Comparative Study of Fertilizers in Tomato-Grown Soils: Soil Quality, Sustainability, and Carbon/Water Footprints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agro-Industrial Waste-Based Fertilizer Manufacturing
2.2. Soil Treatment
- (A)
- 1.2 g of synthetic fertilizer NPK (15-15-15) in which there are 0.18 g of N, 0.18 g of P2O5 and 0.18 g of K2O.
- (B)
- 13 g of organic fertilizer, in which there are 0.26 g of N, 0.26 g of P2O5, and 0.195 g of K2O. This fertilizer contains bovine, equine, sheep, and poultry manure mixed with litter, calcium sulfate, and olive pomace dust, which accounts for 50% of the total composition percentage.
- (C)
- 1.4 g of fertilizer sulfur–bentonite + orange residue.
2.3. Data Collection and Analysis
2.4. Soil Physical, Chemical, and Biochemical Analysis before and after Treatment
2.5. Environmental Impact: Carbon and Water Footprint
2.5.1. Carbon Footprint
2.5.2. Water Footprint
- ETgreen was calculated as the minimum of Crop WaterRequirement (CWR, mm year−1) and effective precipitation (Peff, mm year−1).
- ETblue was estimated from Irrigation Requirement (IR) rates as the minimum between IR (m3 year−1) and the irrigation volume (Ieff, m3 ha−1 year−1). [53].
- IR was calculated as a constant value for the analyzed systems according to the following equation: IR = max (0; CWR-Peff).
- AR is the chemical application rate to the field per hectare (kg ha−1);
- α is the leaching-run-off fraction;
- Cmax is the maximum acceptable concentration for the pollutant considered (kg m−3);
- Cnat is the natural concentration for the pollutant considered (kg m−3);
- Y is the crop yield (t ha−1).
3. Results
3.1. Effect of Different Fertilizers on Soil Quality
3.2. Environmental Impact
3.2.1. Carbon Footprint
3.2.2. Water Footprint
4. Discussion
4.1. Effect of Different Fertilizers on Soil Quality
4.2. Environmental Impact
4.2.1. Carbon Footprint
4.2.2. Water Footprint
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Climate change responses benefit from a global food system approach. Nat. Food. 2020, 1, 94–97. [Google Scholar] [CrossRef]
- Blandford, D.; Hassapoyannes, K. The Role of Agriculture in Global GHG Mitigation; Food, Agriculture and Fisheries Papers; OECD: Paris, France, 2018. [Google Scholar]
- Rouwenhorst, K.H.R.; Travis, A.S.; Lefferts, L. 1921–2021: A Century of Renewable Ammonia Synthesis. Sustain. Chem. 2022, 3, 149–171. [Google Scholar] [CrossRef]
- Wolf, S.; Teitge, J.; Mielke, J.; Schütze, F.; Jaeger, C. The European Green Deal—More Than Climate Neutrality. Intereconomics 2021, 56, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Pan, S.Y.; He, K.H.; Lin, K.T.; Fan, C.; Chang, C.T. Addressing nitrogenous gases from croplands toward low-emission agriculture. NPJ Clim. Atmos. Sci. 2022, 5, 43. [Google Scholar] [CrossRef]
- Hinckley, E.L.S.; Crawford, J.T.; Fakhraei, H.; Driscoll, C.T. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 2020, 13, 597–604. [Google Scholar] [CrossRef]
- Haneklaus, S.; Bloem, E.; Schnug, E. History of Sulfur Deficiency in Crops. Sulfur A Missing Link between Soils Crops Nutr. 2008, 50, 45–58. [Google Scholar]
