Corn Cropping System and Nitrogen Fertilizers Technologies Affect Ammonia Volatilization in Brazilian Tropical Soils
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation and Characterization of the Used Fertilizers
2.2. Site Description and Management Practices
2.3. Cropping Systems and Field Management
2.4. Estimate of N Mineralization in the Soil
2.5. Treatments and Experimental Design
2.5.1. Ammonia Volatilization
2.5.2. Weather Conditions
2.5.3. Nitrogen Accumulation and Corn Yield
2.6. Statistical Analysis
3. Results
3.1. Ammonia Volatilization
3.2. Effects of Fertilizers and Soil Nitrogen Stocks on Nutrient Accumulation and Corn Yield
4. Discussion
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bender, R.R.; Haegele, J.W.; Ruffo, M.L.; Below, F.E. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids. Agron. J. 2013, 105, 161–170. [Google Scholar] [CrossRef]
- Cancellier, E.L.; Silva, D.R.G.; Faquin, V.; Gonçalves, B.A.; Cancellier, L.L. Ammonia volatilization from enhanced-efficiency urea on no-till maize in brazilian cerrado with improved soil fertility. Cienc. Agrotecnologia 2016, 40, 133–144. [Google Scholar] [CrossRef]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- de Souza, T.L.; Guelfi, D.; Silva, A.L.; Andrade, A.B.; Chagas, W.F.T.; Cancellier, E.L. Ammonia and carbon dioxide emissions by stabilized conventional nitrogen fertilizers and controlled release in corn crop. Cienc. Agrotecnologia 2017, 41, 494–510. [Google Scholar] [CrossRef]
- Byrne, M.P.; Tobin, J.T.; Forrestal, P.J.; Dahaner, M.; Nkwonta, C.G.; Richards, K.; Cummins, E.; Hogan, S.A.; Callaghan, T. Urease and nitrification inhibitors-As mitigation tools for greenhouse gas emissions in sustainable dairy systems: A review. Sustainability 2020, 12, 6018. [Google Scholar] [CrossRef]
- Klimczyk, M.; Siczek, A.; Schimmelpfennig, L. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Sci. Total Environ. 2021, 771, 145483. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, P.L.; Recous, S.; Dietrich, G.; Weiler, D.A.; Giovelli, R.L.; Mezzalira, A.P.; Giacomini, S.J. Straw removal reduces the mulch physical barrier and ammonia volatilization after urea application in sugarcane. Atmos. Environ. 2018, 194, 179–187. [Google Scholar] [CrossRef]
- Sunderlage, B.; Cook, R.L. Soil Property and Fertilizer Additive Effects on Ammonia Volatilization from Urea. Soil Sci. Soc. Am. J. 2018, 82, 253–259. [Google Scholar] [CrossRef]
- Pelster, D.E.; Watt, D.; Strachan, I.B.; Rochette, P.; Bertrand, N.; Chantigny, M.H. Effects of Initial Soil Moisture, Clod Size, and Clay Content on Ammonia Volatilization after Subsurface Band Application of Urea. J. Environ. Qual. 2019, 48, 549–558. [Google Scholar] [CrossRef]
