Oat Straw Mulching Reduces Interril Erosion and Nutrient Losses Caused by Runoff in a Newly Planted Peach Orchard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Treatments
2.2. Soil Characterization of the Ridges of the Peach Orchard’s Row
2.2.1. Soil Chemical Characterization
2.2.2. Soil Physical Characterization
2.2.3. Soil Porosity, Bulk Density, and Saturated Hydraulic Conductivity
2.3. Soil and Nutrient Losses by Surface Runoff
2.4. Data Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karlen, D.L.; Rice, C.W. Soil degradation: Will humankind ever learn? Sustainability 2015, 7, 12490–12501. [Google Scholar] [CrossRef] [Green Version]
- FAO—Food and Agriculture Organization of the United Nations, 2015. International Year of Soil Conference. 2015. Available online: http://www.fao.org/soils-2015/events/detail/en/c/338738/ (accessed on 30 August 2021).
- IPCC—Intergovernmental Panel on Climate Change. Climate change and land. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas Fluxes in Terrestrial Ecosystems. Summary for Policymakers. 2019; 41p. Available online: https://www.ipcc.ch/srccl/ (accessed on 24 August 2021).
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar] [CrossRef]
- Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D.; Hermans, K.; Jobbagy, E.; Kurz, W.; Li, D.; et al. Land Degradation. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Van Diemen, R., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; pp. 345–436. [Google Scholar]
- IBGE—Instituto Brasileiro de Geografia e Estatística, Diretoria de Pesquisas, Coordenação de Agropecuária, Produção Agrícola Municipal. 2016. Áreas destinada à colheita e colhida, quantidade produzida, rendimento médio e valor da produção de pêssego segundo as grandes regiõ e unidades da federação produtora —Brasil 2016. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?utm_source=landing&utm_medium=explica&utm_campaign=producao_agropecuaria&t=downloads (accessed on 25 August 2021).
- Jie, Y.; Haijin, Z.; Xiaoan, C.; Le, S. Effects of tillage practices on nutrient loss and soybean growth in red-soil slope farmland. Int. Soil Water Conserv. Res. 2013, 1, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Wolstenholme, B.N.; Moore-Gordon, C.; Ansermino, S.D. Some pros and cons of mulching avocado orchards. South Afr. Avocado Grow. Assoc. Yearb. 1996, 19, 87–91. [Google Scholar]
- Atucha, A.; Merwin, I.A.; Brown, M.G.; Gardiazabal, F.; Mena, F.; Adriazola, C.; Lehmann, J. Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. Plant Soil 2013, 368, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 551–552, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, L.E.A.S.; Reisser Júnior, C.; Miola, E.C.C.; Rostirolla, P.; Scherer, V.S.; Terra, V.S.S.; Pauletto, E.A. Efeito do manejo e da irrigação localizada sobre os atributos físicos e hídricos de um Argissolo cultivado com pessegueiro. Pesqui. Agropecuária Gaúcha 2021, 27, 127–147. [Google Scholar] [CrossRef]
- Stark, A.L.; Thorne, D.W. Peach orchard soil management studies. Bulletin No. 330, UAES Bulletins. Paper 291. 1948. Available online: https://digitalcommons.usu.edu/uaes_bulletins/291 (accessed on 28 January 2023).
- Youlton, C.; Espejo, P.; Biggs, J.; Norambuena, M.; Cisternas, M.; Neaman, A.; Salgado, E. Quantification and control of runoff and soil erosion on avocado orchards on ridges along steep-hillslopes. Cien. Inv. Agr. 2010, 37, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.R.; Karlen, D.L.; Moorman, T.B. Tillage intensity effects on soil structure indicators—A US meta-analysis. Sustainability 2020, 12, 2071. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.R.; Karlen, D.L.; Veum, K.S.; Moorman, T.B.; Cambardella, C.A. Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma 2020, 369, 114335. [Google Scholar] [CrossRef]
- Castilho, S.C.P.; Cooper, M.; Silva, L.F.S. Micromorphometric analysis of porosity changes in the surface crusts of three soils in the Piracicaba region, São Paulo State, Brazil. Acta Scientiarum. Agron. 2015, 37, 385–395. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Stewart, B.A.; Sainju, U.M. North American soil degradation: Processes, practices, and mitigating strategies. Sustainability 2015, 7, 2936–2960. [Google Scholar] [CrossRef] [Green Version]
- FAO—Food and Agriculture Organization of the United Nations. Soil Erosion: The Greatest Challenge to Sustainable Soil Management; FAO: Rome, Italy, 2019; 100p, Available online: http://www.fao.org/3/ca4395en/ca4395en.pdf (accessed on 25 August 2021).
