Silica and Biochar Amendments Improve Cucumber Growth under Saline Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.2. Experiment 2
2.3. Plant Observations
2.4. Soil Analysis
2.5. Data Analysis
3. Results
3.1. Experiment 1
3.1.1. Soil Physicochemical Properties
3.1.2. Germination, Growth, and Sap Nutrient Concentrations
3.2. Experiment 2
3.2.1. Soil Physicochemical Properties
3.2.2. Biomass, Growth, and Sap Nutrient Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Walworth, J.L. Soil salinity, fertility, and management: Opportunities for improvement. In Proceedings of the International Conference on Soils and Ground Water Salinization in Arid Countries, Sultan Qaboos University, Muscat, Oman, 11–14 January 2010. [Google Scholar]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Shahid, S.A.; Abdelfattah, M.A.; Omar, S.A.; Harahsheh, H.; Othman, Y.; Mahmoudi, H. Mapping and monitoring of soil salinization remote sensing, GIS, modeling, electromagnetic induction and conventional methods—Case studies. In Proceedings of the International Conference on Soils and Groundwater Salinization in Arid Countries, Sultan Qaboos University, Muscat, Oman, 11–14 January 2010. [Google Scholar]
- Hussain, M.I.; Farooq, M.; Muscolo, A.; Rehman, A. Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils—A review. Environ. Sci. Pollut. Res. 2020, 27, 28695–28729. [Google Scholar] [CrossRef]
- Qin, C.; Ahanger, M.; Zhou, J.; Ahmed, N.; Wei, C.; Yuan, S.; Ashraf, M.; Zhang, L. Beneficial role of acetylcholine in chlorophyll metabolism and photosynthetic gas exchange in Nicotiana benthamiana seedlings under salinity stress. Plant Biol. 2020, 22, 357–365. [Google Scholar] [CrossRef]
- Tokarz, K.M.; Wesołowski, W.; Tokarz, B.; Makowski, W.; Wysocka, A.; Jędrzejczyk, R.J.; Chrabaszcz, K.; Malek, K.; Kostecka-Gugała, A. Stem photosynthesis—A key element of grass pea (Lathyrus sativus L.) acclimatization to salinity. Int. J. Mol. Sci. 2021, 22, 685. [Google Scholar] [CrossRef]
- Tanveer, M.; Shah, A.N. An insight into salt stress tolerance mechanisms of Chenopodium album. Environ. Sci. Pollut. Res. 2017, 24, 16531–16535. [Google Scholar] [CrossRef]
- Hussain, S.; Khaliq, A.; Tanveer, M.; Matloob, A.; Hussain, H.A. Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiol. Plant. 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Shahzad, B.; Rehman, A.; Tanveer, M.; Wang, L.; Park, S.K.; Ali, A. Salt stress in brassica: Effects, tolerance mechanisms, and management. J. Plant Growth Regul. 2022, 41, 781–795. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Launchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef] [Green Version]
- He, K.; He, G.; Wang, C.; Zhang, H.; Xu, Y.; Wang, S.; Kong, Y.; Zhou, G.; Hu, R. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl. Soil Ecol. 2020, 155, 103674. [Google Scholar] [CrossRef]
- Torabian, S.; Farhangi-Abriz, S.; Rathjen, J. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress. Plant Physiol. Biochem. 2018, 129, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, Y.C.; Flowers, T.J.; Gong, H.J. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J. Plant Physiol. 2013, 170, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Haliem, M.E.; Hegazy, H.S.; Hassan, N.S.; Naguib, D.M. Effect of silica ions and nano silica on rice plants under salinity stress. Ecol. Eng. 2017, 99, 282–289. [Google Scholar] [CrossRef]
