Fate and Transport of Per- and Polyfluoroalkyl Substances (PFAS) at Aqueous Film Forming Foam (AFFF) Discharge Sites: A Review
Abstract
:1. Introduction
2. PFAS Sorption
2.1. PFAS Adsorption Mechanisms
2.1.1. Electrostatic Interaction
2.1.2. Hydrophobic Interaction
2.2. PFAS Sorption Isotherms and Kinetics
2.2.1. Linear Isotherm
2.2.2. Freundlich Isotherm
2.2.3. Langmuir Isotherm
2.2.4. Sorption Kinetics
2.3. Factors Impacting PFAS Fate and Transport in Both Saturated and Unsaturated Media
2.3.1. Characteristics of the Adsorbent
2.3.2. Characteristics of the Adsorbate
2.3.3. Characteristics of the Solution
2.3.4. Transport in Unsaturated Zone
3. Transformation and Degradation
4. Plant Interactions
5. Case Studies and Implications for AFFF-Impacted Sites
5.1. Unspecified US Military Firefighter Training Area
5.2. Ellsworth Air Force Base Firefighter Training Area
5.3. Non-Fire-Training-Area AFFF Release Sites on a Variety of US Air Force Installations
6. Conclusions and Future Research Directions
- The impact of subsurface heterogeneity on PFAS fate and transport at the field scale is not well understood. Prior work on fate and transport of non-reactive and reactive solutes, including sorptive solutes such as perchloroethylene (PCE), have concluded that subsurface transport in soil and sedimentary aquifers cannot be understood without understanding, characterizing, and modeling physical and chemical heterogeneity [138,139,140]. Specifically, hydrogeologic and sedimentologic field studies have created a body of literature studying the link between geologic structure and heterogeneity in permeability and/or Kd values [141,142]. Soltanian et al. have shown that reactive transport models accounting for proper representation of geologic structure and resulting variability in permeability and/or Kd can effectively capture the non-ideal behavior of sorptive contaminant plume (e.g., plume retardation and macrodispersion) without curve fitting [143,144]. These studies relied on highly resolved datasets in order to quantify the spatial co-variability between permeability and/or Kd within and across geologic units to explain a PCE plume behavior. There are currently no data available quantifying such spatial co-variability for PFAS compounds. As reactive transport models require a representation of how permeability and/or Kd vary in space [64,145,146,147,148], basic research on quantifying the spatial variability in PFAS reactive attributes and the co-variability between permeability and the reactive attributes needs to be investigated.
- Tracers in field-scale studies that have been found to exhibit transport behavior similar to PFAS without the negative effects need to be utilized in future research. Sörengård et al. (2020) performed batch sorption experiments with a variety of PFAS compounds and dyes and found that some dyes and PFAS shared similar sorption characteristics. Thus, such dyes could be used in field experiments to examine the impacts of heterogeneity on fate and transport in a well understood field site, similar to that of work at the Canadian Forces Base Borden site [149].
- A better understanding of PFAS in the unsaturated zone is critical. AFFF is applied to the ground surface and transported in runoff. These chemicals have been shown to be retarded in the unsaturated zone and thus more investigations into transport in the unsaturated environment are warranted. More expansive column experiments and modeling using a variety of sediments and PFAS compounds similar to prior work using sands are needed [60,71].
- Adsorptive behaviors of contaminants in the subsurface could enhance our understanding of existing and emerging remedial techniques. For example, if it is determined what retards transport of a particular PFAS in the subsurface, then those principles could be applied to remedial technologies. Thus, more research on individual factors influencing PFAS sorption is needed.
- A combination of factors (e.g., OC, clay content, and pH) is required to describe PFAS sorption onto sediments [51,75]. To further this understanding, the development of a more mechanistic understanding is needed in order to account for more complex process-based models, such as surface complexation, which has previously been used to better understand contaminants [150,151].
- Borthakur et al. demonstrated that flow interruptions can significantly increase PFAS concentrations in the pore water of saturated soil due to the release of soil colloids carrying PFAS [152]. This phenomenon was found to be dependent on chain length, with higher increases observed for PFOA compared to perfluorobutanoic acid (PFBA), potentially due to the greater affinity of PFOA for soil colloids. This study underscores the potential of colloids in facilitating the transport of PFAS, which may contribute to exceedances in PFAS concentrations beyond the health advisory limit set by the USEPA. Importantly, this research highlights that neglecting the role of colloids could lead to an underestimation of PFAS concentration in water samples, suggesting the need to desorb PFAS from colloids prior to analysis for estimating the true PFAS concentration. However, this area remains underexplored, and additional research is required to further elucidate the role of colloid-facilitated transport in the fate and transport of PFAS in natural subsurface media. Future studies could focus on investigating the influence of various soil types and flow conditions on colloid–PFAS interactions and the resulting effect on PFAS transport. Moreover, developing analytical techniques to accurately measure PFAS concentration in the presence of colloids would also be a valuable contribution to the field.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bolan, N.; Sarkar, B.; Yan, Y.; Li, Q.; Wijesekara, H.; Kannan, K.; Tsang, D.C.W.; Schauerte, M.; Bosch, J.; Noll, H.; et al. Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils–To mobilize or to immobilize or to degrade? J. Hazard. Mater. 2021, 401, 123892. [Google Scholar] [CrossRef] [PubMed]