- Santos, C.F.; Aragão, O.O.S.; Guelfi, D.R.G.; Jesus, E.C.; Chagas, W.F.T.; Correia, P.S.; Moreira, F.M.S. Environmentally friendly urea produced from the association of N-(n-butyl) thiophosphoric triamide with biodegradable polymer coating obtained from a soybean processing byproduct. J. Clean. Prod. 2020, 276, 123014. [Google Scholar] [CrossRef]
- Santos, C.F.; Nunes, A.P.P.; Aragão, O.O.S.; Guelfi, D.R.G.; Souza, A.A.; Abreu, L.B.; Lima, A.D.C. Dual Functional Coatings for Urea to Reduce Ammonia Volatilization and Improve Nutrients Use Efficiency in a Brazilian Corn Crop System. J. Soil Sci. Plant Nutr. 2021, 21, 1591–1609. [Google Scholar] [CrossRef]
- de Almeida, W.S.; Carvalho, D.F.; Panachuki, E.; Valim, W.C.; Rodrigues, S.A.; Varella, C.A.A. Erosão hídrica em diferentes sistemas de cultivo e níveis de cobertura do solo. Pesqui. Agropecu. Bras. 2016, 51, 1110–1119. [Google Scholar] [CrossRef]
- Sales, R.P.; Portugal, A.F.; Alves Moreira, J.A.; Kondo, M.K.; Pegoraro, R.F. Qualidade física de um Latossolo sob plantio direto e preparo convencional no semiárido1. Rev. Cienc. Agron. 2016, 47, 429–438. [Google Scholar] [CrossRef]
- Viero, F.; Menegati, G.B.; Carniel, E.; da Silva PR, F.; Bayer, C. Urease inhibitor and irrigation management to mitigate ammonia volatilization from urea in no-till corn. Rev. Bras. Cienc. Solo 2017, 41. [Google Scholar] [CrossRef]
- Rojas CA, L.; Bayer, C.; Fontoura SM, V.; Weber, M.A.; Vieiro, F. Volatilização de amônia da ureia alterada por sistemas de preparo de solo e plantas de cobertura invernais no Centro-Sul do Paraná. Rev. Bras. Cienc. Solo 2012, 36, 261–270. [Google Scholar] [CrossRef]
- Keeler, B.L.; Gourevitch, J.D.; Polasky, S.; Isbell, F.; Tessum, C.W.; Hill, J.D.; Marshall, J.D. The social costs of nitrogen. Sci. Adv. 2016, 2, e1600219. [Google Scholar] [CrossRef]
- Fontoura SM, V.; Bayer, C. Adubação nitrogenada para alto rendimento de milho em plantio direto na região centro-sul do Paraná. Rev. Bras. Ciência Solo 2009, 33, 1721–1732. [Google Scholar] [CrossRef]
- Naz, M.Y.; Sulaiman, S.A. Slow release coating remedy for nitrogen loss from conventional urea: A review. J. Control. Release 2016, 225, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Silva AG, B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A meta-analysis. Agron. J. 2017, 109, 1–13. [Google Scholar] [CrossRef]
- EN-16651; Determinationof N-(nButyl) thiophosphoricacidtriamide(NBPT) and N-(n-Propyl)thiophosphoricacidtriamide (NPPT)—Methodusinghigh-performance liquidchromatography (HPLC). European Committee for Standardization Fertilizers: Ireland, 2015; pp. 1–7. Available online: https://standards.iteh.ai/catalog/standards/cen/22048b96-5015-46d9-a079-868cbafbf00f/en-16651-2015 (accessed on 3 April 2023).
- Soil Survey Staff. Keys to Soil Taxonomy; United States Department of Agriculture: Buckeye, AZ, USA, 2014. [Google Scholar]