- Głowacka, A.; Gruszecki, T.; Szostak, B.; Michałek, S. The response of common bean to sulphur and molybdenum fertilization. Int. J. Agron. 2019, 3830712. [Google Scholar] [CrossRef]
- Głowacka, A.; Jariene, E.; Flis-Olszewska, E.; KiełtykaDadasiewicz, A. The Effect of Nitrogen and Sulphur Application on Soybean Productivity Traits in Temperate Climates Conditions. Agronomy 2023, 13, 780. [Google Scholar] [CrossRef]
- Pandurangan, S.; Sandercock, M.; Beyaert, R.; Conn, K.L.; Hou, A.; Marsolais, F. Differential response to sulfur nutrition of two common bean genotypes differing in storage protein composition. Front. Plant Sci. 2015, 6, 92. [Google Scholar] [CrossRef]
- Kulczycki, G. The Effect of Elemental Sulfur Fertilization on Plant Yields and Soil Properties. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2021; ISBN 0065-2113. [Google Scholar]
- Malik, K.M.; Khan, K.S.; Billah, M.; Akhtar, M.S.; Rukh, S.; Alam, S.; Munir, A.; Mahmood Aulakh, A.; Rahim, M.; Qaisrani, M.M.; et al. Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils. Agronomy 2021, 11, 2514. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, H.; Gong, Y.; Yang, H.; Fan, M.; Kuzyakov, Y. Effects of 15 years of manureand mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. Eur. J. Soil Biol. 2014, 60, 112–119. [Google Scholar] [CrossRef]
- Zhongqi, H.E.; Pagliari, P.H.; Waldrip, H.M. Applied and environmental chemistry of animal manure: A review. Pedosphere 2016, 26, 779–816. [Google Scholar]
- Tabak, M.; Lisowska, A.; Filipek-Mazur, B. Bioavailability of Sulfur from Waste Obtained during Biogas Desulfurization and the Effect of Sulfur on Soil Acidity and Biological Activity. Processes 2020, 8, 863. [Google Scholar] [CrossRef]
- Holatko, J.; Brtnicky, M.; Mustafa, A.; Kintl, A.; Skarpa, P.; Ryant, P.; Baltazar, T.; Malicek, O.; Latal, O.; Hammerschmiedt, T. Effect of Digestate Modified with Amendments on Soil Health andPlant Biomass under Varying Experimental Durations. Materials 2023, 16, 1027. [Google Scholar] [CrossRef] [PubMed]
- Heinze, S.; Hemkemeyer, M.; Schwalb, S.A.; Khan, K.S.; Joergensen, R.G.; Wichern, F. Microbial Biomass Sulphur—An Important Yet Understudied Pool in Soil. Agronomy 2021, 11, 1606. [Google Scholar] [CrossRef]
- Muscolo, A.; Mallamaci, C.; Settineri, G.; Calamarà, G. Increasing soil and crop productivity by using agricultural wastes pelletized with elemental sulfur and bentonite. Agron. J. 2007, 109, 1900–1910. [Google Scholar] [CrossRef]
- Muscolo, A.; Romeo, F.; Marra, F.; Mallamaci, C. Transforming agricultural, municipal and industrial pollutant wastes into fertilizers for a sustainable healthy food production. J. Environ. Manag. 2021, 17, 113771. [Google Scholar]
- Panuccio, M.R.; Attinà, E.; Basile, C.; Muscolo, A. Use of Recalcitrant Agriculture Wastes to Produce Biogas and Feasible Biofertilizer. Waste Biomass Val. 2016, 7, 267–280. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Papalia, T.; Attinà, E.; Giuffrè, A.; Muscolo, A. Use of digestate as an alternative to mineral fertilizer: Effects on growth and crop quality. Arch. Agron. Soil Sci. 2019, 65, 700–711. [Google Scholar] [CrossRef]
- FAO: Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org (accessed on 6 June 2023).