- Sima, M.W.; Jaffé, P.R. A critical review of modeling Poly- and Perfluoroalkyl Substances (PFAS) in the soil-water environment. Sci. Total Environ. 2021, 757, 143793. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environ. Res. 2019, 177, 108648. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; Dewitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per-and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- Savitz, D.A.; Stein, C.R.; Elston, B.; Wellenius, G.A.; Bartell, S.M.; Shin, H.M.; Vieira, V.M.; Fletcher, T. Relationship of perfluorooctanoic acid exposure to pregnancy outcome based on birth records in the mid-Ohio valley. Environ. Health Perspect. 2012, 120, 1201–1207. [Google Scholar] [CrossRef]
- Simon, J.A.; Abrams, S.; Bradburne, T.; Bryant, D.; Burns, M.; Newell, C.J.; Parker, B.L.; Singh, T.; Tomiczek, P.; Wice, R. PFAS Experts Symposium: Statements on regulatory policy, chemistry and analytics, toxicology, transport/fate, and remediation for per-and polyfluoroalkyl substances (PFAS) contamination issues. Remediation 2019, 29, 31–48. [Google Scholar] [CrossRef]
- Ahrens, L.; Bundschuh, M. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review. Environ. Toxicol. Chem. 2014, 33, 1921–1929. [Google Scholar] [CrossRef]
- Phong Vo, H.N.; Ngo, H.H.; Guo, W.; Hong Nguyen, T.M.; Li, J.; Liang, H.; Deng, L.; Chen, Z.; Hang Nguyen, T.A. Poly-and perfluoroalkyl substances in water and wastewater: A comprehensive review from sources to remediation. J. Water Process Eng. 2020, 36, 101393. [Google Scholar] [CrossRef]
- Sepulvado, J.G.; Blaine, A.C.; Hundal, L.S.; Higgins, C.P. Occurrence and Fate of Perfluorochemicals in Soil Following the Land Application of Municipal Biosolids. Environ. Sci. Technol. 2011, 45, 8106–8112. [Google Scholar] [CrossRef]
- Zareitalabad, P.; Siemens, J.; Hamer, M.; Amelung, W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater—A review on concentrations and distribution coefficients. Chemosphere 2013, 91, 725–732. [Google Scholar] [CrossRef]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.; Kannan, K.; Mabury, S.A.; Pj Van Leeuwenkk, S. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ. Res. 2019, 169, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Shi, Q.; Gan, J. Uptake, accumulation, and metabolism of PFASs in plants and health perspectives: A critical review. Crit. Rev. Environ. Sci. Technol. 2020, 51, 2745–2776. [Google Scholar] [CrossRef]
- Giesy, J.P.; Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 2001, 35, 1339–1342. [Google Scholar] [CrossRef]
- Kannan, K.; Corsolini, S.; Falandysz, J.; Fillmann, G.; Kumar, K.S.; Loganathan, B.G.; Mohd, M.A.; Olivero, J.; Van Wouwe, N.; Yang, J.H.; et al. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ. Sci. Technol. 2004, 38, 4489–4495. [Google Scholar] [CrossRef]
- Xu, B.; Liu, S.; Zhou, J.L.; Zheng, C.; Weifeng, J.; Chen, B.; Zhang, T.; Qiu, W. PFAS and their substitutes in groundwater: Occurrence, transformation, and remediation. J. Hazard. Mater. 2021, 412, 125159. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilkin, R. Per-and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ. 2022, 809, 151003. [Google Scholar] [CrossRef]
- 3M Company. Re: Phase-Out Plan for POSF-Based Products. USEPA Administrative Record AR226-0600; as Document EPA-HQ-OPPT-2002-0051-0006. 2000. Available online: www.regulations.gov (accessed on 9 August 2022).
- Ateia, M.; Maroli, A.; Tharayil, N.; Karanfil, T. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere 2019, 220, 866–882. [Google Scholar] [CrossRef]
- Barzen-Hanson, K.A.; Field, J.A. Discovery and implications of C2 and C3 perfluoroalkyl sulfonates in aqueous film-forming foams and groundwater. Environ. Sci. Technol. Lett. 2015, 2, 95–99. [Google Scholar] [CrossRef]
- Li, F.; Fang, X.; Zhou, Z.; Liao, X.; Zou, J.; Yuan, B.; Sun, W. Adsorption of perfluorinated acids onto soils: Kinetics, isotherms, and influences of soil properties. Sci. Total Environ. 2019, 649, 504–514. [Google Scholar] [CrossRef]
- USEPA. Fact Sheet PFOA and PFOS Drinking Water Health Advisories; EPA800 F-16-003; 2016. Available online: https://www.epa.gov/sites/production/files/201606/documents/drinkingwaterhealthadvisories_pfoa_pfos_updated_5.31.16.pdf (accessed on 9 August 2022).
- USEPA. Per- and Polyfluoroalkyl Substances (PFAS) Proposed PFAS National Primary Drinking Water Regulation. EPA. 2023. Available online: https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas (accessed on 23 March 2023).