- Palma, R.M.; Saubidet, M.I.; Rimolo, M.; Utsumi, J. Nitrogen losses by volatilization in a corn crop with two tillage systems in the Argentine Pampa. Commun. Soil Sci. Plant Anal. 1998, 29, 2865–2879. [Google Scholar] [CrossRef]
- Grohs, M.; Marchesan, E.; Santos, D.S.; Massoni, P.F.S.; Sartori, G.M.S.; Ferreira, R.B. Resposta do arroz irrigado ao uso de inibidor de urease em plantio direto e convencional. Ciência Agrotecnologia 2011, 35, 336–345. [Google Scholar] [CrossRef]
- Keshavarz Afshar, R.; Lin, R.; Mohammed, Y.A.; Chen, C. Agronomic effects of urease and nitrification inhibitors on ammonia volatilization and nitrogen utilization in a dryland farming system: Field and laboratory investigation. J. Clean. Prod. 2018, 172, 4130–4139. [Google Scholar] [CrossRef]
- Badagliacca, G.; Benítez, E.; Amato, G.; Badalucco, L.; Giambalvo, D.; Laudicina, V.A.; Ruisi, P. Long-term effects of contrasting tillage on soil organic carbon, nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop sequences. Sci. Total Environ. 2018, 619–620, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Faria, L.D.A.; Nascimento, C.A.C.D.; Vitti, G.C.; Luz, P.H.D.C.; Guedes, E.M.S. Loss of ammonia from nitrogen fertilizers applied to maize and soybean straw. Rev. Bras. Ciência Solo 2013, 37, 969–975. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Guimarães PT, G.; Alvarez, V.H. Recomendações para o uso de Corretivos e Fertilizantes para o Estado de Minas Gerais, 5a Aproximação; Sociedade Brasileira de Ciência do Solo (SBCS): Viçosa, Brazil, 1999. [Google Scholar]
- Grossman, R.B.; Reinsch, T.G. The Solid Phase 2.1 Bulk Density and Linear Extensibility. Methods Soil Anal. 2002, 4, 201–228. [Google Scholar]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Fresenius’ Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Bohnen, H.; Volkweiss, S.J. Análise de solo, Plantas e Outros Materiais; Ufrgs: Porto Alegre, Brazil, 1995; p. 5. [Google Scholar]
- Brady, N.C.; Weil, R. Elementos da Natureza e Propriedades do Solo; Bookman Editora: Porto Alegre, Brazil, 2013. [Google Scholar]
- Lara Cabezas, A.R.; Trivelin PC, O.; Bendassolli, J.A.; de Santana, D.G.; Gascho, G.J. Calibration of a semi-open static collector for determination of ammonia volatilization from nitrogen fertilizers. Commun. Soil Sci. Plant Anal. 1999, 30, 389–406. [Google Scholar] [CrossRef]
- Soares, J.R.; Cantarella, H.; Menegale, M.L.D.C. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biol. Biochem. 2012, 52, 82–89. [Google Scholar] [CrossRef]
- Minato, E.A.; Cassim, B.M.A.R.; Besen, M.R.; Mazzi, F.L.; Inoue, T.T.; Batista, M.A. Controlled-release nitrogen fertilizers: Characterization, ammonia volatilization, and effects on second-season corn. Rev. Bras. Cienc. Solo 2020, 44. [Google Scholar] [CrossRef]
- R Development Core Team. A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2018. [Google Scholar]