- Pishgar-Komleh, S.H.; Akram, A.; Keyhani, A.; Raei, M.; Elshout, P.M.F.; Huijbregts, M.A.J.; van Zelm, R. Variability in the carbon footprint of open-field tomato production in Iran—A case study of Alborz and East-Azerbaijan provinces. J. Clean. Prod. 2017, 142, 1510–1517. [Google Scholar] [CrossRef]
- Hillier, K.; Hawes, C.; Squire, G.; Hilton, A.; Wale, S.; Smith, P. Carbon footprints of food crop production. Int. J. Agric. Sustain. 2009, 7, 107–118. [Google Scholar] [CrossRef]
- Lee, J.; Six, J.; King, A.P.; Kessel, C.V.; Rolston, E.D. Tillage and feld scale controls on greenhouse gas emissions. J. Environ. Qual. 2006, 35, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Aldaya, M.M.; Hoekstra, A.Y. The water needed for Italians to eat pasta and pizza. Agric. Syst. 2010, 103, 351–360. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Orr, S. An improved water footprint methodology linking global consumption to local water resources: A case of Spanish tomatoes. J. Environ. Manag. 2009, 90, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Page, G.; Ridoutt, B.; Bellotti, B. Carbon and water footprint tradeoffs in fresh tomato production. J. Clean. Prod. 2012, 32, 219–222. [Google Scholar] [CrossRef]
- FAO. Methods of Analysis for Soils of Arid and Semi-Arid Regions; Food and Agricultural Organization: Rome, Italy, 2007; p. 57. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Mehlich, A. Rapid Determination of Cation and Anion Exchange Properties and pHe of Soils. J. Assoc. Off. Agric. Chem. 1953, 36, 445–457. [Google Scholar] [CrossRef]
- Walkley A, Black IA An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [CrossRef]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoff in organishen Kopern. Anal. Chem 1883, 22, 354–358. [Google Scholar]
- Kaminsky, R.; Muller, W.H. The extraction of soil phytotoxins using neutral EDTA solution. Soil Sci. 1977, 124, 205–210. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Von Mersi, W.; Schinner, F. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol. Fertil. Soils 1991, 11, 216–220. [Google Scholar] [CrossRef]
- Kuush, H.; Bjorklund, M.; Rystrion, L. Purification and characterization of a novel bromoperoxidase-catalase isolated from bacteria found in recycle pulp white water. Enzym. Microb. Technol. 2001, 28, 617–624. [Google Scholar]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef]
- Valášková, V.; Šnajdr, J.; Bittner, B.; Cajtham, T.; Merhautová, V.; Hofrichter, M.; Baldrian, P. Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol. Biochem. 2007, 39, 2651–2660. [Google Scholar] [CrossRef]
- Sidari, M.; Ronzello, G.; Vecchio, G.; Muscolo, A. Influence of slope aspects on soil chemical and biochemical properties in a Pinus laricio forest ecosystem of Aspromonte (Southern Italy). Eur. J. Soil Biol. 2008, 44, 364–372. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- UNI EN ISO 14044:2006; Environmental Management, Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Maffia, A.; Palese, A.M.; Pergola, M.; Altieri, G.; Celano, G. The Olive-Oil Chain of SalernoProvince (Southern Italy): A LifeCycle Sustainability Framework. Horticulturae 2022, 8, 1054. [Google Scholar] [CrossRef]
- PCR- Product Category Rules. Arable and Vegetable Crops un CPC 011, 012, 014, 017, 0191. Version 1.0.1 Valid ultil: 7 December 2024. Available online: https://environdec.com/pcr-library/with-documents (accessed on 10 April 2023).
- Pergola, M.; Persiani, A.; Pastore, V.; Palese, A.M.; Arous, A.; Celano, G. A comprehensive Life Cycle Assessment (LCA) of three apricot orchard systems located in Metapontino area (Southern Italy). J. Clean. Prod. 2017, 142, 4059–4071. [Google Scholar] [CrossRef]
- Hauschild, M.Z. Estimating pesticide emissions for LCA of agricultural products. In Agricultural Data for Life Cycle Assessments; Weidema, B.P., Meeusen, M.J.G., Eds.; LCA Net Food: The Hague, The Netherlands, 2000; Volume 2, pp. 64–79. [Google Scholar]
- CML; Bureau, B.G. Life Cycle Assessment: An Operational Guide to the ISO Standards; School of SystemEngineering, Policy Analysis and Management, Delft University of Technology: Delft, The Netherlands, 2001. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- FAO. Database CROPWAT. 2010. Available online: https://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 9 October 2023).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Xin, D.; Wang, S.; Chen, B. The Blue, Green and Grey Water consumption for crop Production in Heilongjiang. Energy Procedia 2019, 158, 3908–3914. [Google Scholar]
- Pellegrini, G.; Ingrao, C.; Camposeo, S.; Tricase, C.; Contó, F.; Huisingh, D. Application of water footprint to olive growing systems in the Apulia region: A comparative assessment. J. Clean. Prod. 2016, 112, 2407–2418. [Google Scholar] [CrossRef]
- European Council. Directive n 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX%3A31991L0676%3AEN%3AHTML (accessed on 9 October 2023).