- Chen, H.; Zhang, C.; Yu, Y.; Han, J. Sorption of perfluorooctane sulfonate (PFOS) on marine sediments. Mar. Pollut. Bull. 2012, 64, 902–906. [Google Scholar] [CrossRef]
- Wang, F.; Shih, K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: Influence of solution pH and cations. Water Res. 2011, 45, 2925–2930. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Bian, J.; Zhang, Y.; Zhu, L.; Liu, Z. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals. Chemosphere 2014, 114, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Higgins, C.P.; Luthy, R.G. Sorption of perfluorinated surfactants on sediments. Environ. Sci. Technol. 2006, 40, 7251–7256. [Google Scholar] [CrossRef] [PubMed]
- Barzen-Hanson, K.A.; Davis, S.E.; Kleber, M.; Field, J.A. Sorption of Fluorotelomer Sulfonates, Fluorotelomer Sulfonamido Betaines, and a Fluorotelomer Sulfonamido Amine in National Foam Aqueous Film-Forming Foam to Soil. Environ. Sci. Technol. 2017, 51, 12394–12404. [Google Scholar] [CrossRef]
- Houtz, E.F.; Higgins, C.P.; Field, J.A.; Sedlak, D.L. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ. Sci. Technol. 2013, 47, 8187–8195. [Google Scholar] [CrossRef]
- Schulz, K.; Silva, M.R.; Klaper, R. Distribution and effects of branched versus linear isomers of PFOA, PFOS, and PFHxS: A review of recent literature. Sci. Total Environ. 2020, 733, 139186. [Google Scholar] [CrossRef]
- Hu, X.C.; Andrews, D.Q.; Lindstrom, A.B.; Bruton, T.A.; Schaider, L.A.; Grandjean, P.; Lohmann, R.; Carignan, C.C.; Blum, A.; Balan, S.A.; et al. Detection of Poly-and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ. Sci. Technol. Lett. 2016, 3, 344–350. [Google Scholar] [CrossRef]
- Moody, C.A.; Field, J.A. Critical Review Perfluorinated Surfactants and the Environmental Implications of Their Use in Fire-Fighting Foams. Environ. Sci. Technol. 2000, 34, 3864–3870. [Google Scholar] [CrossRef]
- Barzen-Hanson, K.A.; Roberts, S.C.; Choyke, S.; Oetjen, K.; McAlees, A.; Riddell, N.; McCrindle, R.; Ferguson, P.L.; Higgins, C.P.; Field, J.A. Discovery of 40 Classes of Per-and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environ. Sci. Technol. 2017, 51, 2047–2057. [Google Scholar] [CrossRef]
- Backe, W.J.; Day, T.C.; Field, J.A. Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from U.S. military bases by nonaqueous large-volume injection HPLC-MS/MS. Environ. Sci. Technol. 2013, 47, 5226–5234. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.H.; Long, G.C.; Porter, R.C.; Anderson, J.K. Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties. Chemosphere 2016, 150, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Place, B.J.; Field, J.A. Identification of novel fluorochemicals in aqueous film-forming foams used by the US military. Environ. Sci. Technol. 2012, 46, 7120–7127. [Google Scholar] [CrossRef]
- Lyu, Y.; Brusseau, M.L.; Chen, W.; Yan, N.; Fu, X.; Lin, X. Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ. Sci. Technol. 2018, 52, 7745–7753. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Brusseau, M.L. The influence of solution chemistry on air-water interfacial adsorption and transport of PFOA in unsaturated porous media. Sci. Total Environ. 2020, 713, 136744. [Google Scholar] [CrossRef]
- Wang, Y.; Khan, N.; Huang, D.; Carroll, K.C.; Brusseau, M.L. Transport of PFOS in aquifer sediment: Transport behavior and a distributed-sorption model. Sci. Total Environ. 2021, 779, 146444. [Google Scholar] [CrossRef]
- García, R.A.; Chiaia-Hernández, A.C.; Lara-Martín, P.A.; Loos, M.; Hollender, J.; Oetjen, K.; Higgins, C.P.; Field, J.A. Suspect screening of hydrocarbon surfactants in AFFFs and AFFF-contaminated groundwater by high-resolution mass spectrometry. Environ. Sci. Technol. 2019, 53, 8068–8077. [Google Scholar] [CrossRef]
- Brusseau, M.L. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances. Environ. Pollut. 2019, 254, 113102. [Google Scholar] [CrossRef]
- Guelfo, J.L.; Higgins, C.P. Subsurface transport potential of perfluoroalkyl acids at aqueous film-forming foam (AFFF)-impacted sites. Environ. Sci. Technol. 2013, 47, 4164–4171. [Google Scholar] [CrossRef]
- Silva JA, K.; Martin, W.A.; Johnson, J.L.; McCray, J.E. Evaluating air-water and NAPL-water interfacial adsorption and retention of Perfluorocarboxylic acids within the Vadose zone. J. Contam. Hydrol. 2019, 223, 103472. [Google Scholar] [CrossRef]
- Brusseau, M.L. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Sci. Total Environ. 2018, 613–614, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Harding-Marjanovic, K.C.; Houtz, E.; Gao, Y.; Lawrence, J.E.; Nichiporuk, R.V.; Iavarone, A.T.; Zhuang, W.-Q.; Hansen, M.; Field, J.A.; et al. Biotransformation of AFFF component 6:2 fluorotelomer thioether amido sulfonate generates 6:2 fluorotelomer thioether carboxylate under sulfate-reducing conditions. Environ. Sci. Technol. Lett. 2018, 5, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Deng, S.; Bei, Y.; Huang, Q.; Wang, B.; Huang, J.; Yu, G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents-A review. J. Hazard. Mater. 2014, 274, 443–454. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Zhang, W.L.; Liang, Y.N. Adsorption of perfluoroalkyl and polyfluoroalkyl substances (PFASs) from aqueous solution–A review. Sci. Total Environ. 2019, 694, 133606. [Google Scholar] [CrossRef]
