Arbuscular Mycorrhizal Fungi Enhance Growth and Increase Concentrations of Anthocyanin, Phenolic Compounds, and Antioxidant Activity of Black Rice (Oryza sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. AMF Identification
2.1.1. Isolation of Species of AMF
2.1.2. Multiplication of Spores of AMF
2.1.3. Identification of AMF Species
2.2. Greenhouse Experiment
2.2.1. Soil Preparation for Rice Cultivation
2.2.2. Preparation of Rice Seedlings
2.2.3. Experimental Design and Pot Preparation
2.2.4. Determination of Plant and AMF Performance
2.2.5. Statistical Analysis
3. Results
3.1. Molecular Identification of AMF Species and Performance on Pot Culture
3.2. Fractional Root Colonization and Spore Number of AMF on Maled Phai and Niew Dam Hmong
3.3. Effects of AMF Species on the Promotion of Growth and Yield of Maled Phai Niew Dam Hmong
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sompong, R.; Siebenhandl-Ehn, S.; Linsberger-Martin, G.; Berghofer, E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Hu, C.; Zawistowski, J.; Ling, W.; Kitts, D.D. Black Rice (Oryza sativa L. indica) Pigmented Fraction Suppresses both Reactive Oxygen Species and Nitric Oxide in Chemical and Biological Model Systems. J. Agric. Food Chem. 2003, 51, 5271–5277. [Google Scholar] [CrossRef]
- Konczak, I.; Zhang, W. Anthocyanins—More than nature’s colours. J. Biomed. Biotechnol. 2004, 2004, 307613. [Google Scholar] [CrossRef]
- Tanaka, J.; Nakanishi, T.; Ogawa, K.; Tsuruma, K.; Shimazawa, M.; Shimoda, H.; Hara, H. Purple rice extract and anthocyanidins of the constituents protect against light-induced retinal damage in vitro and in vivo. J. Agric. Food Chem. 2011, 59, 528–536. [Google Scholar] [CrossRef]
- Goufo, P.; Trindade, H. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, c-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef]
- Yodmanee, S.; Karrila, T.T.; Pakdeechanuan, P. Physical, chemical and antioxidant properties of pigmented rice grown in Southern Thailand. Int. Food Res. J. 2011, 18, 901–906. [Google Scholar]
- Smith, S.E.; Facelli, E.; Pope, S.; Smith, F.A. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 2010, 326, 3–20. [Google Scholar] [CrossRef]
- Mbodj, D.; Effa-Effa, B.; Kane, A.; Manneh, B.; Gantet, P.; Laplaze, L.; Diedhiou, A.G.; Grondin, A. Arbuscular mycorrhizal symbiosis in rice: Establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere 2018, 8, 12–26. [Google Scholar] [CrossRef]
- Bernaola, L.; Cosme, M.; Schneider, R.W.; Stout, M. Belowground inoculation with arbuscular mycorrhizal fungi increases local and systemic susceptibility of rice plants to different pest organisms. Front. Plant Sci. 2018, 9, 747. [Google Scholar] [CrossRef]
- Gerdemann, J.W.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Boonlue, S.; Surapat, W.; Pukahuta, C.; Suwanarit, P.; Suwanarit, A.; Morinaga, T. Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience 2012, 53, 10–16. [Google Scholar] [CrossRef]