- Vicente-Vicente, J.L.; Gómez-Muñoz, B.; Hinojosa-Centeno, M.B.; Smith, P.; Garcia-Ruiz, R. Carbon saturation and assessment of soil organic carbon fractions in Mediterranean rainfed olive orchards under plant cover management. Agric. Ecosyst. Environ. 2017, 245, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Walshl, B.D.; Salmins, S.; Buszard, D.J.; Mackenzie, A.F. lmpact of soil management systems on organic dwarf apple orchards and soil aggregate stability, bulk density, temperature and water content. Can. J. Soil Sci. 1996, 76, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Wade, M.K.; Sanchez, P.A. Mulching and green manure applications for continuous crop production in the Amazon basin. Agron. J. 1983, 75, 39–45. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Liu, D.; Li, Z.; Zhang, G.; Tao, Y.; Xie, J.; Pan, J.; Chen, F. Straw mulching reduces the harmful effects of extreme hydrological and temperature conditions in citrus orchards. PLoS ONE 2014, 9, e87094. [Google Scholar] [CrossRef] [Green Version]
- Lordan, J.; Pascual, M.; Villar, J.M.; Fonseca, F.; Papió, J.; Montilla, V.; Rufat, J. Use of organic mulch to enhance water-use efficiency and peach production under limiting soil conditions in a three-year-old orchard. Span. J. Agric. Res. 2015, 13, e0904. [Google Scholar] [CrossRef]
- Bakshi, P.; Wali, V.K.; Iqbal, M.; Jasrotia, A.; Kour, K.; Ahmed, R.; Bakshi, M. Sustainable fruit production by soil moisture conservation with different mulches: A review. Afr. J. Agric. Res. 2015, 10, 4718–4729. [Google Scholar] [CrossRef] [Green Version]
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. UFPEL—Universidade Federal de Pelotas. INMET—Instituo Nacional de Meteorologia. Normais Climatológicas Período: 1971/2000 (Mensal/Anual). Available online: http://agromet.cpact.embrapa.br/estacao/mensal.html (accessed on 2 June 2020).
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014; 142p. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580 (accessed on 8 December 2021).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brasil, 2018; Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/199517/1/SiBCS-2018-pdf (accessed on 29 November 2021)ISBN -9788570358004.
- Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Volkweiss, S.J. Análises de Solo, Plantas e Outros Materiais, 2nd ed.; Departamento de Solos, UFRGS: Porto Alegre, Brazil, 1995; 174p, (Boletim Técnico 5). [Google Scholar]
- Gee, G.W.; Or, D. Particle-size analysis. In Methods of Soil Analysis, Part 4: Physical Methods, 5th ed.; Dane, J.H., Topp, C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar]
- Suzuki, L.E.A.S.; Reichert, J.M.; Albuquerque, J.A.; Reinert, D.J.; Kaiser, D.R. Dispersion and flocculation of Vertisols, Alfisols and Oxisols in Southern Brazil. Geoderma Reg. 2015, 5, 64–70. [Google Scholar] [CrossRef]
- National Resource Conservation Service-NRCS/United States Department of Agriculture-USDA. Soil texture calculator. 2022. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/?cid=nrcs142p2_054167 (accessed on 14 October 2022).
- Viana, J.H.M.; Teixeira, W.G.; Donagemma, G.K. Densidade de partículas. In Manual de Métodos de Análise de Solo, ver. ampl., 3rd ed.; Teixeira, P.C., Donagemma, G.K., Fontana., A., Teixeira, W.G., Eds.; Embrapa: Brasília, Brazil, 2017; pp. 76–81. Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1085209 (accessed on 15 April 2021).
