Process-Based Crop Models in Soil Research: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Data
2.2. Analysis and Visualization
2.2.1. Analysis
Citation-Related Metrics
CiteScore
2.2.2. Visualization
2.3. Development of a Database
3. Results
3.1. Performance Analysis
3.2. Geographic Distribution of Applications
3.3. Citation Analysis
3.4. Sources and Their Impact
3.5. Relationships among Soil-Related Crop Modeling Publications
3.5.1. Collaboration
3.5.2. Co-Occurrence of Author Keywords
3.6. Keywords from Abstracts
3.7. Applications of Crop Models in Soil Research
3.8. Database on Soil-Related Applications of APSIM and DSSAT Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Rank | APSIM | DSSAT | ||||
---|---|---|---|---|---|---|
Source | ANC * | No. of Publications | Source | ANC * | No. of Publications | |
1 | Crop Science | 29.0 | 1 | Remote Sensing of Environment | 26.4 | 1 |
2 | Scientific Reports | 27.5 | 2 | Soil and Tillage Research | 11.4 | 2 |
3 | Journal of Experimental Botany | 11.4 | 3 | Field Crops Research | 10.7 | 7 |
4 | Ecological Economics | 11.0 | 1 | Agricultural Research | 10.3 | 1 |
5 | Journal of Agriculture and Food Research | 11.0 | 1 | Journal of Hydrology and Hydromechanics | 10.3 | 1 |
6 | Global Change Biology | 8.8 | 2 | Computers and Electronics in Agriculture | 9.3 | 2 |
7 | Environmental Research Letters | 8.5 | 4 | Agricultural Water Management | 8.5 | 36 |
8 | Science of the Total Environment | 8.2 | 8 | PLoS ONE | 8.3 | 1 |
9 | In Silico Plants | 8.0 | 1 | European Journal of Agronomy | 8.0 | 7 |
10 | Agriculture, Ecosystems and Environment | 7.8 | 13 | Stochastic Environmental Research and Risk Assessment | 8.0 | 1 |
11 | Acta Agriculturae Scandinavica Section B: Soil and Plant Science | 7.0 | 1 | Operational Research | 6.4 | 1 |
12 | Computers and Electronics in Agriculture | 7.0 | 1 | Journal of Hydrology | 6.0 | 1 |
13 | Journal of Geophysical Research: Biogeosciences | 7.0 | 1 | Agricultural and Forest Meteorology | 5.7 | 4 |
14 | Theoretical and Applied Climatology | 7.0 | 2 | Ecological Modelling | 5.2 | 2 |
15 | Ecological Modelling | 6.8 | 1 | Science of the Total Environment | 5.0 | 1 |
16 | Agronomy Journal | 6.6 | 3 | European Journal of Soil Science | 4.5 | 1 |
17 | Journal of Hydrology | 6.5 | 2 | Environmental Modelling and Software | 4.4 | 1 |
18 | Journal of Agricultural Science | 6.4 | 2 | Geoderma | 4.1 | 1 |
19 | Frontiers in Plant Science | 6.2 | 5 | Journal of Cleaner Production | 4.0 | 1 |
20 | Climatic Change | 5.6 | 1 | Nutrient Cycling in Agroecosystems | 4.0 | 5 |
Rank | APSIM | DSSAT | ||||
---|---|---|---|---|---|---|
Keyword | Occurrences | Total Link Strength | Keyword | Occurrences | Total Link Strength | |
1 | apsim | 156 | 226 | dssat | 65 | 112 |
2 | modelling | 27 | 44 | dssat model | 18 | 18 |
3 | wheat | 25 | 43 | maize | 15 | 23 |
4 | simulation | 21 | 43 | soil moisture | 12 | 16 |
5 | climate change | 18 | 31 | irrigation | 11 | 21 |