- Sadeghpour, A.; Hashemi, M.; Weis, S.A.; Sparo, J.T.; Mehrvarz, S.; Herbert, S.J. Assessing Tillage Systems for Reducing Ammonia Volatilization from Spring-Applied Slurry Manure. Commun. Soil Sci. Plant Anal. 2015, 46, 724–735. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; Misselbrook, T.; Camp, V.; Vallejo, A. Effect of water addition and the urease inhibitor NBPT on the abatement of ammonia emission from surface applied urea. Atmos. Environ. 2011, 45, 1517–1524. [Google Scholar] [CrossRef]
- Damodar Reddy, D.; Sharma, K.L.; Reddy, D.D. Effect of amending urea fertilizer with chemical additives on ammonia volatilization loss and nitrogen-use efficiency. Biol. Fertil. Soils 2000, 32, 24–27. [Google Scholar] [CrossRef]
- Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Mangani, S.; Ciurli, S. Molecular Details of Urease Inhibition by Boric Acid: Insights into the Catalytic Mechanism. J. Am. Chem. Soc. 2004, 126, 3714–3715. [Google Scholar] [CrossRef]
- Chagas, W.F.T.; Guelfi, D.R.; Caputo, A.L.C.; Souza, T.; Andrade, A.B.; Faquin, V. Volatilização de amônia de blends com ureia estabilizada e de liberação controlada no cafeeiro. Cienc. Agrotecnologia 2016, 40, 497–509. [Google Scholar] [CrossRef]
- Dominghetti, A.W.; Guelfi, D.R.; Guimarães, J.; Caputo, A.L.C.; Spehar, C.R.; Faquin, V. Perdas de nitrogênio por volatilização de fertilizantes nitrogenados em cultivo de café. Cienc. Agrotecnologia 2016, 40, 173–183. [Google Scholar] [CrossRef]
- Longo, R.M.; De Melo, W.J. Atividade da urease em latossolos sob influência da cobertura vegetal e da época de amostragem. Rev. Bras. Ciênc. Solo 2005, 29, 645–650. [Google Scholar] [CrossRef]
- Cantarella, H. Nitrogênio. In Fertilidade do Solo; Novais, R.F., Alvarez, V., Barros, N.F., Fontes, R.L.F., Cantarutti, R.B., Neves, J.C.L., Eds.; Sociedade Brasileira de Ciência do Solo: Vicosa, Brazil, 2007; Volume 1, pp. 375–470. [Google Scholar]
- Nascimento, C.A.C.D.; Vitti, G.C.; Faria, L.D.A.; Luz, P.H.; Mendes, F.L. Ammonia volatilization from coated urea forms. Rev. Bras. Ciênc. Solo 2013, 37, 1057–1063. [Google Scholar] [CrossRef]
- Conab. Acompanhamento da Safra Brasileira—Grãos; Conab: Curitiba, Brazil, 2019. [Google Scholar]
- Lucas, F.T.; Borges BM, M.N.; Coutinho EL, M. Nitrogen fertilizer management for maize production under tropical climate. Agron. J. 2019, 111, 2031–2037. [Google Scholar] [CrossRef]
- IPCC. Guidelines for National Greenhouse Gas Inventories; OECD: Paris, France, 2006; p. 1995. [Google Scholar]
- Wang, Y.; Ying, H.; Yin, Y.; Zheng, H.; Cui, Z. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci. Total Environ. 2019, 657, 96–102. [Google Scholar] [CrossRef]
Characteristics | 2017/2018 | 2018/2019 |
---|---|---|
Medeiros, Minas Gerais State, Brazil. | Bambuí, Minas Gerais State, Brazil. | |