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar] [CrossRef]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1986; pp. 687–734. [Google Scholar]
- BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução normativa no 39, de 8 de agosto de 2018. Diário Oficial da União—Seção 1, n. 154, p. 19, 10 de agosto de 2018. Available online: https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/36278414/do1-2018-08-10-instrucao-normativa-n-39-de-8-de-agosto-de-2018-36278366 (accessed on 24 August 2021).
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária/Laboratório de Agrometeorologia. Boletim Climatológico Mensal. Available online: http://agromet.cpact.embrapa.br/online/Resumos_Mensais.htm (accessed on 2 July 2020).
- SBCS—Sociedade Brasileira de Ciência do Solo. NRS—Núcleo Regional Sul. CQFS—Comissão de Química e Fertilidade do Solo. Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina, 2016; 376p. Available online: http://www.sbcs-nrs.org.br/docs/Manual_de_Calagem_e_Adubacao_para_os_Estados_do_RS_e_de_SC-2016.pdf (accessed on 7 August 2022).
- Troeh, F.R.; Hobbs, J.Á.; Donahue, R.L. Soil and Water Conservation for Productivity and Environmental Protection; Prentice-Hall: Hoboken, NJ, USA, 1980; 718p. [Google Scholar]
- Troeh, F.R.; Thompson, L.M. Solos e Fertilidade do Solo; Dourado Neto, D.D.; Dourado, M.N., Translators; Organização Andrei Editora Ltda: São Paulo, Brazil, 2007. [Google Scholar]
- Tombácz, E.; Libor, Z.; Illés, E.; Majzik, A.; Klumpp, E. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Org. Geochem. 2004, 35, 257–267. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Wagner, S.; Cattle, S.R.; Scholten, T. Soil-aggregate formation as influenced by clay content and organic-matter amendment. J. Plant Nutr. Soil Sci. 2007, 170, 173–180. [Google Scholar] [CrossRef]
- Reichert, J.M.; Norton, L.D.; Favaretto, N.; Huang, C.; Blume, E. Settling velocity, aggregate stability, and interrill erodibility of soils varying in clay mineralogy. Soil Sci. Soc. Am. J. 2009, 73, 1369–1377. [Google Scholar] [CrossRef] [Green Version]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef] [Green Version]
- Igwe, C.A.; Agbatah, C. Clay and silt dispersion in relation to some physicochemical properties of derived savanna soils under two tillage management practices in southeastern Nigeria. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2008, 58, 17–26. [Google Scholar] [CrossRef]
- Parwada, C.; van Tol, J. Soil properties influencing erodibility of soils in the Ntabelanga area, Eastern Cape Province, South Africa. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2017, 67, 67–76. [Google Scholar] [CrossRef]
- Lunardi Neto, A.; Albuquerque, J.A.; De Almeida, J.A.; Mafra, Á.L.; Medeiros, J.C.; Alberton, A. Atributos físicos do solo em área de mineração de carvão influenciados pela correção da acidez, adubação orgânica e revegetação. Revista Brasileira de Ciência do Solo 2008, 32, 1379–1388. [Google Scholar] [CrossRef] [Green Version]