6 | nitrogen | 17 | 35 | water use efficiency | 11 | 19 |
7 | evapotranspiration | 16 | 23 | ceres-maize | 10 | 23 |
8 | maize | 16 | 27 | evapotranspiration | 10 | 22 |
9 | yield | 16 | 33 | modeling | 9 | 18 |
10 | water use efficiency | 13 | 21 | rzwqm | 9 | 24 |
11 | carbon sequestration | 12 | 28 | water stress | 9 | 10 |
12 | nitrate leaching | 12 | 26 | ceres-wheat | 8 | 13 |
13 | apsim model | 11 | 11 | sensitivity analysis | 8 | 9 |
14 | grain yield | 10 | 13 | soil water content | 8 | 7 |
15 | irrigation | 10 | 19 | winter wheat | 8 | 8 |
16 | nitrous oxide | 10 | 15 | yield | 8 | 23 |
17 | soil organic carbon | 10 | 23 | crop model | 7 | 12 |
18 | soil water | 10 | 19 | soil organic carbon | 7 | 13 |
19 | drainage | 9 | 20 | soil water | 7 | 15 |
20 | water balance | 9 | 16 | wheat | 7 | 16 |
References
- García-Díaz, A.; Bienes, R.; Sastre, B.; Novara, A.; Gristina, L.; Cerdà, A. Nitrogen Losses in Vineyards under Different Types of Soil Groundcover. A Field Runoff Simulator Approach in Central Spain. Agric. Ecosyst. Environ. 2017, 236, 256–267. [Google Scholar] [CrossRef]
- Palliyaguru, C.; Basnayake, V.; Makumbura, R.K.; Gunathilake, M.B.; Muttil, N.; Wimalasiri, E.M.; Rathnayake, U. Evaluation of the Impact of Land Use Changes on Soil Erosion in the Tropical Maha Oya River Basin, Sri Lanka. Land 2023, 12, 107. [Google Scholar] [CrossRef]
- Archontoulis, S.V.; Miguez, F.E.; Moore, K.J. Evaluating APSIM Maize, Soil Water, Soil Nitrogen, Manure, and Soil Temperature Modules in the Midwestern United States. Agron. J. 2014, 106, 1025–1040. [Google Scholar] [CrossRef]
- Asseng, S.; Zhu, Y.; Basso, B.; Wilson, T.; Cammarano, D. Simulation Modeling: Applications in Cropping Systems. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Academic Press: Oxford, UK, 2014; pp. 102–112. ISBN 978-0-08-093139-5. [Google Scholar]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a New Generation of Agricultural Systems Simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT Cropping System Model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of Remote Sensing on Crop Models: A Review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef]
- Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; et al. How Do Various Maize Crop Models Vary in Their Responses to Climate Change Factors? Glob. Chang. Biol. 2014, 20, 2301–2320. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asseng, S. Comparing Estimates of Climate Change Impacts from Process-Based and Statistical Crop Models. Environ. Res. Lett. 2017, 12, 015001. [Google Scholar] [CrossRef]
- Ivezić, V.; Yu, Y.; Werf, W.V.D. Crop Yields in European Agroforestry Systems: A Meta-Analysis. Front. Sustain. Food Syst. 2021, 5, 606631. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Biggs, J.S.; Collins, K.; Probert, M.E. Using the APSIM Model to Estimate Nitrous Oxide Emissions from Diverse Australian Sugarcane Production Systems. Agric. Ecosyst. Environ. 2010, 136, 343–350. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, J. Optimization of the Nitrogen Fertilizer Schedule of Maize under Drip Irrigation in Jilin, China, Based on DSSAT and GA. Agric. Water Manag. 2021, 244, 106555. [Google Scholar] [CrossRef]