- Shen, Z.; Pu, X.; Wang, S.; Dong, X.; Cheng, X.; Cheng, M. Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake. Sci. Rep. 2022, 12, 5089. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawahy, S.A.; Ahmed, M.; Hussain, N. Management of salt-affected soils and water for sustainable agriculture: The project. In Monograph on Management of Salt-Affected Soils and Water for Sustainable Agriculture; Mushtaque, A., Al-Rawahi, S.A., Hussain, N., Eds.; Sultan Qaboos University: Seeb, Oman, 2010; pp. 1–8. [Google Scholar]
- Al-Dhuhli, H.S.; Al-Rawahy, S.A.; Prathapar, S. Effectiveness of mulches to control soil salinity in sorghum fields irrigated with saline water. In Monograph on Management of Salt-Affected Soils and Water for Sustainable Agriculture; Mushtaque, A., Al-Rawahi, S.A., Hussain, N., Eds.; Sultan Qaboos University: Seeb, Oman, 2010; pp. 41–46. [Google Scholar]
- Al-Mulla, Y. Salinity mapping in Oman using remote sensing tools: Status and trends. In Monograph on Management of Salt-Affected Soils and Water for Sustainable Agriculture; Mushtaque, A., Al-Rawahi, S.A., Hussain, N., Eds.; Sultan Qaboos University: Seeb, Oman, 2010; pp. 17–24. [Google Scholar]
- Gartley, K.L. Recommended soluble salts tests. In Recommended Soil Testing Procedures for the Northeastern United States; Northeastern Regional Publication (493); University of Delaware, College of Agriculture & Natural Resources: Newark, DE, USA, 1995. [Google Scholar]
- Farooq, M.; Rehman, A.; Al-Alawi, A.K.; Al-Busaidi, W.M.; Lee, D.J. Integrated use of seed priming and biochar improves salt tolerance in cowpea. Sci. Hort. 2020, 272, 109507. [Google Scholar] [CrossRef]
- Rani, B.; Sharma, V. Standarisation of methodology for obtaining the desired salt stress environment for salinity effect observation in rice seedlings. Int. J. Environ. Sci. 2015, 6, 232. [Google Scholar]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa Region; ICARDA: Beirut, Lebanon, 2013; pp. 170–176. [Google Scholar]
- Altamimi, M.E.; Janke, R.R.; Williams, K.A.; Nelson, N.O.; Murray, L.W. Nitrate-nitrogen sufficiency ranges in leaf petiole sap of Brassica oleracea L., pac choi grown with organic and conventional fertilizers. HortScience 2013, 48, 357–368. [Google Scholar] [CrossRef]
- Farooq, M.; Almamari, S.A.D.; Rehman, A.; Al-Busaidi, W.M.; Wahid, A.; Al-Ghamdi, S.S. Morphological, physiological and biochemical aspects of zinc seed priming-induced drought tolerance in faba bean. Sci. Hort. 2021, 281, 109894. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis; Bigham, J.M., Ed.; Part 3. Chemical Methods-SSSA Book Series No. 5. Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; Chapter 34; pp. 1001–1006. [Google Scholar]
- Setia, R.; Gottschalk, P.; Smith, P.; Marschner, P.; Baldock, J.; Setia, D.; Smith, J. Soil salinity decreases global soil organic carbon stocks. Sci. Total Environ. 2013, 465, 267–272. [Google Scholar] [CrossRef]
