] [CrossRef] [Green Version]
- Acharya, P.; Ghimire, R.; Cho, Y. Linking soil health to sustainable crop production: Dairy compost effects on soil properties and sorghum biomass. Sustainability 2019, 11, 3552. [Google Scholar] [CrossRef] [Green Version]
- Calderón, F.J.; Vigil, M.F.; Benjamin, J. Compost input effect on dryland wheat and forage yields and soil quality. Pedosphere 2018, 28, 451–462. [Google Scholar] [CrossRef]
- Liu, J.; Calderón, F.J.; Fonte, S.J. Compost inputs, cropping system, and rotation phase drive aggregate-associated carbon. Soil Sci. Soc. Am. J. 2021, 85, 829–846. [Google Scholar] [CrossRef]
- Maltais-Landry, G.; Scow, K.; Brennan, E.; Vitousek, P. Long-term effects of compost and cover crops on soil phosphorus in two California agroecosystems. Soil Sci. Soc. Am. J. 2015, 79, 688–697. [Google Scholar] [CrossRef]
- Helton, T.J.; Butler, T.J.; McFarland, M.L.; Hons, F.M.; Mukhtar, S.; Muir, J.P. Effects of dairy manure compost and supplemental inorganic fertilizer on coastal Bermudagrass. Agron. J. 2008, 100, 924–930. [Google Scholar] [CrossRef]
- Dungan, R.S.; Leytem, A.B.; Tarkalson, D.D. Greenhouse gas emissions from an irrigated cropping rotation with dairy manure utilization in a semi-arid climate. Agron. J. 2021, 113, 1222–1237. [Google Scholar] [CrossRef]
- Brempong, M.B.; Norton, U.; Norton, J.B. Compost and soil moisture effects on seasonal carbon and nitrogen dynamics, greenhouse gas fluxes and global warming potential of semi-arid soils. Int. J. Recycl. Org. Waste Agric. 2019, 8, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Martínez, V.; Harmel, R.D. Soil microbial communities and enzyme activities under various poultry litter application rates. J. Environ. Qual. 2006, 35, 1309–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, J.A.; Lewis, K.L.; DeLaune, P.B.; Cobos, C.J.; Keeling, J.W. Soil water dynamics and cotton production following cover crop use in a semi-arid ecoregion. Agronomy 2022, 12, 1306. [Google Scholar] [CrossRef]
- Calderón, F.J.; Nielsen, D.; Acosta-martínez, V.; Vigil, M.F.; Lyon, D. Cover crop and irrigation effects on soil microbial communities and enzymes in semi-arid agroecosystems of the central Great Plains of North America. Pedosphere 2016, 26, 192–205. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Duval, B.D.; Marsalis, M.A. Conservation systems for positive net ecosystem carbon balance in semi-arid drylands. Agrosyst. Geosci. Environ. 2019, 2, 190022. [Google Scholar] [CrossRef] [Green Version]
- DeLaune, P.B.; Mubvumba, P.; Lewis, K.L.; Keeling, J.W. Rye cover crop impacts soil properties in a long-term cotton system. Soil Sci. Soc. Am. J. 2019, 83, 1451–1458. [Google Scholar] [CrossRef]
- Anderson, R.L. Improving sustainability of cropping systems in the central Great Plains. J. Sustain. Agric. 2005, 26, 97–114. [Google Scholar] [CrossRef]
Indicator/Method | Soil Function | Implications for Water Conservation and Related Soil Functions |
---|---|---|
Physical | ||
Bulk density | Porosity | Higher water infiltration with less compaction |
Soil texture | Porosity | A direct baseline measure of soil water storage capacity |
Soil aggregates (%) | Soil structure | Soil structure, higher water storage in well-aggregated soil |
Wet aggregate stability | Soil structure | Capacity of soil to resist crusting and water erosion and to facilitate infiltration |
Water infiltration | Soil water dynamics | Soil water capture, water use efficiency, and heat transfer |
Soil water retention | Soil water dynamics | Soil water storage and plant available water |
Soil depth | Soil water dynamics | Soil water storage and availability for crops |
Chemical | ||