Soil type | Acrudox | Acrudox |
Latitude | 20°07′00″ S | 20°06′47″ S |
Longitude | 46°09′55″ W | 46°10′00″ W |
Mean annual temperature (°C) | 20.3 | 21.3 |
Mean annual precipitation (mm) | 1457 | 1369 |
Accumulated precipitation (mm) (a) | 134.5 | 155.5 |
Total N (kg ha−1, 0–0.20 m) | 2330 (T); 2024 (NT) | 2250 (T); 1765 (NT) |
NO3− (kg ha−1, 0–0.20 m) | 24.6 (T), 18.7 (NT) | 55.75 (T), 62 (NT) |
NH4+ (kg ha−1, 0–0.20 m) | 8.2 (T), 27.7 (NT) | 44 (T), 36.5 (NT) |
pH (0–0.20 m) (b) | 5.5 (T), 5.6 9 (NT) | 5.9 (T), 5.8 (NT) |
Crops | Fertilizers and N Rates | NT | T | References |
---|---|---|---|---|
N-NH3 Losses kg ha−1 | ||||
Corn | Urea (60 kg N ha−1) | 3 | 2.3 | [22] |
Rice | Urea Coated urea Cu + B (120 kg N ha−1) | 24.8 11.6 | 0.63 0.01 | [23] |
Corn 28 years | Urea (160 kg N ha−1) | 12.7 | 2.1 | [15] |
Camelina sativa L. 20 years | Urea Urea + NBPT (90 kg N ha−1) | 0.51 0.28 | 0.51 0.29 | [24] |
Wheat/Wheat Wheat/faba bean 20 years | Diammonium phosphate (80 kg N ha−1) Urea + ammonium nitrate (120 kg N ha−1) | 16.8 10.4 | 16 10 | [25] |
Corn | Urea Urea + Cu + B (100 kg ha−1) | 18 11 | - | [26] |
Corn | Urea Urea + Cu + B (150 kg ha−1) | 21.1 17.3 | - | [2] |
Corn 20 years | Urea Urea + NBPT (200 kg ha−1) | 22.0 4.4 | - | [14] |
Corn 20 years | Urea Urea + NBPT (150 kg ha−1) | 26.0 5.4 | - | [4] |
Sist. | Depth | OC | TN | C/N | N-NH4+ | N-NO3 | BD | EN.T. | EC.O. | ENH4+ | ENO3− | ENM |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2017/2018 Crop Season | ||||||||||||
cm | ---g kg−1----- | ---mg dm−3------ | kg dm−3 | ------------------kg ha−1--------------------- | ||||||||
T | 0–5 | 17 | 2.5 | 6.8 | 13.9 | 29.0 | 0.9 | 1125 | 7650 | 6.6 | 13.8 | 20.4 |
5–10 | 18 | 3.3 | 5.4 | 32.3 | 92.6 | 1.1 | 1849 | 9900 | 18.1 | 51.8 | 70.0 | |
10–20 | 18 | 2.8 | 6.4 | 6.6 | 14.4 | 1.1 | 3139 | 19,800 | 3.8 | 16.4 | 20.2 | |
0–20 | 18 | 2.8 | 6.4 | 29.8 | 75.2 | ----- | 2330 | 14,287 | 8.0 | 24.5 | 32.5 | |
NT | 0–5 | 25 | 2.8 | 9.0 | 45.1 | 38.9 | 1.2 | 1656 | 15,000 | 26.5 | 22.8 | 49.3 |
5–10 | 22 | 2.1 | 10.4 | 50.8 | 13.6 | 1.2 | 1231 | 13,200 | 29.5 | 7.9 | 37.4 | |
10–20 | 19 | 2.3 | 8.2 | 50.1 | 6.1 | 1.1 | 2606 | 20,900 | 27.4 | 6.7 | 34.1 | |
0–20 | 21 | 2.4 | 9.0 | 98.1 | 32.3 | ----- | 2024 | 17,500 | 27.7 | 11.0 | 38.7 | |
2018/2019 Crop season | ||||||||||||
T | 0–5 | 14 | 3.9 | 3.6 | 40.9 | 39 | 1.0 | 1955 | 7000 | 21 | 19 | 40 |
5–10 | 16 | 2.9 | 5.5 | 141 | 81 | 1.0 | 1465 | 8000 | 69 | 40 | 109 | |
10–20 | 14 | 2.8 | 5.0 | 42.2 | 80 | 1.0 | 2790 | 7000 | 43 | 82 | 125 | |
0–20 | 14 | 3.1 | 4.5 | 66.6 | 71 | ----- | 2250 | 7250 | 44 | 55.7 | 99.7 | |
NT | 0–5 | 21 | 2.2 | 9.5 | 35.8 | 67 | 1.0 | 1450 | 10,500 | 18 | 34 | 52 |
5–10 | 16 | 1.9 | 8.4 | 75.8 | 80 | 1.1 | 1050 | 8800 | 42 | 44 | 85 | |
10–20 | 11 | 1.9 | 6.0 | 36.5 | 72 | 1.2 | 2280 | 13,200 | 43 | 85 | 128 | |