- Wimalasiri, E.M.; Ashfold, M.J.; Jahanshiri, E.; Walker, S.; Azam-Ali, S.N.; Karunaratne, A.S. Agro-Climatic Sensitivity Analysis for Sustainable Crop Diversification; the Case of Proso Millet (Panicum miliaceum L.). PLoS ONE 2023, 18, e0283298. [Google Scholar] [CrossRef] [PubMed]
- Vogeler, I.; Cichota, R.; Langer, S.; Thomas, S.; Ekanayake, D.; Werner, A. Simulating Water and Nitrogen Runoff with APSIM. Soil Tillage Res. 2023, 227, 105593. [Google Scholar] [CrossRef]
- Singh, S.; Bhattarai, R.; Negm, L.M.; Youssef, M.A.; Pittelkow, C.M. Evaluation of Nitrogen Loss Reduction Strategies Using DRAINMOD-DSSAT in East-Central Illinois. Agric. Water Manag. 2020, 240, 106322. [Google Scholar] [CrossRef]
- Liu, D.L.; O’Leary, G.J.; Ma, Y.; Cowie, A.; Li, F.Y.; McCaskill, M.; Conyers, M.; Dalal, R.; Robertson, F.; Dougherty, W. Modelling Soil Organic Carbon 2. Changes under a Range of Cropping and Grazing Farming Systems in Eastern Australia. Geoderma 2016, 265, 164–175. [Google Scholar] [CrossRef]
- Chauhan, Y.S.; Thorburn, P.; Biggs, J.S.; Wright, G.C.; Chauhan, Y.S.; Thorburn, P.; Biggs, J.S.; Wright, G.C. Agronomic Benefits and Risks Associated with the Irrigated Peanut–Maize Production System under a Changing Climate in Northern Australia. Crop Pasture Sci. 2015, 66, 1167–1179. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Z.; Wang, E.; Zhang, W. Reducing Greenhouse Gas Emissions While Maintaining Yield in the Croplands of Huang-Huai-Hai Plain, China. Agric. For. Meteorol. 2018, 260–261, 80–94. [Google Scholar] [CrossRef]
- Meier, E.A.; Thorburn, P.J.; Kragt, M.E.; Dumbrell, N.P.; Biggs, J.S.; Hoyle, F.C.; van Rees, H. Greenhouse Gas Abatement on Southern Australian Grains Farms: Biophysical Potential and Financial Impacts. Agric. Syst. 2017, 155, 147–157. [Google Scholar] [CrossRef]
- Zeleke, K.T.; Anwar, M.; Liu, D.L. Managing Crop Stubble during Fallow Period for Soil Water Conservation: Field Experiment and Modelling. Env. Earth Sci. 2014, 72, 3317–3327. [Google Scholar] [CrossRef]
- Chimonyo, V.G.P.; Wimalasiri, E.M.; Kunz, R.; Modi, A.T.; Mabhaudhi, T. Optimizing Traditional Cropping Systems Under Climate Change: A Case of Maize Landraces and Bambara Groundnut. Front. Sustain. Food Syst. 2020, 4, 562568. [Google Scholar] [CrossRef]
- Adam, M.; Dzotsi, K.A.; Hoogenboom, G.; Traoré, P.C.S.; Porter, C.H.; Rattunde, H.F.W.; Nebie, B.; Leiser, W.L.; Weltzien, E.; Jones, J.W. Modelling Varietal Differences in Response to Phosphorus in West African Sorghum. Eur. J. Agron. 2018, 100, 35–43. [Google Scholar] [CrossRef]
- Raymond, N.; Kopittke, P.M.; Wang, E.; Lester, D.; Bell, M.J. Does the APSIM Model Capture Soil Phosphorus Dynamics? A Case Study with Vertisols. Field Crops Res. 2021, 273, 108302. [Google Scholar] [CrossRef]