- Bird, M.I.; Ascough, P.L. Isotopes in pyrogenic carbon: A review. Org. Geochem. 2012, 42, 1529–1539. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Padhye, L.P. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water. Chemosphere 2017, 184, 532–547. [Google Scholar]
- Liu, Q.; Zhang, Y.; Liu, B.; Amonette, J.E.; Lin, Z.; Liu, G.; Ambus, P.; Xie, Z. How does biochar influence soil N cycle? A meta-analysis. Plant Soil 2018, 426, 211–225. [Google Scholar] [CrossRef]
- Sadegh-Zadeh, F.; Parichehreh, M.; Jalili, B.; Bahmanyar, M.A. Rehabilitation of calcareous saline-sodic soil by means of biochars and acidified biochars. Land Degrad. Dev. 2018, 29, 3262–3271. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, Z.; Huang, J.; Hussain, S.; Zhao, F.; Zhu, C.; Zhu, L.; Cao, X.; Jin, Q. Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil Tillage Res. 2019, 195, 104372. [Google Scholar] [CrossRef]
- Hu, X.; Wang, D.; Ren, S.; Feng, S.; Zhang, H.; Zhang, J.; Qiao, K.; Zhou, A. Inhibition of root growth by alkaline salts due to disturbed ion transport and accumulation in Leymus chinensis. Environ. Exp. Bot. 2022, 200, 104907. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management, Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 1–12. [Google Scholar]
Treatments | WHC (%) | OM (%) | pH | EC (dS m−1) | NO3 (ppm) | P (ppm) | K (ppm) | Na (ppm) | Si (ppm) |
---|---|---|---|---|---|---|---|---|---|
Soil Salinity (S) | |||||||||
High-salt soil | 49.4 B | 12.8 A | 6.9 B | 3.6 A | 253 A | 29 A | 435 A | 415 A | 47 A |
High-salt soil + perlite | 58.4 A | 11.6 A | 6.8 B | 2.0 B | 167 B | 27 B | 208 B | 230 B | 41 B |
Low-salt soil | 21.1 D | 3.4 B | 7.5 A | 0.4 C | 92 C | 4 C | 10 C | 59 C | 14 D |
Low-salt soil + perlite | 29.6 C | 4.0 B | 7.5 A | 0.3 C | 99 C | 4 C | 13 C | 68 C | 17 C |
p < 0.05 | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Treatments (T) | |||||||||
Control | 36.3 | 6.0 B | 7.2 AB | 1.5 | 125 B | 14 C | 158 AB | 179 | 24 B |
BC | 40.3 | 8.8 A | 7.3 A | 1.6 | 155 AB | 17 B | 193 A | 186 | 25 B |
Si | 38.9 | 7.2 B | 7.2 AB | 1.5 | 150 AB | 13 C | 133 B | 196 | 36 A |
BC + Si | 42.8 | 9.7 A | 7.1 B | 1.7 | 181 A | 21 A | 182 AB | 211 | 35 A |
p < 0.05 | ns | ** | * | ns | * | ** | * | ns | ** |
S × T | ns | Ns | ** | ** | ns | ** | ns | ** | ** |
Treatments | Final Germination Count | Average Vigor (0–5 Rating) | Index | Root FW (g Plant−1) | Tops FW (g Plant−1) | Na (ppm) | NO3 (ppm) | K (ppm) |
---|---|---|---|---|---|---|---|---|
Soil Salinity (S) | ||||||||
High-salt soil | 0.5 B | 0.125 B | 0.125 B | 0 | 0 | 0 | 0 | 0 |
High-salt soil + perlite | 3.17 A | 0.770 A | 2.562 A | 0.44 B | 1.85 A | 1609 A | 475 A | 2787 A |
Low-salt soil | 2.75 A | 0.687 A | 2.354 A | 0.54 B | 0.99 B | 626 B | 192 B | 1829 B |
Low-salt soil + perlite | 3.416 A | 0.854 A | 2.979 A | 1.15 A | 1.11 B | 905 B | 173 B | 1715 B |
p < 0.05 | *** | *** | *** | *** | *** | *** | *** | *** |
Treatments (T) | ||||||||
Control | 2.583 | 0.541 | 1.916 | 0.53 | 1.15 | 951 | 228 | 1446 B |
BC | 2.583 | 0.625 | 1.958 | 0.84 | 1.33 | 991 | 283 | 2877 A |
Si | 2.50 | 0.625 | 2.00 | 0.74 | 1.48 | 1176 | 346 | 1517 B |
BC + Si | 2.166 | 0.645 | 2.145 | 0.73 | 1.31 | 1070 | 261 | 2600 A |
p < 0.05 | Ns | ns | ns | ns | ns | ns | ns | *** |