- Xiao, F.; Jin, B.; Golovko, S.A.; Golovko, M.Y.; Xing, B. Sorption and Desorption Mechanisms of Cationic and Zwitterionic Per- and Polyfluoroalkyl Substances in Natural Soils: Thermodynamics and Hysteresis. Environ. Sci. Technol. 2019, 53, 11818–11827. [Google Scholar] [CrossRef]
- Zhi, Y.; Liu, J. Sorption and desorption of anionic, cationic and zwitterionic polyfluoroalkyl substances by soil organic matter and pyrogenic carbonaceous materials. Chem. Eng. J. 2018, 346, 682–691. [Google Scholar] [CrossRef]
- McKenzie, E.R.; Siegrist, R.L.; McCray, J.E.; Higgins, C.P. The influence of a non-aqueous phase liquid (NAPL) and chemical oxidant application on perfluoroalkyl acid (PFAA) fate and transport. Water Res. 2016, 92, 199–207. [Google Scholar] [CrossRef]
- Li, Y.; Oliver, D.P.; Kookana, R.S. A critical analysis of published data to discern the role of soil and sediment properties in determining sorption of per and polyfluoroalkyl substances (PFASs). Sci. Total Environ. 2018, 628–629, 110–120. [Google Scholar] [CrossRef]
- Adamson, D.T.; Nickerson, A.; Kulkarni, P.R.; Higgins, C.P.; Popovic, J.; Field, J.; Rodowa, A.; Newell, C.; Deblanc, P.; Kornuc, J.J. Mass-Based, Field-Scale Demonstration of PFAS Retention within AFFF-Associated Source Areas. Environ. Sci. Technol 2020, 54, 15768–15777. [Google Scholar] [CrossRef]
- Higgins, C.P.; Luthy, R.G. Modeling sorption of anionic surfactants onto sediment materials: An a priori approach for perfluoroalkyl surfactants and linear alkylbenzene sulfonates. Environ. Sci. Technol. 2007, 41, 3254–3261. [Google Scholar] [CrossRef]
- Miao, Y.; Guo, X.; Dan Peng Fan, T.; Yang, C. Rates and equilibria of perfluorooctanoate (PFOA) sorption on soils from different regions of China. Ecotoxicol. Environ. Saf. 2017, 139, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Milinovic, J.; Lacorte, S.; Vidal, M.; Rigol, A. Sorption behaviour of perfluoroalkyl substances in soils. Sci. Total Environ. 2015, 511, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Campos Pereira, H.; Ullberg, M.; Kleja, D.B.; Gustafsson, J.P.; Ahrens, L. Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon–Effect of cation composition and pH. Chemosphere 2018, 207, 183–191. [Google Scholar] [CrossRef]
- Chen, H.; Reinhard, M.; Yin, T.; Nguyen, T.V.; Tran, N.H.; Yew-Hoong Gin, K. Multi-compartment distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in an urban catchment system. Water Res. 2019, 154, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Sörengård, M.; Östblom, E.; Köhler, S.; Ahrens, L. Adsorption behavior of per- And polyfluoralkyl substances (PFASs) to 44 inorganic and organic sorbents and use of dyes as proxies for PFAS sorption. J. Environ. Chem. Eng. 2020, 8, 103744. [Google Scholar] [CrossRef]
- Nickerson, A.; Rodowa, A.E.; Adamson, D.T.; Field, J.A.; Kulkarni, P.R.; Kornuc, J.J.; Higgins, C.P. Spatial Trends of Anionic, Zwitterionic, and Cationic PFASs at an AFFF-Impacted Site. Environ. Sci. Technol 2021, 55, 313–323. [Google Scholar] [CrossRef]
- Guo, B.; Zeng, J.; Brusseau, M.L. A Mathematical Model for the Release, Transport, and Retention of Per- and Polyfluoroalkyl Substances (PFAS) in the Vadose Zone. Water Resour. Res. 2020, 56, e2019WR026667. [Google Scholar] [CrossRef] [PubMed]
- Bhhatarai, B.; Gramatica, P. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals. Environ. Sci. Technol. 2011, 45, 8120–8128. [Google Scholar] [CrossRef]
- Brusseau, M.L. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients. Water Res. 2019, 152, 148–158. [Google Scholar] [CrossRef]
- Brusseau, M.L.; van Glubt, S. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces. Water Res. 2019, 161, 17–26. [Google Scholar] [CrossRef]
- Dai, Z.; Wolfsberg, A.; Reimus, P.; Deng, H.; Kwicklis, E.; Ding, M.; Ware, D.; Ye, M. Identification of sorption processes and parameters for radionuclide transport in fractured rock. J. Hydrol. 2012, 414, 220–230. [Google Scholar] [CrossRef]
- Deng, H.; Dai, Z.; Wolfsberg, A.; Lu, Z.; Ye, M.; Reimus, P. Upscaling of reactive mass transport in fractured rocks with multimodal reactive mineral facies. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Sun, A.; Dai, Z. Reactive transport in the complex heterogeneous alluvial aquifer of Fortymile Wash, Nevada. Chemosphere 2017, 179, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.L.; Anschutz, A.J.; Smolen, J.M.; Simcik, M.F.; Penn, R.L. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces. J. Chem. Eng. Data 2007, 52, 1165–1170. [Google Scholar] [CrossRef]
- Ahrens, L.; Yeung, L.W.Y.; Taniyasu, S.; Lam, P.K.S.; Yamashita, N. Partitioning of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) between water and sediment. Chemosphere 2011, 85, 731–737. [Google Scholar] [CrossRef]
- You, C.; Jia, C.; Pan, G. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface. Environ. Pollut. 2010, 158, 1343–1347. [Google Scholar] [CrossRef]