0–20 | 15 | 2.0 | 7.5 | 51.2 | 81 | ----- | 1765 | 11,425 | 36.5 | 62 | 98.5 |
Treatment | System | Parameters | MDL (kg) | Time for Volatilization of 10, 20 and 50% of the Maximum Losses Observed for PU | |||||
---|---|---|---|---|---|---|---|---|---|
α | b | k | R2 | 10% (Day) | 20% (Day) | 50% (Day) | |||
----------------------------------------------- Crop season 2017/2018 ----------------------------------------------- | |||||||||
PU | NT | 30.27 | 2.30 | 1.20 | 0.91 | 13.62 | 0.5 | 1.2 | 2.3 |
T | 27.17 | 2.41 | 2.10 | 0.97 | 21.39 | 1.3 | 1.7 | 2.4 | |
UCuB | NT | 29.34 | 2.59 | 0.86 | 0.91 | 9.46 | 0.1 | 1.1 | 2.6 |
T | 18.16 | 3.17 | 1.01 | 0.93 | 6.87 | 1.6 | 2.4 | 4.2 | |
UNBPT | NT | 24.78 | 3.31 | 0.80 | 0.89 | 7.43 | 0.9 | 2.0 | 4.0 |
T | 12.13 | 5.71 | 0.36 | 0.93 | 1.63 | 2.2 | 5.1 | ** | |
AS | NT | 3.64 | 3.33 | 0.26 | 0.97 | 0.35 | - | - | - |
T | 2.33 | 2.90 | 0.19 | 0.96 | 0.16 | - | - | - | |
AN | NT | 1.38 | 3.97 | 0.33 | 0.96 | 0.17 | - | - | - |
T | 1.49 | 3.34 | 0.36 | 0.97 | 0.20 | - | - | - | |
Control | NT | 1.26 | 3.61 | 0.38 | 0.97 | 0.17 | - | - | - |
T | 0.84 | 4.03 | 0.35 | 0.97 | 0.11 | - | - | - | |
----------------------------------------------- Crop season 2018/2019 ----------------------------------------------- | |||||||||
PU | NT | 30.50 | 3.98 | 0.84 | 0.98 | 9.60 | 1.5 | 2,3 | 4.0 |
T | 19.52 | 3.69 | 1.56 | 0.99 | 11.41 | 2.3 | 2.8 | 3.7 | |
UCuB | NT | 29.08 | 4.98 | 0.61 | 0.98 | 6.65 | 1.7 | 2.7 | 5.0 |
T | 23.98 | 4.37 | 1.18 | 0.97 | 10.61 | 2.3 | 3.0 | 4.0 | |
UNBPT | NT | 17.70 | 8.94 | 0.95 | 0.98 | 6.30 | 7.5 | 8.3 | 11 |
T | 17.02 | 8.57 | 1.26 | 0.99 | 8.04 | 7.0 | 7.6 | 9.0 | |
AS | NT | 0.92 | 4.78 | 0.36 | 0.94 | 0.12 | - | - | - |
T | 1.50 | 1.09 | 0.13 | 0.97 | 0.07 | - | - | - | |
AN | NT | 1.18 | 2.27 | 0.15 | 0.99 | 0.06 | - | - | - |
T | 0.89 | 3.90 | 0.16 | 0.98 | 0.05 | - | - | - | |
Control | NT | 0.62 | 5.07 | 0.25 | 0.98 | 0.05 | - | - | - |
T | 0.30 | 6.43 | 0.22 | 0.90 | 0.02 | - | - | - |
Treatment | ---------------------------------------- No-till ---------------------------------------- | ||||||
---|---|---|---|---|---|---|---|
----- 2017/2018 ----- | ----- 2018/2019 ----- | --------- Sum --------- | |||||
NH3 (kg ha−1) | % Red. | NH3 (kg ha−1) | % Red. | NH3 (kg ha−1) | % Red. | % >PD/PC (%) | |
UNBPT | 27.4 Ab | −17 | 18.9 Ab | −39 | 46.3 Ab | −28 | +34 |
UCuB | 31.7 Aa | −4 | 30.2 Aa | −3 | 61.9 Aa | −3 | +27 |
AN | 1.5 Ac | −95 | 1.0 Ac | −96 | 2.7 Ac | −96 | +7 |
AS | 3.7 Ac | −89 | 1.2 Ac | −97 | 4.8 Ac | −92 | +17 |
PU | 32.9 Aa | ------ | 31.2 Aa | ------ | 64.1 Aa | ------ | +23 |
CV(%) | 11 | ------ | 18 | ------ | 13 | ------ | ------ |
--------------------------------------------Till---------------------------------------------- | |||||||
UNBPT | 12.6 Bc | −57 | 18.5 Ab | −6 | 30.7 Bb | −37 | ------ |