- Resende, M.; Curi, N.; Rezende, S.B.; Corrêa, G.F. Pedologia: Base Para Distinção de Ambientes; UFLA: Lavras, Brazil, 2007; 322p. [Google Scholar]
- Ramos, M.M.; Díaz, J.D.G.; Rivas, A.I.M.; Gómez, M.U.; Hernández, B.J.V.; García, P.R.; Asencio, C. Factors that influence soil hydric erosion in a temperate forest. Rev. Mex. Cienc. For. 2020, 11, 51–71. [Google Scholar] [CrossRef]
- Farhan, Y.; Zregat, D.; Nawaiseh, S. Assessing the influence of physical factors on spatial soil erosion risk in Northern Jordan. J. Am. Sci. 2014, 10, 29–39. [Google Scholar]
- Holz, D.J.; Williard, K.W.J.; Edwards, P.J.; Schoonover, J.E. Soil Erosion in Humid Regions: A Review. J. Contemp. Water Res. Educ. 2015, 154, 48–59. [Google Scholar] [CrossRef]
- Shojaei, S.; Kalantari, Z.; Rodrigo-Comino, J. Prediction of factors afecting activation of soil erosion by mathematical modeling at pedon scale under laboratory conditions. Sci. Rep. 2020, 10, 20163. [Google Scholar] [CrossRef]
- Pijl, A.; Reuter, L.E.H.; Quarella, E.; Vogel, T.A.; Tarolli, P. GIS-based soil erosion modelling under various steep-slope vineyard practices. Catena 2020, 193, 104604. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Matieski, T.; Strieder, G.; Pauletto, E.A.; Bordin, S.S.; Lima, L.S.C.; Collares, G.L.; Dai Prá, M. Perdas de solo por erosão hídrica e granulometria do material erodido em propriedades agrícolas. In X ENES—Encontro Nacional de Engenharia de Sedimentos: Artigos selecionados, Capítulo X; Poleto, C., Pletsch, A.L., Mello, E.L., Carvalho, N.O., Eds.; ABRH: Porto Alegre, Brazil, 2012; pp. 93–108. [Google Scholar]
- Peng, L.; Tang, C.; Zhang, X.; Duan, J.; Yang, L.; Liu, S. Quantifying the effects of root and soil properties on soil detachment capacity in agricultural land use of Southern China. Forests 2022, 13, 1788. [Google Scholar] [CrossRef]
- Ramos, M.F.; Almeida, W.R.S.; Amaral, R.L.; Suzuki, L.E.A.S. Degree of compactness and soil quality of peach orchards with different production ages. Soil Tillage Res. 2022, 219, 105324. [Google Scholar] [CrossRef]
- Socci, P.; Errico, A.; Castelli, G.; Penna, D.; Preti, F. Terracing: From agriculture to multiple ecosystem services. Oxf. Res. Encycl. Environ. Sci. 2019. [Google Scholar] [CrossRef]
- Rutebuka, J.; Uwimanzi, A.M.; Nkundwakazi, O.; Kagabo, D.M.; Mbonigaba, J.J.M.; Vermeir, P.; Verdoodt, A. Effectiveness of terracing techniques for controlling soil erosion by water in Rwanda. J. Environ. Manag. 2021, 277, 111369. [Google Scholar] [CrossRef]
- Pijl, A.; Wang, W.; Straffelini, E.; Tarolli, P. Soil and water conservation in terraced and non-terraced cultivations: An extensive comparison of 50 vineyards. Land Degrad. Dev. 2022, 33, 596–610. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Seeger, M.; Iserloh, T.; González, J.M.S.; Ruiz-Sinoga, J.D.; Ries, J.B. Rainfall-simulated quantification of initial soil erosion processes in sloping and poorly maintained terraced vineyards—Key issues for sustainable management systems. Sci. Total Environ. 2019, 660, 1047–1057. [Google Scholar] [CrossRef]