- Arunrat N, Sansupa C, Sereenonchai S and Hatano R Stability of soil bacteria in undisturbed soil and continuous maize cultivation in Northern Thailand. Front. Microbiol. 2023, 14, 1285445. [CrossRef]
- Gao, F.; Li, H.; Mu, X.; Gao, H.; Zhang, Y.; Li, R.; Cao, K.; Ye, L. Effects of Organic Fertilizer Application on Tomato Yield and Quality: A Meta-Analysis. Appl. Sci. 2023, 13, 2184. [Google Scholar] [CrossRef]
- Wyngaard, S.R.; Kissinger, M. Tomatoes from the desert: Environmental footprints and sustainability potential in a changing world. Front. Sustain. Food Syst. 2022, 6, 994920. [Google Scholar] [CrossRef]
- Theurl, M.C.; Haberl, H.; Erb, K.H.; Lindenthal, T. Contrasted greenhouse gas emissions from local versus long-range tomato production. Agron. Sustain. Dev. 2014, 34, 593–602. [Google Scholar] [CrossRef]
- Toolkiattiwong, P.; Arunrat, N.; Sereenonchai, S. Environmental, Human and Ecotoxicological Impacts of Different Rice Cultivation Systems in Northern Thailand. Int. J. Environ. Res. Public Health 2023, 20, 2738. [Google Scholar] [CrossRef]
- Evangelou, E.; Tsadilas, C.; Tserlikakis, N.; Tsitouras, A.; Kyritsis, A. Water Footprint of Industrial Tomato Cultivations in the Pinios River Basin: Soil Properties Interactions. Water 2016, 8, 515. [Google Scholar] [CrossRef]
- Raluy, R.G.; Quinteiro, P.; Dias, A.C. Water Footprint of Forest and Orchard Trees: A Review. Water 2022, 14, 2709. [Google Scholar] [CrossRef]
SOIL 1 | SOIL 2 | |
---|---|---|
Skeleton (%) | 45 ± 0.01 | 21 ± 0.02 |
Sandy % | 65 ± 0.02 | 50 ± 0.02 |
Clay % | 23 ± 0.12 | 27 ± 0.13 |
Silt % | 12 ± 0.23 | 23 ± 0.24 |
Textural Class | Sandy-loam | Sandy-Clay-loam |
Moisture % | 18 ± 0.4 | 32 ± 0.3 |
S.S (%) | 82 ± 0.4 | 68 ± 0.3 |
pH (H2O) | 8.5 ± 0.32 | 8.3 ± 0.43 |
pH (KCl) | 7.8 ± 0.53 | 7.3 ± 0.34 |
EC (μS/cm) | 107.3 ± 12.3 | 302 ± 11.5 |
CEC (cmol(+) kg−1) | 21.57 ± 13.5 | 27.71 ± 17.8 |
TOC % | 1.78 ± 0.13 | 1.98 ± 0.42 |
TN % | 0.19 ± 0.14 | 0.2 ± 0.15 |
C/N | 9.37 ± 0.13 | 9.9 ± 0.17 |
SOM % | 3.07 ± 0.13 | 3.41 ± 0.13 |
WSP (µg GAE g−1 d.s) | 56.1 ± 14.5 | 85.62 ± 18.5 |
MBC (μg C g−1 soil) | 896 ± 10.6 | 941 ± 1.4 |
SOIL 1 | SOIL 2 | |
---|---|---|
DHA | 1.31 ± 0.67 | 2.83 ± 0.53 |
CAT | 1.54 ± 1.45 | 3.85 ± 1.76 |
FDA | 8.93 ± 0.36 | 15.10 ± 1.03 |
ß-GLU | 514 ± 0.24 | 348 ± 0.54 |
PRO | 167 ± 1.65 | 157 ± 2.06 |
URE | 312 ± 0.12 | 289 ± 0.65 |
CTR | A | B | C | |
---|---|---|---|---|
Fertilizers (kg ha−1) | ||||
NPK | 170 | |||