- Hussein, M.A.; Antille, D.L.; Kodur, S.; Chen, G.; Tullberg, J.N. Controlled Traffic Farming Effects on Productivity of Grain Sorghum, Rainfall and Fertiliser Nitrogen Use Efficiency. J. Agric. Food Res. 2021, 3, 100111. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An Overview of APSIM, a Model Designed for Farming Systems Simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Wimalasiri, E.M.; Jahanshiri, E.; Chimonyo, V.G.P.; Kuruppuarachchi, N.; Suhairi, T.A.S.T.M.; Azam-Ali, S.N.; Gregory, P.J. A Framework for the Development of Hemp (Cannabis sativa L.) as a Crop for the Future in Tropical Environments. Ind. Crops Prod. 2021, 172, 113999. [Google Scholar] [CrossRef]
- Wimalasiri, E.M.; Jahanshiri, E.; Suhairi, T.A.S.T.M.; Udayangani, H.; Mapa, R.B.; Karunaratne, A.S.; Vidhanarachchi, L.P.; Azam-Ali, S.N. Basic Soil Data Requirements for Process-Based Crop Models as a Basis for Crop Diversification. Sustainability 2020, 12, 7781. [Google Scholar] [CrossRef]
- Wimalasiri, E.M.; Jahanshiri, E.; Chimonyo, V.; Azam-Ali, S.N.; Gregory, P.J. Crop Model Ideotyping for Agricultural Diversification. MethodsX 2021, 8, 101420. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Shelia, V.; Wilkens, P.W.; Singh, U.; White, J.W.; Asseng, S.; Lizaso, J.I.; Moreno, L.P.; et al. The DSSAT Crop Modeling Ecosystem. In Advances in Crop Modeling for a Sustainable Agriculture; Boote, K., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 173–216. ISBN 978-0-429-26659-1. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320. ISBN 978-3-319-10377-8. [Google Scholar]
- Van Eck, N.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Bezak, N.; Mikoš, M.; Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Biddoccu, M.; Cerdà, A.; et al. Soil Erosion Modelling: A Bibliometric Analysis. Environ. Res. 2021, 197, 111087. [Google Scholar] [CrossRef]
- Elsevier. How Are CiteScore Metrics Used in Scopus? Available online: https://service.elsevier.com/app/answers/detail/a_id/14880/supporthub/scopus/ (accessed on 25 January 2023).
- Kessler, M.M. An Experimental Communication Center for Scientific and Technical Information; Massachusetts Institute of Technology, Lincoln Laboratory: Lexington, MA, USA, 1960. [Google Scholar]
- Jarneving, B. Bibliographic Coupling and Its Application to Research-Front and Other Core Documents. J. Informetr. 2007, 1, 287–307. [Google Scholar] [CrossRef]
- McLaren, C.D.; Bruner, M.W. Citation Network Analysis. Int. Rev. Sport Exerc. Psychol. 2022, 15, 179–198. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. VOS: A New Method for Visualizing Similarities between Objects. In Proceedings of the Advances in Data Analysis; Decker, R., Lenz, H.-J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 299–306. [Google Scholar]
- VOSviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com// (accessed on 13 January 2023).