UCuB | 19.8 Bb | −32 | 25.6 Ba | +28 | 45.3 Ba | −7 | ------ |
AN | 1.6 Ad | −94 | 0.9 Ac | −95 | 2.5 Ac | −95 | ------ |
AS | 2.4 Ad | −92 | 1.5 Ac | −92 | 4.0 Ac | −92 | ------ |
PU | 29.0 Aa | ------ | 20.0 Bb | ------ | 49.0 Ba | ------ | ------ |
CV(%) | 11 | ------ | 18 | ------ | 13 | ------ |
System | Soil N Availability | N | Full | N-NH3 | Grain | N Residual Soil | ||||
---|---|---|---|---|---|---|---|---|---|---|
Fertlization | Availability | Loss | Extraction | |||||||
TN | Min. N | E-NO3− | E-NH4+ | |||||||
2017–2018 | UNBPT | 2330 | 22.5 | 24.5 | 8 | 150 | 205 | 12.6 | 142.3 | 21.6 |
UCuB | 19.8 | 147 | 38.2 | |||||||
AN | 1.6 | 143 | 60.4 | |||||||
AS | 2.4 | 164.6 | 38 | |||||||
PU | 29 | 145 | 31 | |||||||
UNBPT | 2024 | 20 | 11 | 27.7 | 150 | 208.7 | 27.4 | 155.5 | 25.8 | |
UCuB | 31.7 | 144.2 | 32.8 | |||||||
AN | 1.5 | 137.8 | 69.4 | |||||||
AS | 3.7 | 146.5 | 58.5 | |||||||
PU | 32.9 | 164.5 | 11.3 | |||||||
2018–2019 | UNBPT | 2250 | 21.7 | 55.7 | 44 | 150 | 271.4 | 18.5 | 174.3 | 78.6 |
UCuB | 25.6 | 225 | 20.8 | |||||||
AN | 0.9 | 173.5 | 97 | |||||||
AS | 1.5 | 186.7 | 83.2 | |||||||
PU | 20 | 179.4 | 72 | |||||||
UNBPT | 1765 | 16.5 | 62 | 36.5 | 150 | 265 | 18.9 | 228.5 | 17.6 | |
UCuB | 30.2 | 157 | 77.8 | |||||||
AN | 1 | 186.5 | 77.5 | |||||||
AS | 1.2 | 201 | 62.8 | |||||||
PU | 31.2 | 189 | 44.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.; Pinto, S.I.d.C.; Guelfi, D.; Rosa, S.D.; da Fonseca, A.B.; Fernandes, T.J.; Ferreira, R.A.; Satil, L.B.; Nunes, A.P.P.; e Silva, K.P. Corn Cropping System and Nitrogen Fertilizers Technologies Affect Ammonia Volatilization in Brazilian Tropical Soils. Soil Syst. 2023, 7, 54. https://doi.org/10.3390/soilsystems7020054
Santos C, Pinto SIdC, Guelfi D, Rosa SD, da Fonseca AB, Fernandes TJ, Ferreira RA, Satil LB, Nunes APP, e Silva KP. Corn Cropping System and Nitrogen Fertilizers Technologies Affect Ammonia Volatilization in Brazilian Tropical Soils. Soil Systems. 2023; 7(2):54. https://doi.org/10.3390/soilsystems7020054
Chicago/Turabian StyleSantos, César, Sheila Isabel do Carmo Pinto, Douglas Guelfi, Sara Dantas Rosa, Adrianne Braga da Fonseca, Tales Jesus Fernandes, Renato Avelar Ferreira, Leandro Barbosa Satil, Ana Paula Pereira Nunes, and Konrad Passos e Silva. 2023. "Corn Cropping System and Nitrogen Fertilizers Technologies Affect Ammonia Volatilization in Brazilian Tropical Soils" Soil Systems 7, no. 2: 54. https://doi.org/10.3390/soilsystems7020054
APA StyleSantos, C., Pinto, S. I. d. C., Guelfi, D., Rosa, S. D., da Fonseca, A. B., Fernandes, T. J., Ferreira, R. A., Satil, L. B., Nunes, A. P. P., & e Silva, K. P. (2023). Corn Cropping System and Nitrogen Fertilizers Technologies Affect Ammonia Volatilization in Brazilian Tropical Soils. Soil Systems, 7(2), 54. https://doi.org/10.3390/soilsystems7020054