- Daniels, B.A.; Skipper, H.D. Methods for the Recovery and Quantitative Estimation of Propagules from Soil [Vesicular-Arbuscular Mycorrhizal Fungi]. In Methods and Principles of Mycorrhizal Research; Schenck, N.C., Ed.; American Phytopathological Society: St. Paul, MN, USA, 1982; pp. 29–35. [Google Scholar]
- Mosbah, M.; Philippe, D.L.; Mohamed, M. Molecular identification of arbuscular mycorrhizal fungal spores associated to the rhizosphere of Retama raetam in Tunisia. Soil Sci. Plant Nutr. 2018, 64, 335–341. [Google Scholar] [CrossRef]
- Krüger, M.; Stockinger, H.; Krüger, C.; Schüßler, A. DNA-based species level detection of Glomeromycota: One PCR primer set for all Arbuscular Mycorrhizal Fungi. New Phytol. 2009, 183, 212–223. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Sripanidkulchai, B.; Junlatat, J.; Tuntiyasawasdikul, S.; Fangkrathok, N.; Sanitchon, J.; Chankaew, S. Phytochemical and bioactivity investigation of Thai pigmented-upland rice: Dam-Mong and Ma-Led-Fy varieties. Agric. Nat. Resour. 2021, 55, 209–212. [Google Scholar] [CrossRef]
- Kapcum, N.; Uriyapongson, J.; Alli, I.; Phimphilai, S. Anthocyanins, phenolic compounds and antioxidant activities in colored corn cob and colored rice bran. Int. Food Res. J. 2016, 23, 2347–2356. [Google Scholar]
- Leong, L.P.; Shui, G. An Investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Koske, R.E.; Gemma, J.N. A modified procedure for staining roots to detect VA Mycorrhizas. Mycol. Res. 1989, 92, 486–488. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.L.; Gianinazzi-Pearson, V. Evaluation of VA infection levels. Research for estimation methods having a functional significance. In Physiological and Genetical Aspect of Mycorrhiza; Gianinazzi-Pearson, V., Gianinazzi, S., Eds.; INRA Edition: Paris, France, 1986; pp. 217–221. [Google Scholar]
- Jalonen, R.; Timonen, S.; Sierra, J.; Nygren, P. Arbuscular mycorrhizal symbioses in a cut-and-carry forage production system of legume tree Gliricidia sepium and fodder grass Dichanthium aristatum. Agrofor. Syst. 2013, 87, 319–330. [Google Scholar] [CrossRef]
- Gai, J.; Gao, W.; Liu, L.; Chen, Q.; Feng, G.; Zhang, J.; Christie, P.; Li, X. Infectivity and community composition of arbuscular mycorrhizal fungi from different soil depths in intensively managed agricultural ecosystems. J. Soils Sediments 2015, 15, 1200–1211. [Google Scholar] [CrossRef]
- Surendirakumar, K.; Pandey, R.R.; Muthukumar, T. Arbuscular Mycorrhizal Fungi in roots and rhizosphere of black rice in terrace fields of North-East India. Proc. Natl. Acad. Sci. India Sect. B–Biol. Sci. 2021, 91, 277–287. [Google Scholar] [CrossRef]
- Wangiyana, W.; Farida, N.; Aryana, I.G.P.M. Yield performance of several promising lines of black rice as affected by application of mycorrhiza biofertilizer and additive intercropping with soybean under aerobic irrigation system on raised beds. IOP Conf. Ser. Earth Environ. Sci. 2021, 913, 012005. [Google Scholar] [CrossRef]
- Anugrah, A.M.; Wangiyana, W.; Aryana, I.G.P.M. Mycorrhizal colonization, growth and yield of several promising lines of Black Rice between sterilized and non-sterilized soil. Int. J. Environ. Agric. Biotechnol. 2019, 4, 462–468. [Google Scholar] [CrossRef]