- Silva, J.A.K.; Martin, W.A.; McCray, J.E. Air-water interfacial adsorption coefficients for PFAS when present as a multi-component mixture. J. Contam. Hydrol. 2021, 236, 103731. [Google Scholar] [CrossRef]
- van Glubt, S.; Brusseau, M.L.; Yan, N.; Huang, D.; Khan, N.; Carroll, K.C. Column versus batch methods for measuring PFOS and PFOA sorption to geomedia. Environ. Pollut. 2021, 268, 115917. [Google Scholar] [CrossRef]
- Zhi, Y.; Liu, J. Column chromatography approach to determine mobility of fluorotelomer sulfonates and polyfluoroalkyl betaines. Sci. Total Environ. 2019, 683, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Hellsing, M.S.; Josefsson, S.; Hughes, A.V.; Ahrens, L. Sorption of perfluoroalkyl substances to two types of minerals. Chemosphere 2016, 159, 385–391. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Culina, V.; Nguyen, D.; Field, J. Uptake of Poly-and Perfluoroalkyl Substances at the Air−Water Interface. Environ. Sci. Technol 2019, 53, 46. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Adamson, D.T.; Stroo, H.F. Partitioning of poly- and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones. J. Contam. Hydrol. 2019, 220, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, Y.; Fang, S.; Zhu, L.; Liu, Z. Comparative sorption and desorption behaviors of PFHxS and PFOS on sequentially extracted humic substances. J. Environ. Sci. 2014, 26, 2517–2525. [Google Scholar] [CrossRef] [PubMed]
- Brusseau, M.L.; Khan, N.; Wang, Y.; Yan, N.; van Glubt, S.; Carroll, K.C. Nonideal Transport and Extended Elution Tailing of PFOS in Soil. Environ. Sci. Technol. 2019, 53, 10654–10664. [Google Scholar] [CrossRef]
- McGuire, M.E.; Schaefer, C.; Richards, T.; Backe, W.J.; Field, J.A.; Houtz, E.; Sedlak, D.L.; Guelfo, J.L.; Wunsch, A.; Higgins, C.P. Evidence of Remediation-Induced Alteration of Subsurface Poly-and Perfluoroalkyl Substance Distribution at a Former Firefighter Training Area. Environ. Sci. Technol. 2014, 48, 6644–6652. [Google Scholar] [CrossRef]
- Lyu, X.; Liu, X.; Sun, Y.; Ji, R.; Gao, B.; Wu, J. Transport and retention of perfluorooctanoic acid (PFOA) in natural soils: Importance of soil organic matter and mineral contents, and solution ionic strength. J. Contam. Hydrol. 2019, 225, 103477. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Liu, X.; Wu, X.; Sun, Y.; Gao, B.; Wu, J. Importance of Al/Fe oxyhydroxide coating and ionic strength in perfluorooctanoic acid (PFOA) transport in saturated porous media. Water Res. 2020, 175, 115685. [Google Scholar] [CrossRef]
- Wang, F.; Shih, K.; Leckie, J.O. Effect of humic acid on the sorption of perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) on boehmite. Chemosphere 2015, 118, 213–218. [Google Scholar] [CrossRef]
- Alperin, M.J.; Albert, D.B.; Martens, C.S. Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment. Geochim. Et Cosmochim. Acta 1994, 58, 4909–4930. [Google Scholar] [CrossRef]
- Babakhani, P.; Bridge, J.; Doong, R.A.; Phenrat, T. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review. Adv. Colloid Interface Sci. 2017, 246, 75–104. [Google Scholar] [CrossRef]
- Curti, L.; Moore, O.W.; Babakhani, P.; Xiao, K.-Q.; Woulds, C.; Bray, A.W.; Fisher, B.J.; Kazemian, M.; Kaulich, B.; Peacock, C.L. Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr) oxides in the natural environment. Commun. Earth Environ. 2021, 2, 229. [Google Scholar] [CrossRef]
- Ahrens, L.; Yamashita, N.; Yeung, L.W.Y.; Taniyasu, S.; Horii, Y.; Lam, P.K.S.; Ebinghaus, R. Partitioning behavior of per- and polyfluoroalkyl compounds between pore water and sediment in two sediment cores from Tokyo Bay, Japan. Environ. Sci. Technol. 2009, 43, 6969–6975. [Google Scholar] [CrossRef] [PubMed]
- Le, S.T.; Kibbey TC, G.; Weber, K.P.; Glamore, W.C.; O’Carroll, D.M. A group-contribution model for predicting the physicochemical behavior of PFAS components for understanding environmental fate. Sci. Total Environ. 2021, 764, 142882. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Li, Q.; Chen, X.; Fu, X.; Ji, L.; Wang, J.; Li, T.; Zhang, Q. Different transport behaviors and mechanisms of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in saturated porous media. J. Hazard. Mater. 2021, 402, 123435. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Lo, S.L.; Li, N.H.; Lee, Y.C.; Kuo, J. Sorption of perfluoroalkyl substances (PFASs) onto wetland soils. Desalination Water Treat. 2013, 51, 7469–7475. [Google Scholar] [CrossRef]
- Brusseau, M.L. Simulating PFAS transport influenced by rate-limited multi-process retention. Water Res. 2020, 168, 115179. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Lyu, Y.; Yan, N.; Guo, B. Low-concentration tracer tests to measure air-water interfacial area in porous media. Chemosphere 2020, 250, 126305. [Google Scholar] [CrossRef]