Horse Manure | 430 | |||
Sulfur Bentonite + Orange waste | 476 | |||
Chemicals (kg ha−1) | ||||
Primor 50 | 0.75 | 0.75 | 0.75 | 0.75 |
Daramun | 4 | 4 | 4 | 4 |
Human labour (h ha−1) | 45 | 46 | 48 | 46 |
Machinery (h ha−1) | 5 | 10 | 12 | 10 |
Diesel (kg ha−1) | 10 | 13 | 15 | 13 |
Water (m3 ha−1) | 750 | 750 | 750 | 750 |
Electricity (kWh kg−1) | 0.13 | 0.14 | 0.15 | 0.15 |
Production (t ha−1) | 47 | 57.5 | 58 | 58.4 |
Month | Decade | Stage | Kc | ETc | ETc | Eff Rain | Irr. Req. |
---|---|---|---|---|---|---|---|
coeff | mm/day | mm/dec | mm/dec | mm/dec | |||
May | 2 | Init | 0.6 | 2.24 | 13.4 | 8.4 | 6.4 |
May | 3 | Init | 0.6 | 2.45 | 26.9 | 14.1 | 12.9 |
Jun | 1 | Init | 0.6 | 2.7 | 27 | 14.6 | 12.3 |
Jun | 2 | Deve | 0.64 | 3.12 | 31.2 | 14.3 | 16.9 |
Jun | 3 | Deve | 0.78 | 3.76 | 37.6 | 13.6 | 24 |
Jul | 1 | Deve | 0.93 | 4.31 | 43.1 | 12.4 | 30.8 |
Jul | 2 | Deve | 1.07 | 4.9 | 49. | 11.4 | 37.8 |
Jul | 3 | Mid | 1.18 | 5.9 | 64.9 | 12.8 | 52 |
Aug | 1 | Mid | 1.18 | 6.61 | 66.1 | 14.9 | 51.2 |
Aug | 2 | Mid | 1.18 | 7.14 | 71.4 | 16.3 | 55.2 |
Aug | 3 | Mid | 1.18 | 6.65 | 73.1 | 15.6 | 57.6 |
Sep | 1 | Late | 1.17 | 6.01 | 60.1 | 14.6 | 45.5 |
Sep | 2 | Late | 1.07 | 5.1 | 51 | 14.1 | 36.9 |
Sep | 3 | Late | 0.95 | 3.9 | 39 | 13.9 | 25 |
Oct | 1 | Late | 0.85 | 2.83 | 17 | 7.3 | 10.9 |
CTR | A | B | C | CTR | A | B | C | |
---|---|---|---|---|---|---|---|---|
Soil 1 | Soil 2 | |||||||
Skeleton (%) | 45 a* | 45 a | 45 a | 45 a | 21 a | 21 a | 21 a | 21 a |
Sandy % | 65 a | 65 a | 65 a | 65 a | 50 a | 50 a | 50 a | 50 a |
Clay % | 23 a | 23 a | 23 a | 23 a | 27 a | 27 a | 27 a | 27 a |
Loam % | 12 a | 12 a | 12 a | 12 a | 23 a | 23 a | 23 a | 23 a |
Textural Class | Sandy-loam | Sandy-loam | Sandy-loam | Sandy-loam | Sandy-Clay-loam | Sandy-Clay-loam | Sandy-Clay-loam | Sandy-Clay-loam |
pH (H2O) | 8.31 a | 8.76 a | 8.01 b | 7.82 b | 8.22 a | 8.43 a | 7.89 ab | 7.21 b |
pH (KCl) | 7.70 a | 7.85 a | 7.75 a | 7.58 b | 7.21 a | 7.11 ab | 7.42 a | 6.98 b |
EC (μS/cm) | 106 b | 123 ab | 132 a | 142 a | 298 a | 291 ab | 267 b | 326 a |
CEC | 20.65 b | 22.87 b | 23.65 ab | 28.56 a | 26.61 b | 24.23 b | 26.45 b | 31.56 a |
TOC % | 1.67 b | 1.45 b | 2.02 a | 2.03 a | 1.51 b | 1.25 b | 1.98 a | 2.12 a |
TN % | 0.14 a | 0.17 a | 0.16 a | 0.12 ab | 0.12 b | 0.21 a | 0.19 a | 0.15 b |
C/N | 11.93 b | 8.53 c | 12.63 b | 16.92 a | 12.58 a | 5.95 c | 10.42 b | 14.13 a |
SOM % | 2.88 b | 2.50 b | 3.48 a | 3.50 a | 2.60 ab | 2.16 b | 3.41 a | 3.65 a |