- Tisarum, R.; Theerawitaya, C.; Samphumphuang, T.; Phisalaphong, M.; Singh, H.P.; Cha-Um, S. Promoting water deficit tolerance and anthocyanin fortification in pigmented rice cultivar (Oryza sativa L. subsp. indica) using arbuscular mycorrhizal fungi inoculation. Physiol. Mol. Biol. Plants 2019, 25, 821–835. [Google Scholar] [CrossRef] [PubMed]
- Dhillion, S.S.; Ampornpan, L. The influence of inorganic nutrient fertilization on the growth, nutrient composition and vesicular-arbuscular mycorrhizal colonization of pretransplant rice (Oryza sativa L.) Plants. Biol. Fertil. Soils 1992, 13, 85–91. [Google Scholar] [CrossRef]
- Maiti, D.; Toppo, N.N.; Variar, M. Integration of crop rotation and Arbuscular Mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.). Mycorrhiza 2011, 21, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Hajiboland, R.; Aliasgharzad, N.; Barzeghar, R. Influence of Arbuscular Mycorrhizal Fungi on uptake of Zn and P by two contrasting rice genotypes. Plant Soil Environ. 2009, 55, 93–100. [Google Scholar] [CrossRef]
- Zhang, S.; Lehmann, A.; Zheng, W.; You, Z.; Rillig, M.C. Arbuscular Mycorrhizal Fungi increase grain yields: A Meta-Analysis. New Phytol. 2019, 222, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Hoffland, E.; Feng, G.; Kuyper, T.W. Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize. Front. Plant Sci. 2017, 8, 684. [Google Scholar] [CrossRef]
- Song, J.; Chen, L.; Chen, F.; Ye, J. Edaphic and host plant factors are linked to the composition of arbuscular mycorrhizal fungal communities in the root zone of endangered Ulmus chenmoui Cheng in China. Ecol. Evol. 2019, 9, 8900–8910. [Google Scholar] [CrossRef]
- Avio, L.; Turrini, A.; Giovannetti, M.; Sbrana, C. Designing the ideotype mycorrhizal symbionts for the production of healthy food. Front. Plant Sci. 2018, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Noceto, P.A.; Bettenfeld, P.; Boussageon, R.; Hériché, M.; Sportes, A.; van Tuinen, D.; Courty, P.E.; Wipf, D. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza 2021, 31, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Cartabia, A.; Lalaymia, I.; Declerck, S. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. Mycorrhiza 2022, 32, 221–256. [Google Scholar] [CrossRef] [PubMed]
- Fiorilli, V.; Vallino, M.; Biselli, C.; Faccio, A.; Bagnaresi, P.; Bonfante, P. Host and non-host roots in rice: Cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Front. Plant Sci. 2015, 6, 636. [Google Scholar] [CrossRef]
- Soltaniband, V.; Brégard, A.; Gaudreau, L.; Dorais, M. Biostimulants promote plant development, crop productivity, and fruit quality of protected strawberries. Agronomy 2022, 12, 1684. [Google Scholar] [CrossRef]
- Torres, N.; Antolín, M.C.; Garmendia, I.; Goicoechea, N. Nutritional properties of tempranillo grapevine leaves are affected by clonal diversity, mycorrhizal symbiosis and air temperature regime. Plant Physiol. Biochem. 2018, 130, 542–554. [Google Scholar] [CrossRef]