- Al- Siaede, R. Using Landscape analysis techniques to prevent silt accumulation in the reservoir of the Dwerige weir project and developing River basin, Missan, South Eastern IRAQ. Iraqi J. Sci. 2022, 63, 3031–3039. [Google Scholar] [CrossRef]
- Giambastiani, Y.; Biancofiore, G.; Mancini, M.; Di Giorgio, A.; Riccardo Giusti, R.; Cecchi, S.; Gardin, L.; Errico, A. Modelling the effect of keyline practice on soil erosion control. Land 2023, 12, 100. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Soil productivity degradation in a long-term eroded olive orchard under semiarid mediterranean conditions. Agronomy 2021, 11, 812. [Google Scholar] [CrossRef]
- Wang, B.; Niu, J.; Berndtsson, R.; Zhang, L.; Chen, X.; Li, X.; Zhu, Z. Efficient organic mulch thickness for soil and water conservation in urban areas. Sci. Rep. 2021, 11, 6259. [Google Scholar] [CrossRef]
- Lalljee, B. Mulching as a mitigation agricultural technology against land degradation in the wake of climate change. Int. Soil Water Conserv. Res. 2013, 1, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Granatstein, D.; Sánchez, E. Research knowledge and needs for orchard floor management in organic tree fruit systems. Int. J. Fruit Sci. 2009, 9, 257–281. [Google Scholar] [CrossRef]
- Dechen, S.L.F.; Lombardi Neto, F.; Castro, O.M. Gramíneas e leguminosas e seus restos culturais no controle da erosão em Latossolo Roxo. Revista Brasileira de Ciência do Solo 1981, 5, 133–137. [Google Scholar]
- Amado, T.J.C.; Matos, A.T.; Torres, L. Flutuação de temperatura e umidade do solo sob preparo convencional e em faixas na cultura da cebola. Pesqui. Agropecuária Bras. 1990, 25, 625–631. [Google Scholar]
- Sasal, M.C.; Castiglioni, M.G.; Wilson, M.G. Effect of crop sequences on soil properties and runoff on natural-rainfall erosion plots under no tillage. Soil Tillage Res. 2010, 108, 24–29. [Google Scholar] [CrossRef]
- Bertoni, J.; Lombardi Neto, F. Conservação do Solo; Ícone: São Paulo, Brazil, 1999; 355p. [Google Scholar]
- Pruski, F.F. (Ed.) Conservação de Solo e Água: Práticas Mecânicas para o Controle da Erosão Hídrica, 2nd ed.; UFV: Viçosa, Brazil, 2009; 279p. [Google Scholar]
- Rio Grande do Sul. Atlas Socioeconômico do Rio Grande do Sul. Clima, temperatura e precipitação. 7th ed., 2022. Available online: https://atlassocioeconomico.rs.gov.br/clima-temperatura-e-precipitacao (accessed on 26 December 2022).
- Volk, L.B.S.; Cogo, N.P. Relações entre tamanho de sedimentos erodidos, velocidade da enxurrada, rugosidade superficial criada pelo preparo e tamanho de agregados em solo submetido a diferentes manejos. Revista Brasileira Ciência Solo 2009, 33, 1459–1471. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Bordin, S.S.; Matieski, T.; Rostirolla, P.; Strieder, G.; Nunes, M.R. Soil and nutrient losses by runoff from farmlands in Southern Brazil. Rev. Ciências Agroambientais 2021, 19, 1–15. [Google Scholar]