WSP (µg GAE * g−1 d.s) | 55.68 a | 55.23 a | 52.45 b | 51.53 b | 82.67 b | 79.81 b | 91.76 a | 97.23 a |
MBC (μg C g−1 f.s) | 901 b | 876 b | 926 a | 976 a | 945 b | 965 b | 1023 ab | 1198 a |
CTR | A | B | C | CTR | A | B | C | |
---|---|---|---|---|---|---|---|---|
Soil 1 | Soil 2 | |||||||
DHA | 1.29 b* | 1.34 b | 1.59 ab | 2.01 a | 2.69 b | 3.1 ab | 3.5 a | 3.8 a |
FDA | 8.56 b | 8.51 b | 9.01 a | 9.34 a | 14.50 b | 15.51 b | 17.01 a | 19.14 a |
CAT | 1.34 a | 1.51 a | 1.01 b | 0.96 b | 2.84 a | 2.51 a | 2.41 a | 1.96 b |
ßGLU | 510 a | 546 a | 555 a | 557 a | 355 b | 365 b | 372 ab | 401 a |
PRO | 165 b | 157 b | 167 b | 212 a | 145 b | 157 b | 177 a | 201 a |
URE | 298 b | 312 ab | 351 b | 365 b | 258 b | 297 a | 281 a | 279 a |
from\to | pH (H2O) | pH (KCl) | EC | CEC | TOC % | TN % | C/N | SOM % | WSP | MBC | DHA | FDA | CAT | ßGLU | PRO | URE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH (H2O) | 1 | 0.853 | −0.581 | −0.638 | −0.974 | 0.724 | −0.938 | −0.974 | 0.845 | −0.931 | −0.806 | −0.902 | 0.972 | −0.344 | −0.768 | −0.792 |
pH (KCl) | 0.853 | 1 | −0.398 | −0.649 | −0.718 | 0.978 | −0.965 | −0.718 | 0.618 | −0.904 | −0.770 | −0.771 | 0.735 | −0.075 | −0.902 | −0.560 |
EC | −0.581 | −0.398 | 1 | 0.923 | 0.666 | −0.278 | 0.600 | 0.666 | −0.922 | 0.738 | 0.891 | 0.865 | −0.719 | 0.944 | 0.700 | 0.952 |
CEC | −0.638 | −0.649 | 0.923 | 1 | 0.635 | −0.586 | 0.768 | 0.635 | −0.871 | 0.858 | 0.970 | 0.897 | −0.698 | 0.761 | 0.905 | 0.884 |
TOC % | −0.974 | −0.718 | 0.666 | 0.635 | 1 | −0.556 | 0.857 | 1.000 | −0.902 | 0.884 | 0.795 | 0.911 | −0.996 | 0.488 | 0.679 | 0.862 |
TN % | 0.724 | 0.978 | −0.278 | −0.586 | −0.556 | 1 | −0.894 | −0.556 | 0.468 | −0.814 | −0.682 | −0.647 | 0.578 | 0.055 | −0.875 | −0.411 |
C/N | −0.938 | −0.965 | 0.600 | 0.768 | 0.857 | −0.894 | 1 | 0.857 | −0.802 | 0.983 | 0.888 | 0.909 | −0.877 | 0.311 | 0.932 | 0.755 |
SOM % | −0.974 | −0.718 | 0.666 | 0.635 | 1.000 | −0.556 | 0.857 | 1 | −0.902 | 0.884 | 0.795 | 0.911 | −0.996 | 0.488 | 0.679 | 0.862 |
WSP | 0.845 | 0.618 | −0.922 | −0.871 | −0.902 | 0.468 | −0.802 | −0.902 | 1 | −0.894 | −0.935 | −0.977 | 0.932 | −0.791 | −0.771 | −0.996 |
MBC | −0.931 | −0.904 | 0.738 | 0.858 | 0.884 | −0.814 | 0.983 | 0.884 | −0.894 | 1 | 0.954 | 0.969 | −0.913 | 0.482 | 0.943 | 0.860 |
DHA | −0.806 | −0.770 | 0.891 | 0.970 | 0.795 | −0.682 | 0.888 | 0.795 | −0.935 | 0.954 | 1 | 0.974 | −0.843 | 0.691 | 0.940 | 0.928 |