- Perego, A.; Giussani, A.; Sanna, M.; Fumagalli, M.; Carozzi, M.; Brenna, S.; Acutis, M. The ARMOSA Simulation Crop Model: Overall Features, Calibration and Validation Results. Ital. J. Agrometeorol. 2013, 18, 23–38. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Thum, T.; Caldararu, S.; Engel, J.; Kern, M.; Pallandt, M.; Schnur, R.; Yu, L.; Zaehle, S. A New Model of the Coupled Carbon, Nitrogen, and Phosphorus Cycles in the Terrestrial Biosphere (QUINCY v1.0; Revision 1996). Geosci. Model Dev. 2019, 12, 4781–4802. [Google Scholar] [CrossRef]
- Yu, L.; Ahrens, B.; Wutzler, T.; Schrumpf, M.; Zaehle, S. Jena Soil Model (JSM v1.0; Revision 1934): A Microbial Soil Organic Carbon Model Integrated with Nitrogen and Phosphorus Processes. Geosci. Model Dev. 2020, 13, 783–803. [Google Scholar] [CrossRef]
- Jarvis, N.; Larsbo, M.; Lewan, E.; Garré, S. Improved Descriptions of Soil Hydrology in Crop Models: The Elephant in the Room? Agric. Syst. 2022, 202, 103477. [Google Scholar] [CrossRef]
- Liu, H.L.; Yang, J.Y.; Drury, C.F.; Reynolds, W.D.; Tan, C.S.; Bai, Y.L.; He, P.; Jin, J.; Hoogenboom, G. Using the DSSAT-CERES-Maize Model to Simulate Crop Yield and Nitrogen Cycling in Fields under Long-Term Continuous Maize Production. Nutr. Cycl. Agroecosyst. 2011, 89, 313–328. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Fillery, I.R.P.; Macdonald, L.M.; Huth, N.; Baldock, J. Modelling Soil Carbon and Nitrogen Dynamics Using Measurable and Conceptual Soil Organic Matter Pools in APSIM. Agric. Ecosyst. Environ. 2014, 186, 94–104. [Google Scholar] [CrossRef]
- Salmerón, M.; Cavero, J.; Isla, R.; Porter, C.H.; Jones, J.W.; Boote, K.J. DSSAT Nitrogen Cycle Simulation of Cover Crop–Maize Rotations under Irrigated Mediterranean Conditions. Agron. J. 2014, 106, 1283–1296. [Google Scholar] [CrossRef]
- Tahir, N.; Li, J.; Ma, Y.; Ullah, A.; Zhu, P.; Peng, C.; Hussain, B.; Danish, S. 20 Years Nitrogen Dynamics Study by Using APSIM Nitrogen Model Simulation for Sustainable Management in Jilin China. Sci. Rep. 2021, 11, 17505. [Google Scholar] [CrossRef] [PubMed]
- Vogeler, I.; Giltrap, D.; Cichota, R. Comparison of APSIM and DNDC Simulations of Nitrogen Transformations and N2O Emissions. Sci. Total Environ. 2013, 465, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Maniquiz-Redillas, M.; Robles, M.E.; Cruz, G.; Reyes, N.J.; Kim, L.-H. First Flush Stormwater Runoff in Urban Catchments: A Bibliometric and Comprehensive Review. Hydrology 2022, 9, 63. [Google Scholar] [CrossRef]
- Bigliardi, B.; Filippelli, S. Chapter 4—Factors Affecting the Growth of Academic Oriented Spin-Offs. In Innovation Strategies in the Food Industry, 2nd ed.; Galanakis, C.M., Ed.; Academic Press: New York, NY, USA, 2022; pp. 53–72. ISBN 978-0-323-85203-6. [Google Scholar]
Parameter | Citations | Normalized Citations | ||
---|---|---|---|---|
APSIM | DSSAT | APSIM | DSSAT | |
Mean | 24.0 | 30.8 | 4.2 | 4.7 |
Std. Deviation | 26.5 | 38.4 | 4.7 | 5.8 |
25% Percentile | 7.0 | 6.0 | 1.1 | 1.2 |
Median | 15.0 | 20.0 | 3.0 | 3.4 |
75% Percentile | 33.0 | 41.0 | 6.0 | 5.8 |
Range | 0–195 | 0–238 | 0–54 | 0–48 |
Source | Number of Publications | Average Normalized Citations |
---|---|---|
Field Crops Research | 42 | 5.2 |