- Ernani, P.R. Química do Solo e Disponibilidade de Nutrientes; O Autor: Lages, Brazil, 2008; 230p. [Google Scholar]
- Bucur, D.; Jitareanu, G.; Ailincai, C.; Tsadilas, C.; Ailincai, D.; Mercus, A. Influence of soil erosion on water, soil, humus and nutrient losses in different crop systems in the Moldavian Plateau, Romania. J. Food Agric. Environ. 2007, 5, 261–264. [Google Scholar]
- Martínez-Casasnovas, J.A.; Ramos, M.C. The cost of soil erosion in vineyard fields in the Penedès-Anoia Region (NE Spain). Catena 2006, 68, 194–199. [Google Scholar] [CrossRef]
- Onesimus, S.; Kimaro, D.; Kasenge, V.; Isabirye, M.; Makhosi, P. Soil and nutrient losses in banana-based cropping systems of the Mount Elgon hillsides of Uganda: Economic implications. Int. J. Agric. Sci. 2012, 2, 256–262. [Google Scholar]
- Asfawa, S.; Pallante, G.; Palma, A. Distributional impacts of soil erosion on agricultural productivity and welfare in Malawi. Ecol. Econ. 2020, 177, 106764. [Google Scholar] [CrossRef]
- Telles, T.S.; Dechen, S.C.F.; De Souza, L.G.A.; Guimarães, M.F. Valuation and assessment of soil erosion costs. Scientia Agricola 2013, 70, 209–216. [Google Scholar] [CrossRef]
Soil | Depth, m | ||||
---|---|---|---|---|---|
Attribute | Unit | 0–0.10 | 0.10–0.20 | 0.20–0.40 | Mean |
SOM | g kg−1 | 27.6 (medium) | 26.2 (medium) | 27.6 (medium) | 27.1 (medium) |
P-Melich | mg dm−3 | 108.1 (very high) | 155.6 (very high) | 202.1 (very high) | 155.3 (very high) |
Exch. K | mg dm−3 | 95.0 (high) | 128.0 (very high) | 143.0 (very high) | 122.0 (very high) |
Ca | cmolc dm−3 | 7.8 (high) | 7.9 (high) | 7.4 (high) | 7.7 (high) |
Mg | cmolc dm−3 | 2.9 (high) | 3.0 (high) | 2.7 (high) | 2.9 (high) |
Na | mg dm−3 | 11.0 | 12.0 | 13.0 | 12.0 |
Al | cmolc dm−3 | 0.0 | 0.0 | 0.0 | 0.0 |
H + Al | cmolc dm−3 | 2.0 | 1.6 | 2.5 | 2.0 |
CECeffective | cmolc dm−3 | 11.0 | 11.3 | 10.5 | 10.9 |
CECpH7.0 | cmolc dm−3 | 13.0 (medium) | 12.9 (medium) | 13.0 (medium) | 13.0 (medium) |
pH water | 6.4 (high) | 6.4 (high) | 6.0 (medium) | 6.3 (high) | |
AlS | % | 0.0 (very low) | 0.0 (very low) | 0.0 (very low) | 0.0 (very low) |
BS | % | 85.0 (high) | 87.0 (high) | 81.0 (high) | 84.0 (high) |
Depth, m | BD, Mg m−3 | TP, m3 m−3 | Macro, m3 m−3 | Micro, m3 m−3 | KS, mm h−1 | DCA, % | DF, % | PD Mg m−3 |
---|---|---|---|---|---|---|---|---|
0.00–0.10 | 1.05 | 0.593 | 0.259 | 0.333 | 142.71 | 8.94 | 31.65 | 2.56 |
0.10–0.20 | 1.12 | 0.538 | 0.276 | 0.262 | 300.58 | 8.42 | 31.54 | 2.52 |
0.20–0.40 | 1.20 | 0.548 | 0.231 | 0.318 | 148.86 | 8.92 | 29.04 | 2.54 |
Mean | 1.12 | 0.560 | 0.255 | 0.304 | 197.38 | 8.76 | 30.74 | 2.54 |
Depth, m | Sand | Textural Classification [31] | |||||||
---|---|---|---|---|---|---|---|---|---|
Total | Very Coarse | Coarse | Medium | Fine | Very Fine | Silt | Clay | ||
% | |||||||||
0–0.10 | 63.34 | 11.99 | 11.44 | 11.79 | 16.83 | 11.30 | 23.58 | 13.08 | Sandy loam |