- Costanza, J.; Arshadi, M.; Abriola, L.M.; Pennell, K.D. Accumulation of PFOA and PFOS at the Air-Water Interface. Environ. Sci. Technol. Lett. 2019, 6, 487–491. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Guo, B.; Huang, D.; Yan, N.; Lyu, Y. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media. Water Res. 2021, 202, 117405. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Guo, B. Multidimensional simulation of PFAS transport and leaching in the vadose zone: Impact of surfactant-induced flow and subsurface heterogeneities. Adv. Water Resour. 2021, 155, 104015. [Google Scholar] [CrossRef]
- Leverett, M. Capillary behavior in porous solids. Trans. AIME 1941, 142, 152–169. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Silva, J.A.; Šimůnek, J.; McCray, J.E. Comparison of methods to estimate air-water interfacial areas for evaluating PFAS transport in the vadose zone. J. Contam. Hydrol. 2022, 247, 103984. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mejia Avendaño, S. Microbial degradation of polyfluoroalkyl chemicals in the environment: A review. Environ. Int. 2013, 61, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Sharifan, H.; Bagheri, M.; Wang, D.; Burken, J.G.; Higgins, C.P.; Liang, Y.; Liu, J.; Schaefer, C.E.; Blotevogel, J. Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone. Sci. Total Environ. 2021, 771, 145427. [Google Scholar] [CrossRef]
- Butzen, M.L.; Wilkinson, J.T.; McGuinness, S.R.; Amezquita, S.; Peaslee, G.F.; Fein, J.B. Sorption and desorption behavior of PFOS and PFOA onto a Gram-positive and a Gram-negative bacterial species measured using particle-induced gamma-ray emission (PIGE) spectroscopy. Chem. Geol. 2020, 552, 119778. [Google Scholar] [CrossRef]
- Mejia Avendaño, S.; Liu, J. Production of PFOS from aerobic soil biotransformation of two perfluoroalkyl sulfonamide derivatives. Chemosphere 2015, 119, 1084–1090. [Google Scholar] [CrossRef]
- Presentato, A.; Lampis, S.; Vantini, A.; Manea, F.; Daprà, F.; Zuccoli, S.; Vallini, G. On the ability of perfluorohexane sulfonate (PFHxS) bioaccumulation by two Pseudomonas sp. strains isolated from PFAS-contaminated environmental matrices. Microorganisms 2020, 8, 92. [Google Scholar] [CrossRef]
- Dasu, K.; Lee, L.S. Aerobic biodegradation of toluene-2,4-di (8:2 fluorotelomer urethane) and hexamethylene-1,6-di (8:2 fluorotelomer urethane) monomers in soils. Chemosphere 2016, 144, 2482–2488. [Google Scholar] [CrossRef]
- Dasu, K.; Liu, J.; Lee, L.S. Aerobic soil biodegradation of 8:2 fluorotelomer stearate monoester. Environ. Sci. Technol. 2012, 46, 3831–3836. [Google Scholar] [CrossRef]
- Dasu, K.; Royer, L.A.; Liu, J.; Lee, L.S. Hydrolysis of fluorotelomer compounds leading to fluorotelomer alcohol production during solvent extractions of soils. Chemosphere 2010, 81, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.H.; Berti, W.R.; Szostek, B.; Buck, R.C. Investigation of the biodegradation potential of a fluoroacrylate polymer product in aerobic soils. Environ. Sci. Technol. 2008, 42, 800–807. [Google Scholar] [CrossRef]
- Russell, M.H.; Berti, W.R.; Szostek, B.; Wang, N.; Buck, R.C. Evaluation of PFO formation from the biodegradation of a fluorotelomer-based urethane polymer product in aerobic soils. Polym. Degrad. Stab. 2010, 95, 79–85. [Google Scholar] [CrossRef]
- Hamid, H.; Li, L.Y.; Grace, J.R. Aerobic biotransformation of fluorotelomer compounds in landfill leachate-sediment. Sci. Total Environ. 2020, 713, 136547. [Google Scholar] [CrossRef]
- Liu, C.; Liu, J. Aerobic biotransformation of polyfluoroalkyl phosphate esters (PAPs) in soil. Environ. Pollut. 2016, 212, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Jaffé, P. Defluorination of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) by Acidimicrobium sp. Strain A6. Environ. Sci. Technol. 2019, 53, 11410–11419. [Google Scholar] [CrossRef]
- Dinglasan MJ, A.; Ye, Y.; Edwards, E.A.; Mabury, S.A. Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. Environ. Sci. Technol. 2004, 38, 2857–2864. [Google Scholar] [CrossRef]
- Liu, J.; Wang, N.; Szostek, B.; Buck, R.C.; Panciroli, P.K.; Folsom, P.W.; Sulecki, L.M.; Bellin, C.A. 6-2 Fluorotelomer alcohol aerobic biodegradation in soil and mixed bacterial culture. Chemosphere 2010, 78, 437–444. [Google Scholar] [CrossRef]
- Ruan, T.; Szostek, B.; Folsom, P.W.; Wolstenholme, B.W.; Liu, R.; Liu, J.; Jiang, G.; Wang, N.; Buck, R.C. Aerobic soil biotransformation of 6:2 fluorotelomer iodide. Environ. Sci. Technol. 2013, 47, 11504–11511. [Google Scholar] [CrossRef]
- Wang, N.; Szostek, B.; Buck, R.C.; Folsom, P.W.; Sulecki, L.M.; Gannon, J.T. 8-2 Fluorotelomer alcohol aerobic soil biodegradation: Pathways, metabolites, and metabolite yields. Chemosphere 2009, 75, 1089–1096. [Google Scholar] [CrossRef]
- Rhoads, K.R.; Janssen EM, L.; Luthy, R.G.; Criddle, C.S. Aerobic biotransformation and fate of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) in activated sludge. Environ. Sci. Technol. 2008, 42, 2873–2878. [Google Scholar] [CrossRef] [PubMed]
- Benskin, J.P.; Ikonomou, M.G.; Gobas FA, P.C.; Begley, T.H.; Woudneh, M.B.; Cosgrove, J.R. Biodegradation of N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE) and EtFOSE-based phosphate diester (SAmPAP diester) in marine sediments. Environ. Sci. Technol. 2013, 47, 1381–1389. [Google Scholar] [CrossRef]