Soil pH | Soil acidity/alkalinity | Nutrient availability, creating a suitable environment for plant and microbial growth |
Electrical conductivity | Salinity | Nutrient availability, plant and microbial growth, soil structure, and water-holding capacity |
Soil organic C | Microbial substrate availability, nutrient provision, buffering | Direct measure of SOM status (58% of SOM) and baseline potential of water storage |
Plant available nutrients | Nutrient provision | Nutrient availability for crop and microbial growth |
Biological | ||
Microbial biomass C | Microbial community size | Soil processes such as decomposition, N fixation, C sequestration, nutrient availability |
FAME profiling Fungal: AMF, saprophytic; Bacteria: G+, G−, Actinobacteria | Microbial community size and diversity of microbial groups | Mediate key soil processes such as decomposition, nutrient cycling, and water uptake, especially depending on the microbial groups (e.g., higher fungal populations can provide greater decomposition, cementing agents for aggregate stability, and a higher diversity of enzymes in soils to decompose a wide variety of substrates). AMF can provide an additional benefit to drought resilience. |
Three-day CO2 mineralization | Microbial activity | Indicate decomposition vs. sequestration of carbon, SOM storage, nutrient/water cycling |
Particulate Organic Matter (POM) | Fresh residue C | Early indication of C sequestration and water conservation |
Permanganate oxidizable carbon (POXC) | Diversity of C sources | This C pool can represent simple C sources available for microbial decomposition, substrates from root exudates, and microbial biomass C. |
N mineralization | Crop N supply | Integrative indicator of labile N and microbial activity for increasing N availability |
Enzyme activity assays: β-glucosidase, β-glucosaminidase, acid/alkaline phosphatase, arylsulfatase | Nutrient cycling | Indicator of potential enhancement in SOM and nutrient cycling and availability with a direct linkage to water changes in soil |
Soil macrofauna | Residue/nutrient turnover | Soil aggregation and water dynamics, decomposition and nutrient cycling, pest control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghimire, R.; Thapa, V.R.; Acosta-Martinez, V.; Schipanski, M.; Slaughter, L.C.; Fonte, S.J.; Shukla, M.K.; Bista, P.; Angadi, S.V.; Mikha, M.M.; et al. Soil Health Assessment and Management Framework for Water-Limited Environments: Examples from the Great Plains of the USA. Soil Syst. 2023, 7, 22. https://doi.org/10.3390/soilsystems7010022
Ghimire R, Thapa VR, Acosta-Martinez V, Schipanski M, Slaughter LC, Fonte SJ, Shukla MK, Bista P, Angadi SV, Mikha MM, et al. Soil Health Assessment and Management Framework for Water-Limited Environments: Examples from the Great Plains of the USA. Soil Systems. 2023; 7(1):22. https://doi.org/10.3390/soilsystems7010022
Chicago/Turabian StyleGhimire, Rajan, Vesh R. Thapa, Veronica Acosta-Martinez, Meagan Schipanski, Lindsey C. Slaughter, Steven J. Fonte, Manoj K. Shukla, Prakriti Bista, Sangamesh V. Angadi, Maysoon M. Mikha, and et al. 2023. "Soil Health Assessment and Management Framework for Water-Limited Environments: Examples from the Great Plains of the USA" Soil Systems 7, no. 1: 22. https://doi.org/10.3390/soilsystems7010022
APA StyleGhimire, R., Thapa, V. R., Acosta-Martinez, V., Schipanski, M., Slaughter, L. C., Fonte, S. J., Shukla, M. K., Bista, P., Angadi, S. V., Mikha, M. M., Adebayo, O., & Noble Strohm, T. (2023). Soil Health Assessment and Management Framework for Water-Limited Environments: Examples from the Great Plains of the USA. Soil Systems, 7(1), 22. https://doi.org/10.3390/soilsystems7010022