- Lee, J.; Scagel, C.F. Chicoric acid found in Basil (Ocimum basilicum L.) Leaves. Food Chem. 2009, 115, 650–656. [Google Scholar] [CrossRef]
- Baslam, M.; Goicoechea, N. Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 2012, 22, 347–359. [Google Scholar] [CrossRef]
- Seemakram, W.; Paluka, J.; Suebrasri, T.; Lapjit, C.; Kanokmedhakul, S.; Kuyper, T.W.; Ekprasert, J.; Boonlue, S. Enhancement of growth and cannabinoids content of hemp (Cannabis sativa) using arbuscular mycorrhizal fungi. Front. Plant Sci. 2022, 13, 845794. [Google Scholar] [CrossRef]
- Kumar, S.; Arora, N.; Upadhyay, H. Arbuscular Mycorrhizal Fungi: Source of Secondary Metabolite Production in Medicinal Plants; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Dos Santos, E.L.; Falcão, E.L.; Barbosa da Silva, F.S. Mycorrhizal technology as a bioinsumption to produce phenolic compounds of importance to the herbal medicine industry. Res. Soc. Dev. 2021, 10, e54810212856. [Google Scholar] [CrossRef]
- Zhang, R.-Q.; Zhu, H.-H.; Zhao, H.-Q.; Yao, Q. Arbuscular Mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J. Plant Physiol. 2013, 170, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Netto, A.F.R.; Freitas, M.S.M.; Martins; de Carvalho, A.J.C.; Filho, J.A.V. Efeito de fungos micorrízicos arbusculares na bioprodução de fenóis totais e no crescimento de Passiflora alata Curtis. Rev. Bras. Plantas Med. 2014, 16, 1–9. [Google Scholar] [CrossRef]
- Lohse, S.; Schliemann, W.; Ammer, C.; Kopka, J.; Strack, D.; Fester, T. Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol. 2005, 139, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Upadhyay, S.; Wajid, S.; Ram, M.; Jain, D.C.; Singh, V.P.; Abdin, M.Z.; Kapoor, R. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 2015, 25, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Upadhyay, S.; Singh, V.P.; Kapoor, R. Enhanced production of steviol glycosides in mycorrhizal plants: A concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant Physiol. Biochem. 2015, 89, 100–106. [Google Scholar] [CrossRef]
- Ran, Z.; Ding, W.; Cao, S.; Fang, L.; Zhou, J.; Zhang, Y. Arbuscular mycorrhizal fungi: Effects on secondary metabolite accumulation of traditional Chinese medicines. Plant Biol. 2022, 24, 932–938. [Google Scholar] [CrossRef]
AMF Isolates | Total Spore (Spore/g Soil) | Root Colonization (%) |
---|---|---|
A. longula | 32 | 25 |
C. etunicatum | 2 | 19 |
R. nov. spec. | 6 | 18 |
R. variabilis | 13 | 35 |
Treatments | Root Colonization (%) | Total Spore (Spore g−1 Soil) |
---|---|---|
Maled Phai | ||
Control | 0 i | 0 f |
NPK fertilizer | 0 i | 0 f |
A. longula | 19 c | 2 d |
C. etunicatum | 25 b | 3 c |
R. nov. spec. | 14 d | 3 c |
R. variabile | 28 a | 6 a |
Niew Dam Hmong | ||
Control | 2 h | 0 f |
NPK fertilizer | 1 h | 0 f |
A. longula | 7 f | 2 d |
C. etunicatum | 9 e | 1 e |
R. nov. spec. | 5 g | 2 d |
R. variabile | 14 d | 4 b |
% CV | 10 | 18 |
Treatment | ** | ** |
Rice cultivar | ** | ** |
Treatment × Rice cultivar | ** | ** |