0.10–0.20 | 64.10 | 13.16 | 11.74 | 11.31 | 17.58 | 10.31 | 23.60 | 12.30 | Sandy loam |
0.20–0.40 | 63.71 | 12.41 | 11.55 | 11.56 | 17.70 | 10.49 | 23.72 | 12.57 | Sandy loam |
Mean | 63.72 | 12.52 | 11.58 | 11.55 | 17.37 | 10.70 | 23.63 | 12.65 |
Sampling | 1 Rainfall | Treatment (Amount of Oat Straw Mulching, Mg ha−1) | |||||
---|---|---|---|---|---|---|---|
Date | Accumulated | 0 | 1 | 2 | 4 | 8 | Total |
mm | Mg ha−1 | ||||||
29 August 2015 | 110.5 | 0.86 (100%) | 0.00 (0%) | 0.00 (0%) | 0.00 (0%) | 0.00 (0%) | 0.86 |
7 September 2015 | 28.9 | 0.27 (100%) | 0.00 (0%) | 0.00 (0%) | 0.00 (0%) | 0.00 (0%) | 0.27 |
27 September 2015 | 284.0 | 11.53 (100%) | 3.00 (26%) | 1.35 (12%) | 0.53 (5%) | 1.03 (9%) | 17.44 |
25 October 2015 | 299.2 | 18.73 (100%) | 4.34 (23%) | 2.29 (12%) | 1.27 (7%) | 0.94 (5%) | 27.57 |
2 8 November 2015 | 42.4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
14 November 2015 | 92.4 | 8.72 (100%) | 2.19 (25%) | 0.00 (0%) | 0.00 (0%) | 0.00 (0%) | 10.91 |
8 December 2015 | 164.1 | 7.43 (100%) | 2.97 (40%) | 0.64 (9%) | 0.89 (12%) | 0.58 (8%) | 12.51 |
2 13 January 2016 | 251.6 | 28.90 (100%) | 7.12 (25%) | 1.78 (6%) | 4.86 (17%) | 2.34 (8%) | 45.00 |
16 February 2016 | 180.2 | 24.11 (100%) | 4.81 (20%) | 0.80 (3%) | 0.00 (0%) | 0.00 (0%) | 29.72 |
13 March 2016 | 188.6 | 20.39 (100%) | 1.83 (9%) | 0.70 (3%) | 0.00 (0%) | 0.00 (0%) | 22.92 |
Total | 120.94 | 26.26 | 7.56 | 7.55 | 4.89 |
Sand | Textural Classification | ||||||||
---|---|---|---|---|---|---|---|---|---|
Treatment | Total | Very Coarse | Coarse | Medium | Fine | Very Fine | Silt | Clay | |
% | |||||||||
0 Mg ha−1 | 64.07 c (+0.73) | 10.98 b (−1.01) | 14.78 a (+3.34) | 12.90 a (+1.11) | 14.70 a (−2.13) | 10.70 a (−0.60) | 28.29 a (+4.71) | 7.65 ab (−5.43) | Sandy Loam |
1 Mg ha−1 | 67.32 bc (+3.98) | 18.58 ab (+6.59) | 15.97 a (+4.53) | 12.30 a (+0.51) | 12.77 a (−4.06) | 7.70 b (−3.60) | 24.04 bc (+0.46) | 8.65 a (−4.43) | Sandy Loam |
2 Mg ha−1 | 70.13 ab (+6.79) | 15.40 ab (+3.41) | 15.53 a (+4.09) | 13.33 a (+1.54) | 15.47 a (−1.36) | 10.40 ab (−0.90) | 24.92 b (+1.34) | 4.95 c (−8.13) | Sandy Loam |
4 Mg ha−1 | 73.73 a (+10.39) | 22.33 a (+10.34) | 16.20 a (+4.76) | 13.13 a (+1.34) | 13.80 a (−3.03) | 8.27 ab (−3.03) | 21.20 c (−2.38) | 5.07 c (−8.01) | Sandy Loam |
8 Mg ha−1 | 67.53 bc (+4.19) | 15.47 ab (+3.48) | 14.87 a (+3.43) | 12.40 a (+0.61) | 14.60 a (−2.23) | 10.20 ab (−1.10) | 26.17 ab (+2.59) | 6.30 bc (−6.78) | Sandy Loam |
Soil Attribute | Unit | Treatment (Amount of Oats Mulching) | ||||
---|---|---|---|---|---|---|
0 Mg ha−1 | 1 Mg ha−1 | 2 Mg ha−1 | 4 Mg ha−1 | 8 Mg ha−1 | ||
SOM | g kg−1 | 27.6 (0.00/medium) | 2.90 (+0.14/medium) | 2.49 (−0.27/low) | 2.76 (0.00/medium) | 2.90 (+0.14/medium) |
P-Melich | mg dm−3 | 70.7 (−37.4/very high) | 27.3 (−80.8/high) | 146.5 (+38.4/very high) | 122.3 (+14.2/very high) | 97.0 (−11.1/very high) |
Exch. K | mg dm−3 | 103 (+8/high) | 133 (+38/very high) | 141 (+46/very high) | 154 (+59/very high) | 171 (+76/very high) |