Agricultural Systems | 23 | 5.2 |
Agricultural Water Management | 23 | 4.4 |
European Journal of Agronomy | 18 | 5.3 |
Agriculture, Ecosystems and Environment | 13 | 7.8 |
Australian Journal of Agricultural Research | 12 | 2.3 |
Agricultural and Forest Meteorology | 10 | 5.6 |
Geoderma | 9 | 3.8 |
Crop and Pasture Science | 8 | 2.6 |
Science of the Total Environment | 8 | 8.2 |
Soil Research | 8 | 2.7 |
Source | Number of Publications | Average Normalized Citations |
---|---|---|
Agricultural Water Management | 36 | 8.5 |
Transactions of the ASABE | 16 | 3.6 |
Agronomy Journal | 13 | 3.4 |
Agricultural Systems | 9 | 4.0 |
European Journal of Agronomy | 7 | 8.0 |
Field Crops Research | 7 | 10.7 |
Nutrient Cycling in Agroecosystems | 5 | 4.0 |
Agricultural and Forest Meteorology | 4 | 5.7 |
Journal of Agricultural Science | 3 | 3.9 |
Journal of Integrative Agriculture | 3 | 3.3 |
Rank | APSIM | DSSAT | ||||
---|---|---|---|---|---|---|
Term | Relevance Score | Occurrences | Term | Relevance Score | Occurrences | |
1 | PAWC * | 5.71 | 79 | Model | 4.91 | 707 |
2 | SOC * | 3.84 | 97 | Soil moisture | 2.48 | 85 |
3 | Emission | 3.08 | 138 | Irrigation | 1.53 | 163 |
4 | N2O emission | 2.75 | 128 | Yield | 1.43 | 346 |
5 | Deep drainage | 2.55 | 69 | Soil | 1.29 | 177 |
6 | Temperature | 2.43 | 149 | Soil water content | 1.18 | 78 |
7 | Climate | 1.85 | 119 | Water | 1.08 | 200 |
8 | Drainage | 1.82 | 85 | Treatment | 0.94 | 159 |
9 | Rainfall | 1.74 | 179 | DSSAT | 0.73 | 185 |
10 | Sowing | 1.73 | 86 | Simulation | 0.71 | 149 |
11 | Crop yield | 1.42 | 119 | Study | 0.63 | 187 |
12 | Maize | 1.32 | 99 | Grain yield | 0.61 | 69 |
13 | Season | 1.25 | 199 | Agrotechnology transfer | 0.53 | 70 |
14 | Irrigation | 1.25 | 133 | Data | 0.51 | 188 |
15 | Climate change | 1.22 | 71 | Decision support system | 0.47 | 99 |
16 | N leaching | 1.21 | 69 | Maize | 0.44 | 117 |
17 | N loss | 1.21 | 64 | Effect | 0.41 | 117 |
18 | Change | 1.20 | 155 | Season | 0.33 | 95 |
19 | Yield | 1.18 | 579 | Crop yield | 0.29 | 62 |
20 | Soil water | 1.09 | 96 | Crop | 0.25 | 132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wimalasiri, E.M.; Ariyachandra, S.; Jayawardhana, A.; Dharmasekara, T.; Jahanshiri, E.; Muttil, N.; Rathnayake, U. Process-Based Crop Models in Soil Research: A Bibliometric Analysis. Soil Syst. 2023, 7, 43. https://doi.org/10.3390/soilsystems7020043
Wimalasiri EM, Ariyachandra S, Jayawardhana A, Dharmasekara T, Jahanshiri E, Muttil N, Rathnayake U. Process-Based Crop Models in Soil Research: A Bibliometric Analysis. Soil Systems. 2023; 7(2):43. https://doi.org/10.3390/soilsystems7020043
Chicago/Turabian StyleWimalasiri, Eranga M., Sachini Ariyachandra, Aruna Jayawardhana, Thejani Dharmasekara, Ebrahim Jahanshiri, Nitin Muttil, and Upaka Rathnayake. 2023. "Process-Based Crop Models in Soil Research: A Bibliometric Analysis" Soil Systems 7, no. 2: 43. https://doi.org/10.3390/soilsystems7020043
APA StyleWimalasiri, E. M., Ariyachandra, S., Jayawardhana, A., Dharmasekara, T., Jahanshiri, E., Muttil, N., & Rathnayake, U. (2023). Process-Based Crop Models in Soil Research: A Bibliometric Analysis. Soil Systems, 7(2), 43. https://doi.org/10.3390/soilsystems7020043