- Zabaleta, I.; Bizkarguenaga, E.; Nunoo, D.B.O.; Schultes, L.; Leonel, J.; Prieto, A.; Zuloaga, O.; Benskin, J.P. Biodegradation and Uptake of the Pesticide Sulfluramid in a Soil-Carrot Mesocosm. Environ. Sci. Technol. 2018, 52, 2603–2611. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, X.; Fang, S.; Zhu, L. Behaviors of N-ethyl perfluorooctane sulfonamide ethanol (N-EtFOSE) in a soil-earthworm system: Transformation and bioaccumulation. Sci. Total Environ. 2016, 554–555, 186–191. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, T.; Wang, B.; Zhu, L.; Chen, M.; Li, D.; Yang, L. Different biotransformation behaviors of perfluorooctane sulfonamide in wheat (Triticum aestivum L.) from earthworms (Eisenia fetida). J. Hazard. Mater. 2018, 346, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Harding-Marjanovic, K.C.; Houtz, E.F.; Yi, S.; Field, J.A.; Sedlak, D.L.; Alvarez-Cohen, L. Aerobic biotransformation of fluorotelomer thioether amido sulfonate (Lodyne) in AFFF-amended microcosms. Environ. Sci. Technol. 2015, 49, 7666–7674. [Google Scholar] [CrossRef]
- D’Agostino, L.A.; Mabury, S.A. Aerobic biodegradation of 2 fluorotelomer sulfonamide–based aqueous film–forming foam components produces perfluoroalkyl carboxylates. Environ. Toxicol. Chem. 2017, 36, 2012–2021. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.; Thompson, K.; Quiñones, O.; Dickenson, E.; Bott, C. Assessment of PFAS fate, transport, and treatment inhibition associated with a simulated AFFF release within a WASTEWATER treatment plant. Chemosphere 2021, 262, 127900. [Google Scholar] [CrossRef] [PubMed]
- Merino, N.; Wang, M.; Ambrocio, R.; Mak, K.; O’Connor, E.; Gao, A.; Hawley, E.L.; Deeb, R.A.; Tseng, L.Y.; Mahendra, S. Fungal biotransformation of 6:2 fluorotelomer alcohol. Remediation 2018, 28, 59–70. [Google Scholar] [CrossRef]
- Shaw DM, J.; Munoz, G.; Bottos, E.M.; Duy, S.V.; Sauvé, S.; Liu, J.; van Hamme, J.D. Degradation and defluorination of 6:2 fluorotelomer sulfonamidoalkyl betaine and 6:2 fluorotelomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions. Sci. Total Environ. 2019, 647, 690–698. [Google Scholar] [CrossRef]
- Mejia-Avendaño, S.; Munoz, G.; Vo Duy, S.; Desrosiers, M.; Benolt, P.; Sauvé, S.; Liu, J. Novel Fluoroalkylated Surfactants in Soils Following Firefighting Foam Deployment during the Lac-Mégantic Railway Accident. Environ. Sci. Technol. 2017, 51, 8313–8323. [Google Scholar] [CrossRef]
- Yu, X.; Takabe, Y.; Yamamoto, K.; Matsumura, C.; Nishimura, F. Biodegradation Property of 8:2 Fluorotelomer Alcohol (8:2 FTOH) under Aerobic/Anoxic/Anaerobic Conditions. J. Water Environ. Technol. 2016, 14, 177–190. [Google Scholar] [CrossRef]
- King, E.K.; Thompson, A.; Pett-Ridge, J.C. Underlying lithology controls trace metal mobilization during redox fluctuations. Sci. Total Environ. 2019, 665, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C.D.; Soltanian, M.R. Underlying Riparian Lithology Controls Redox Dynamics during Stage-Driven Mixing. J. Hydrol. 2021, 595, 126035. [Google Scholar] [CrossRef]
- Gredelj, A.; Nicoletto, C.; Polesello, S.; Ferrario, C.; Valsecchi, S.; Lava, R.; Barausse, A.; Zanon, F.; Palmeri, L.; Guidolin, L.; et al. Uptake and translocation of perfluoroalkyl acids (PFAAs) in hydroponically grown red chicory (Cichorium intybus L.): Growth and developmental toxicity, comparison with growth in soil and bioavailability implications. Sci. Total Environ. 2020, 720, 137333. [Google Scholar] [CrossRef] [PubMed]
- Huff, D.K.; Morris, L.A.; Sutter, L.; Costanza, J.; Pennell, K.D. Accumulation of six PFAS compounds by woody and herbaceous plants: Potential for phytoextraction. Int. J. Phytoremediation 2020, 22, 1538–1550. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Wu, Y.; Zhang, H.; Liu, Y.; Hu, X.; Huang, H.; Zhang, S. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environ. Pollut. 2016, 216, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, W.; Liang, Y. Distribution of eight perfluoroalkyl acids in plant-soil-water systems and their effect on the soil microbial community. Sci. Total Environ. 2019, 697, 134146. [Google Scholar] [CrossRef]
- Gobelius, L.; Lewis, J.; Ahrens, L. Plant uptake of per-and polyfluoroalkyl substances at a contaminated fire training facility to evaluate the phytoremediation potential of various plant species. Environ. Sci. Technol. 2017, 51, 12602–12610. [Google Scholar] [CrossRef]
- Blaine, A.C.; Rich, C.D.; Sedlacko, E.M.; Hundal, L.S.; Kumar, K.; Lau, C.; Mills, M.A.; Harris, K.M.; Higgins, C.P. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils. Environ. Sci. Technol. 2014, 48, 7858–7865. [Google Scholar] [CrossRef]
- Felizeter, S.; McLachlan, M.S.; de Voogt, P. Uptake of Perfluorinated Alkyl Acids by Hydroponically Grown Lettuce (Latuca sativa). Environ. Sci. Technol. 2012, 46, 11735–11743. [Google Scholar] [CrossRef] [PubMed]