Ca | cmolc dm−3 | 8.5 (+0.7/high) | 7.8 (0.0/high) | 7.8 (0.0/high) | 8.1 (+0.3/high) | 7.0 (−0.8/high) |
Mg | cmolc dm−3 | 2.9 (0.0/high) | 2.7 (−0.2/high) | 2.7 (−0.2/high) | 2.7 (−0.2/high) | 2.4 (−0.5/high) |
Na | mg dm−3 | 32 (+21) | 32 (+21) | 43 (+32) | 35 (+24) | 35 (+24) |
Al | cmolc dm−3 | 0.1 (+0.1) | 0.1 (+0.1) | 0.1 (+0.1) | 0.1 (+0.1) | 0.1 (+0.1) |
H+Al | cmolc dm−3 | 2.0 (0.0) | 2.5 (+0.5) | 2.0 (0.0) | 2.0 (0.0) | 2.2 (+0.2) |
CECeffective | cmolc dm−3 | 11.9 (+0.9) | 11.1 (+0.1) | 11.1 (+0.1) | 11.4 (+0.4) | 10.1 (−0.9) |
CECpH7.0 | cmolc dm−3 | 13.8 (+0.8/medium) | 13.5 (+0.5/medium) | 13.0 (0.0/medium) | 13.3 (+0.3/medium) | 12.2 (−0.8/medium) |
pH water 1:1 | 6.0 (−0.4/medium) | 5.7 (−0.7/medium) | 6.0 (−0.4/medium) | 5.7 (−0.7/medium) | 5.7 (−0.7/medium) | |
AlS | % | 0.8 (+0.8/very low) | 0.9 (+0.9/very low) | 0.9 (+0.9/very low) | 0.9 (+0.9/very low) | 1.0 (+1.0/low) |
BS | % | 86 (+1/high) | 81 (−4/high) | 85 (0/high) | 85 (0/high) | 82 (−3/high) |
P | K | Ca | Mg | |
---|---|---|---|---|
Treatment | kg ha−1 | |||
0 Mg ha−1 | 8.6 | 12.5 | 206.0 | 42.6 |
1 Mg ha−1 | 0.7 | 3.5 | 41.0 | 8.6 |
2 Mg ha−1 | 1.1 | 1.1 | 11.8 | 2.5 |
4 Mg ha−1 | 0.9 | 1.2 | 12.3 | 2.5 |
8 Mg ha−1 | 0.5 | 0.8 | 6.9 | 1.4 |
Treatment | ||
---|---|---|
Variables | 0 Mg ha−1 | 8 Mg ha−1 |
Superphosphate triple (41% P2O5), kg ha−1 | 9 | 1 |
Potassium chloride (50% K), kg ha−1 | 21 | 1 |
Dolomitic limestone (32% CaO + 6 % MgO), kg ha−1 | 460 | 15 |
Cost of Superphosphate triple (US$ 240.00/ton), US$/ha | 2.18 | 0.12 |
Cost of Potassium chloride (US$ 202.50/ton), US$/ha | 4.19 | 0.28 |
Cost of Dolomitic limestone (US$ 150.00/ton), US$/ha | 69.05 | 2.30 |
Total cost with mineral fertilizer, US$/ha | 75.4 | 2.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, L.E.A.S.; Amaral, R.d.L.d.; Almeida, W.R.d.S.; Ramos, M.F.; Nunes, M.R. Oat Straw Mulching Reduces Interril Erosion and Nutrient Losses Caused by Runoff in a Newly Planted Peach Orchard. Soil Syst. 2023, 7, 8. https://doi.org/10.3390/soilsystems7010008
Suzuki LEAS, Amaral RdLd, Almeida WRdS, Ramos MF, Nunes MR. Oat Straw Mulching Reduces Interril Erosion and Nutrient Losses Caused by Runoff in a Newly Planted Peach Orchard. Soil Systems. 2023; 7(1):8. https://doi.org/10.3390/soilsystems7010008
Chicago/Turabian StyleSuzuki, Luis Eduardo Akiyoshi Sanches, Rodrigo de Lima do Amaral, William Roger da Silva Almeida, Mariana Fernandes Ramos, and Márcio Renato Nunes. 2023. "Oat Straw Mulching Reduces Interril Erosion and Nutrient Losses Caused by Runoff in a Newly Planted Peach Orchard" Soil Systems 7, no. 1: 8. https://doi.org/10.3390/soilsystems7010008
APA StyleSuzuki, L. E. A. S., Amaral, R. d. L. d., Almeida, W. R. d. S., Ramos, M. F., & Nunes, M. R. (2023). Oat Straw Mulching Reduces Interril Erosion and Nutrient Losses Caused by Runoff in a Newly Planted Peach Orchard. Soil Systems, 7(1), 8. https://doi.org/10.3390/soilsystems7010008