S × T | Ns | ns | ns | ns | ns | ns | * | ns |
Treatments | WHC (%) | OM (%) | pH | EC (dS m−1) | Si (ppm) | K (ppm) | Na (ppm) | NO3 (ppm) |
---|---|---|---|---|---|---|---|---|
Irrigation Water Salinity (S) | ||||||||
High salt | 38.9 B | 3.18 A | 8.37 B | 2.26 A | 19.1 | 35.3 A | 395 A | 140.7 B |
Low salt | 36.9 A | 2.91 B | 8.56 A | 0.85 B | 20.4 | 25.7 B | 128 B | 208.8 A |
p < 0.05 | * | * | ** | ** | ns | ** | ** | ** |
Treatments (T) | ||||||||
Control | 33.8 C | 2.24 B | 8.30 B | 1.43 | 14.1 B | 12.9 C | 260 AB | 165.9 B |
BC | 39.3AB | 3.58 A | 8.64 A | 1.50 | 16.5 B | 58.8 A | 240 B | 191.7 A |
Si | 37.1 B | 2.54 B | 8.32 B | 1.65 | 23.3 A | 9.2 C | 292 A | 162.4 B |
BC + Si | 41.5 A | 3.82 A | 8.60 A | 1.65 | 25.0 A | 41.0 B | 253 B | 179.0 AB |
p < 0.05 | ** | ** | ** | ns | ** | ** | * | * |
S × T | * | ns | * | ns | ns | * | * | ns |
Treatments | Plant Height | Leaf Count | SPAD | Plant fresh Weight | Plant Dry Weight | Leaf NO3 | Leaf Na | Leaf K |
---|---|---|---|---|---|---|---|---|
Cucumber Cultivars (C) | (cm) | (g Plant−1) | (g Plant−1) | (ppm) | (ppm) | (ppm) | ||
SV8975CB | 6.87 | 3.21 B | 34.3 | 3.11 B | 0.349 | 362 B | 3063 A | 3208 A |
Jabbar, F1 | 6.48 | 4.05 A | 35.5 | 3.84 A | 0.357 | 511 A | 2734 B | 2447 B |
p < 0.05 | ns | *** | ns | *** | ns | ** | * | *** |
Salinity level (S) | ||||||||
High salt | 6.01 B | 3.11 B | 34.7 | 2.38 B | 0.248 B | 406 A | 4808 A | 2697 B |
Low salt | 7.33 A | 4.16 A | 35.1 | 4.56 A | 0.457 A | 467 A | 988 B | 2958 A |
p < 0.05 | *** | *** | ns | *** | *** | ns | *** | * |
Treatments (T) | ||||||||
Control | 7.03 AB | 3.15 C | 36.5 AB | 2.41 C | 0.262 B | 670 A | 3430 A | 1954 C |
BC | 7.33 A | 3.88 A | 30.1 C | 4.24 A | 0.410 A | 193 B | 3235 A | 4016 A |
Si | 6.40 BC | 3.56 B | 39.9 A | 3.24 B | 0.334 AB | 648 A | 2599 B | 1971 C |
BC + Si | 5.96 C | 3.95 A | 33.1 BC | 3.99 A | 0.404 A | 235 B | 2329 B | 3550 B |
p < 0.05 | *** | *** | *** | *** | *** | *** | *** | *** |
Interactions (p < 0.05) | ||||||||
C × S | ns | * | ns | ns | ns | ns | ns | *** |
C × T | * | ns | ns | ns | ns | ns | ns | *** |
S × T | ns | ** | ns | *** | ** | ** | *** | *** |
C × S × T | ns | * | ns | ns | ns | ns | ns | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Toobi, M.; Janke, R.R.; Khan, M.M.; Ahmed, M.; Al-Busaidi, W.M.; Rehman, A. Silica and Biochar Amendments Improve Cucumber Growth under Saline Conditions. Soil Syst. 2023, 7, 26. https://doi.org/10.3390/soilsystems7010026
Al-Toobi M, Janke RR, Khan MM, Ahmed M, Al-Busaidi WM, Rehman A. Silica and Biochar Amendments Improve Cucumber Growth under Saline Conditions. Soil Systems. 2023; 7(1):26. https://doi.org/10.3390/soilsystems7010026
Chicago/Turabian StyleAl-Toobi, Manar, Rhonda R. Janke, Muhammad Mumtaz Khan, Mushtaque Ahmed, Waleed M. Al-Busaidi, and Abdul Rehman. 2023. "Silica and Biochar Amendments Improve Cucumber Growth under Saline Conditions" Soil Systems 7, no. 1: 26. https://doi.org/10.3390/soilsystems7010026
APA StyleAl-Toobi, M., Janke, R. R., Khan, M. M., Ahmed, M., Al-Busaidi, W. M., & Rehman, A. (2023). Silica and Biochar Amendments Improve Cucumber Growth under Saline Conditions. Soil Systems, 7(1), 26. https://doi.org/10.3390/soilsystems7010026