- Krippner, J.; Brunn, H.; Falk, S.; Georgii, S.; Schubert, S.; Stahl, T. Effects of chain length and pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays). Chemosphere 2014, 94, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Navarro, I.; de la Torre, A.; Sanz, P.; Porcel, M.; Pro, J.; Carbonell, G.; Martínez, M.D.L. Uptake of perfluoroalkyl substances and halogenated flame retardants by crop plants grown in biosolids-amended soils. Environ. Res. 2017, 152, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Brusseau, M.L.; Anderson, R.H.; Guo, B. PFAS concentrations in soils: Background levels versus contaminated sites. Sci. Total Environ. 2020, 740, 140017. [Google Scholar] [CrossRef]
- Allen-King, R.M.; Halket, R.M.; Gaylord, D.R.; Robin, M.J. Characterizing the heterogeneity and correlation of perchloroethene sorption and hydraulic conductivity using a facies-based approach. Water Resour. Res. 1998, 34, 385–396. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Ritzi, R.W.; Huang, C.C.; Dai, Z. Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 1. Time-dependent effective retardation factor. Water Resour. Res. 2015, 51, 1586–1600. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Ritzi, R.W.; Huang, C.C.; Dai, Z. Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 2. Particle displacement variance. Water Resour. Res. 2015, 51, 1601–1618. [Google Scholar] [CrossRef]
- Allen-King, R.M.; Divine, D.P.; Robin, M.J.L.; Alldredge, J.R.; Gaylord, D.R. Spatial distributions of perchloroethylene reactive transport parameters in the Borden Aquifer. Water Resour. Res. 2006, 42, W01413. [Google Scholar] [CrossRef]
- Ritzi, R.W., Jr.; Huang, L.; Ramanathan, R.; Allen-King, R.M. Horizontal spatial correlation of hydraulic and reactive transport parameters as related to hierarchical sedimentary architecture at the Borden research site. Water Resour. Res. 2013, 49, 1901–1913. [Google Scholar]
- Ritzi, R.W., Jr.; Soltanian, M.R. What have we learned from deterministic geostatistics at highly resolved field sites, as relevant to mass transport processes in sedimentary aquifers? J. Hydrol. 2015, 531, 31–39. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Ritzi, R.W. A new method for analysis of variance of the hydraulic and reactive attributes of aquifers as linked to hierarchical and multiscaled sedimentary architecture. Water Resour. Res. 2014, 50, 9766–9776. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Ritzi, R.W.; Dai, Z.; Huang, C.C. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: The Lagrangian approach. Chemosphere 2015, 122, 235–244. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Hu, Q.; Srivastava, R. Using flow interruption to identify factors causing nonideal contaminant transport. J. Contam. Hydrol. 1997, 24, 205–219. [Google Scholar] [CrossRef]
- Ginn, T.R. On the distribution of multicomponent mixtures over generalized exposure time in subsurface flow and reactive transport: Foundations, and formulations for groundwater age, chemical heterogeneity, and biodegradation. Water Resour. Res. 1999, 35, 1395–1407. [Google Scholar] [CrossRef]
- Wallace, C.D.; Tonina, D.; McGarr, J.T.; de Barros, F.P.; Soltanian, M.R. Spatiotemporal dynamics of nitrous oxide emission hotspots in heterogeneous riparian sediments. Water Resour. Res. 2021, 57, e2021WR030496. [Google Scholar] [CrossRef]
- Sudicky, E.A.; Illman, W.A. Lessons learned from a suite of CFB Borden experiments. Groundwater 2011, 49, 630–648. [Google Scholar] [CrossRef] [PubMed]
- Appelo, C.A.J.; Van der Weiden, M.J.J.; Tournassat, C.; Charlet, L. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 2002, 36, 3096–3103. [Google Scholar] [CrossRef]
- Dyer, J.A.; Trivedi, P.; Scrivner, N.C.; Sparks, D.L. Lead sorption onto ferrihydrite. 2. Surface complexation modeling. Environ. Sci. Technol. 2003, 37, 915–922. [Google Scholar] [CrossRef]
- Borthakur, A.; Cranmer, B.K.; Dooley, G.P.; Blotevogel, J.; Mahendra, S.; Mohanty, S.K. Release of soil colloids during flow interruption increases the pore-water PFAS concentration in saturated soil. Environ. Pollut. 2021, 286, 117297. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGarr, J.T.; Mbonimpa, E.G.; McAvoy, D.C.; Soltanian, M.R. Fate and Transport of Per- and Polyfluoroalkyl Substances (PFAS) at Aqueous Film Forming Foam (AFFF) Discharge Sites: A Review. Soil Syst. 2023, 7, 53. https://doi.org/10.3390/soilsystems7020053
McGarr JT, Mbonimpa EG, McAvoy DC, Soltanian MR. Fate and Transport of Per- and Polyfluoroalkyl Substances (PFAS) at Aqueous Film Forming Foam (AFFF) Discharge Sites: A Review. Soil Systems. 2023; 7(2):53. https://doi.org/10.3390/soilsystems7020053
Chicago/Turabian StyleMcGarr, Jeffery Tyler, Eric Gentil Mbonimpa, Drew Clifton McAvoy, and Mohamad Reza Soltanian. 2023. "Fate and Transport of Per- and Polyfluoroalkyl Substances (PFAS) at Aqueous Film Forming Foam (AFFF) Discharge Sites: A Review" Soil Systems 7, no. 2: 53. https://doi.org/10.3390/soilsystems7020053
APA StyleMcGarr, J. T., Mbonimpa, E. G., McAvoy, D. C., & Soltanian, M. R. (2023). Fate and Transport of Per- and Polyfluoroalkyl Substances (PFAS) at Aqueous Film Forming Foam (AFFF) Discharge Sites: A Review. Soil Systems, 7(2), 53. https://doi.org/10.3390/soilsystems7020053