FDA | −0.902 | −0.771 | 0.865 | 0.897 | 0.911 | −0.647 | 0.909 | 0.911 | −0.977 | 0.969 | 0.974 | 1 | −0.942 | 0.672 | 0.880 | 0.960 |
CAT | 0.972 | 0.735 | −0.719 | −0.698 | −0.996 | 0.578 | −0.877 | −0.996 | 0.932 | −0.913 | −0.843 | −0.942 | 1 | −0.537 | −0.728 | −0.896 |
ßGLU | −0.344 | −0.075 | 0.944 | 0.761 | 0.488 | 0.055 | 0.311 | 0.488 | −0.791 | 0.482 | 0.691 | 0.672 | −0.537 | 1 | 0.428 | 0.843 |
PRO | −0.768 | −0.902 | 0.700 | 0.905 | 0.679 | −0.875 | 0.932 | 0.679 | −0.771 | 0.943 | 0.940 | 0.880 | −0.728 | 0.428 | 1 | 0.749 |
URE | −0.792 | −0.560 | 0.952 | 0.884 | 0.862 | −0.411 | 0.755 | 0.862 | −0.996 | 0.860 | 0.928 | 0.960 | −0.896 | 0.843 | 0.749 | 1 |
pH (H2O) | pH (KCl) | EC | CEC | TOC % | TN % | C/N | SOM % | WSP | MBC | DHA | FDA | CAT | ßGLU | PRO | URE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH (H2O) | 1 | 0.360 | −0.583 | −0.966 | −0.914 | 0.314 | −0.765 | −0.914 | −0.961 | −0.964 | −0.824 | −0.922 | 0.849 | −0.923 | −0.919 | 0.127 |
pH (KCl) | 0.360 | 1 | −0.924 | −0.491 | 0.048 | 0.191 | −0.173 | 0.048 | −0.111 | −0.514 | −0.207 | −0.349 | 0.472 | −0.524 | −0.315 | −0.168 |
EC | −0.583 | −0.924 | 1 | 0.737 | 0.216 | −0.506 | 0.536 | 0.216 | 0.337 | 0.645 | 0.254 | 0.445 | −0.495 | 0.606 | 0.415 | −0.163 |
CEC | −0.966 | −0.491 | 0.737 | 1 | 0.816 | −0.511 | 0.853 | 0.816 | 0.867 | 0.918 | 0.666 | 0.814 | −0.745 | 0.856 | 0.805 | −0.286 |
TOC % | −0.914 | 0.048 | 0.216 | 0.816 | 1 | −0.228 | 0.726 | 1.000 | 0.984 | 0.814 | 0.807 | 0.846 | −0.718 | 0.769 | 0.858 | −0.182 |
TN % | 0.314 | 0.191 | −0.506 | −0.511 | −0.228 | 1 | −0.832 | −0.228 | −0.176 | −0.131 | 0.278 | 0.075 | −0.189 | 0.001 | 0.084 | 0.934 |
C/N | −0.765 | −0.173 | 0.536 | 0.853 | 0.726 | −0.832 | 1 | 0.726 | 0.693 | 0.592 | 0.285 | 0.458 | −0.314 | 0.476 | 0.455 | −0.735 |
SOM % | −0.914 | 0.048 | 0.216 | 0.816 | 1.000 | −0.228 | 0.726 | 1 | 0.984 | 0.814 | 0.807 | 0.846 | −0.718 | 0.769 | 0.858 | −0.182 |
WSP | −0.961 | −0.111 | 0.337 | 0.867 | 0.984 | −0.176 | 0.693 | 0.984 | 1 | 0.903 | 0.878 | 0.925 | −0.826 | 0.871 | 0.932 | −0.073 |
MBC | −0.964 | −0.514 | 0.645 | 0.918 | 0.814 | −0.131 | 0.592 | 0.814 | 0.903 | 1 | 0.887 | 0.968 | −0.948 | 0.991 | 0.961 | 0.109 |
DHA | −0.824 | −0.207 | 0.254 | 0.666 | 0.807 | 0.278 | 0.285 | 0.807 | 0.878 | 0.887 | 1 | 0.974 | −0.960 | 0.922 | 0.979 | 0.413 |
FDA | −0.922 | −0.349 | 0.445 | 0.814 | 0.846 | 0.075 | 0.458 | 0.846 | 0.925 | 0.968 | 0.974 | 1 | −0.978 | 0.980 | 0.999 | 0.261 |