Treatments | Root Dry Weight (g) | Shoot Dry Weight (g) | Grain Weight (g) | Aboveground Weight (G) | Harvest Index (HI) | Number of Panicles | Number of Tillers | Height (cm) | SPAD |
---|---|---|---|---|---|---|---|---|---|
Maled Phai cultivar | |||||||||
Control | 16 i | 44 e | 4 g | 48 g | 0.08 g | 3 e | 8 d | 92 de | 35 d |
NPK fertilizer | 75 b | 121 a | 14 f | 135 a | 0.10 g | 6 cd | 18 a | 102 b | 45 a |
A. longula | 39 g | 58 d | 17 cde | 65 de | 0.23 de | 6 cd | 11 cd | 97 bcd | 45 a |
C. etunicatum | 46 e | 60 d | 18 def | 78 d | 0.22 e | 6 cd | 14 bc | 90 e | 42 abc |
R. nov. spec. | 35 h | 71 c | 20 bcd | 91 c | 0.22 e | 6 cd | 13 c | 96 b–e | 44 a |
R. variabilis | 104 a | 94 b | 25 a | 119 b | 0.21 e | 8 a | 13 bc | 98 bcd | 45 a |
Niew Dam Hmong cultivar | |||||||||
Control | 7 c | 23 f | 5 g | 28 h | 0.16 f | 3 e | 9 d | 95 cde | 37 cd |
NPK fertilizer | 16 i | 76 c | 15 ef | 91 c | 0.17 f | 6 bc | 17 ab | 114 a | 43 ab |
A. longula | 50 d | 43 e | 22 b | 65 ef | 0.34 a | 6 bc | 14 bc | 95 cde | 38 bcd |
C. etunicatum | 42 fg | 45 e | 19 bcd | 64 ef | 0.30 bc | 5 d | 12 cd | 99 bc | 38 bcd |
R. nov. spec. | 33 h | 43 e | 20 bc | 63 f | 0.32 ab | 6 cd | 14 abc | 96 b–e | 45 a |
R. variabilis | 45 ef | 51 de | 18 cde | 69 de | 0.26 cd | 7 ab | 13 bc | 97 b–e | 42 abc |
% CV | 8 | 15 | 19 | 13 | 16 | 16 | 27 | 6 | 14 |
Treatment | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Rice cultivar | ** | ** | ns | ** | ** | ns | ns | * | * |
Treatment × Rice cultivar | ** | ** | ** | ** | ns | ns | ns | * | ns |
Treatments | Phenolic Compound (mg 100 g−1 DW) | Antioxidant (% DPPH Radical Scavenging) | Anthocyanin (mg 100 g−1 DW) | N (mg g−1) | P (mg g−1) | K (mg g−1) |
---|---|---|---|---|---|---|
Maled Phai cultivar | ||||||
Control | 138 d | 25 f | 40 d | 1.6 g | 0.5 e | 4.6 de |
NPK fertilizer | 196 b | 39 de | 98 a | 6.0 a | 1.2 b | 11.2 a |
A. longula | 184 c | 27 f | 70 c | 2.3 ef | 0.6 de | 5.6 de |
C. etunicatum | 140 d | 58 c | 62 c | 2.1 f | 0.5 e | 5.5 de |
R. nov. spec. | 188 bc | 43 d | 66 c | 2.7 de | 0.7 cde | 7.3 c |
R. variabilis | 209 a | 68 b | 82 b | 3.5 c | 0.9 bc | 9.7 b |
Niew Dam Hmong cultivar | ||||||
Control | 53 h | 32 ef | 36 d | 1.6 g | 0.5 e | 2.7 f |
NPK fertilizer | 69 g | 80 a | 21 e | 4.7 b | 1.7 a | 9.1 b |
A. longula | 87 f | 55 c | 34 d | 2.9 d | 0.8 cd | 4.4 e |
C. etunicatum | 71 g | 41 de | 23 e | 2.8 d | 0.8 cd | 5.1 de |
R. nov. spec. | 70 g | 58 c | 36 d | 2.8 d | 0.7 cde | 5.4 de |
R. variabilis | 116 e | 43 d | 94 a | 3.6 c | 0.8 cd | 5.8 d |
%CV | 7 | 18 | 18 | 9 | 20 | 13 |
AMF | ** | ** | ** | ** | ** | ** |
Rice cultivars | ** | ** | ** | ns | ** | ** |
AMF × Rice cultivar | ** | ** | ** | ** | ** | * |
Correlation | Root Colonization | No. of Spore | Root Dry Weight | Shoot Dry Weight | Grain Weight | Biomass | HI | No. of Panicles | No. of Tillers | Height | SPAD | Anti-Oxidant | Phenolic Compound | Antho-Cyanin | N | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of spore | 0.86 ** | |||||||||||||||
Root dry weight | 0.39 ** | 0.45 ** | ||||||||||||||
Shoot dry weight | 0.16 ns | 0.14 ns | 0.75 ** | |||||||||||||
Grain weight | 0.53 ** | 0.66 ** | 0.55 ** | 0.28 * | ||||||||||||
Biomass | 0.34 ** | 0.38 ** | 0.94 ** | 0.92 ** | 0.54 ** | |||||||||||
HI | 0.20 ns | 0.36 ** | −0.04 ns | −0.41 ** | 0.69 ** | −0.14 ns | ||||||||||
No. of panicles | 0.47 ** | 0.60 ** | 0.64 ** | 0.40 ** | 0.86 ** | 0.63 ** | 0.46 ** | |||||||||
No. of tillers | −0.03 ns | 0.03 ns | 0.45 ** | 0.47 ** | 0.32 ** | 0.50 ** | 0.07 ns | 0.39 ** | ||||||||
Height | −0.22 * | −0.18 ns | 0.33 ** | 0.30 * | 0.10 ns | 0.33 ** | −0.06 ns | 0.20 ns | 0.18 ns | |||||||
SPAD | 0.23 * | 0.21 * | 0.32 ** | 0.36 ** | 0.26 * | 0.37 ** | 0.00 ns | 0.24 * | 0.34 ** | 0.00 ns | ||||||
Antioxidant | 0.19 ns | 0.25 * | 0.55 ** | 0.29 * | 0.46 ** | 0.47 ** | 0.19 ns | 0.43 ** | 0.39 ** | 0.26 * | 0.26 * | |||||
Phenolic | 0.52 ** | 0.42 ** | 0.45 ** | 0.66 ** | 0.21 ns | 0.59 ** | −0.35 ** | 0.27 * | 0.09 ns | −0.11 | 0.31 ** | −0.13 ns | ||||
Anthocyanin | 0.41 ** | 0.45 ** | 0.41 ** | 0.57 ** | 0.23 * | 0.52 ** | −0.20 ns | 0.38 ** | 0.22 * | −0.10 | 0.30 * | −0.13 ns | 0.73 ** | |||
N | −0.20 ns | −0.06 ns | 0.69 ** | 0.75 ** | 0.28 * | 0.76 ** | −0.14 ns | 0.44 ** | 0.57 ** | 0.51 ** | 0.30 * | 0.37 ** | 0.22 * | 0.37 ** | ||
P | −0.26 * | −0.16 ns | 0.58 ** | 0.49 ** | 0.24 * | 0.56 ** | −0.08 ns | 0.38 ** | 0.47 ** | 0.65 ** | 0.18 ns | 0.57 ** | −0.09 ns | −0.05 ns | 0.8 ** | |
K | 0.11 ns | 0.14 ns | 0.79 ** | 0.89 ** | 0.32 ** | 0.88 ** | −0.31 ** | 0.46 ** | 0.51 ** | 0.40 ** | 0.39 ** | 0.39 ** | 0.56 ** | 0.46 ** | 0.8 ** | 0.7 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nacoon, S.; Seemakram, W.; Ekprasert, J.; Theerakulpisut, P.; Sanitchon, J.; Kuyper, T.W.; Boonlue, S. Arbuscular Mycorrhizal Fungi Enhance Growth and Increase Concentrations of Anthocyanin, Phenolic Compounds, and Antioxidant Activity of Black Rice (Oryza sativa L.). Soil Syst. 2023, 7, 44. https://doi.org/10.3390/soilsystems7020044
Nacoon S, Seemakram W, Ekprasert J, Theerakulpisut P, Sanitchon J, Kuyper TW, Boonlue S. Arbuscular Mycorrhizal Fungi Enhance Growth and Increase Concentrations of Anthocyanin, Phenolic Compounds, and Antioxidant Activity of Black Rice (Oryza sativa L.). Soil Systems. 2023; 7(2):44. https://doi.org/10.3390/soilsystems7020044
Chicago/Turabian StyleNacoon, Sabaiporn, Wasan Seemakram, Jindarat Ekprasert, Piyada Theerakulpisut, Jirawat Sanitchon, Thomas W. Kuyper, and Sophon Boonlue. 2023. "Arbuscular Mycorrhizal Fungi Enhance Growth and Increase Concentrations of Anthocyanin, Phenolic Compounds, and Antioxidant Activity of Black Rice (Oryza sativa L.)" Soil Systems 7, no. 2: 44. https://doi.org/10.3390/soilsystems7020044
APA StyleNacoon, S., Seemakram, W., Ekprasert, J., Theerakulpisut, P., Sanitchon, J., Kuyper, T. W., & Boonlue, S. (2023). Arbuscular Mycorrhizal Fungi Enhance Growth and Increase Concentrations of Anthocyanin, Phenolic Compounds, and Antioxidant Activity of Black Rice (Oryza sativa L.). Soil Systems, 7(2), 44. https://doi.org/10.3390/soilsystems7020044