CAT | 0.849 | 0.472 | −0.495 | −0.745 | −0.718 | −0.189 | −0.314 | −0.718 | −0.826 | −0.948 | −0.960 | −0.978 | 1 | −0.982 | −0.973 | −0.413 |
ßGLU | −0.923 | −0.524 | 0.606 | 0.856 | 0.769 | 0.001 | 0.476 | 0.769 | 0.871 | 0.991 | 0.922 | 0.980 | −0.982 | 1 | 0.973 | 0.245 |
PRO | −0.919 | −0.315 | 0.415 | 0.805 | 0.858 | 0.084 | 0.455 | 0.858 | 0.932 | 0.961 | 0.979 | 0.999 | −0.973 | 0.973 | 1 | 0.259 |
URE | 0.127 | −0.168 | −0.163 | −0.286 | −0.182 | 0.934 | −0.735 | −0.182 | −0.073 | 0.109 | 0.413 | 0.261 | −0.413 | 0.245 | 0.259 | 1 |
Impact Categories | Unit | CTR | A | B | C |
---|---|---|---|---|---|
Abiotic depletion | kg Sb eq | 0.01 | 0.02 | 0.01 | 0.01 |
Abiotic depletion (fossil fuels) | MJ | 15,055.69 | 17,769.39 | 27,543.07 | 15,335.07 |
Global warming (GWP100a) | kg CO2 eq | 1083.46 | 1497.40 | 1346.10 | 1329.77 |
Ozone layer depletion (ODP) | kg CFC-11 eq | 0.00 | 0.00 | 0.00 | 0.00 |
Human toxicity | kg 1.4-DB eq | 494.38 | 650.97 | 530.92 | 508.03 |
Freshwater aquatic ecotox. | kg 1.4-DB eq | 523.45 | 634.97 | 540.73 | 534.12 |
Marine aquatic ecotoxicity | kg 1.4-DB eq | 629,032.75 | 803,512.81 | 678,553.69 | 648,589.00 |
Terrestrial ecotoxicity | kg 1.4-DB eq | 1.02 | 1.57 | 1.24 | 1.09 |
Photochemical oxidation | kg C2H4 eq | 0.19 | 0.22 | 0.29 | 0.19 |
Acidification | kg SO2 eq | 7.36 | 15.95 | 9.74 | 8.77 |
Eutrophication | kg PO4—eq | 1.96 | 4.16 | 2.28 | 2.50 |
Impact Categories | Unit | CTR | A | B | C |
---|---|---|---|---|---|
Abiotic depletion | kg Sb eq | 0.00 | 0.00 | 0.00 | 0.00 |
Abiotic depletion (fossil fuels) | MJ | 320.33 | 309.03 | 474.88 | 262.59 |
Global warming (GWP100a) | kg CO2 eq | 23.05 | 26.04 | 23.21 | 22.77 |
Ozone layer depletion (ODP) | kg CFC-11 eq | 0.00 | 0.00 | 0.00 | 0.00 |
Human toxicity | kg 1.4-DB eq | 10.52 | 11.32 | 9.15 | 8.70 |
Freshwater aquatic ecotox. | kg 1.4-DB eq | 11.14 | 11.04 | 9.32 | 9.15 |
Marine aquatic ecotoxicity | kg 1.4-DB eq | 13,383.68 | 13,974.14 | 11,699.20 | 11,105.98 |
Terrestrial ecotoxicity | kg 1.4-DB eq | 0.02 | 0.03 | 0.02 | 0.02 |
Photochemical oxidation | kg C2H4 eq | 0.00 | 0.00 | 0.01 | 0.00 |
Acidification | kg SO2 eq | 0.16 | 0.28 | 0.17 | 0.15 |
Eutrophication | kg PO4—eq | 0.04 | 0.07 | 0.04 | 0.04 |
Cultivation System | Yield (t/ha) | Et Green (m3/ha) | Et Blue (m3/ha) | Direct and Indirect Fraction (m3/ha) | WF Green (m3/t) | WF Blue (m3/t) | WF Grey (m3/t) |
---|---|---|---|---|---|---|---|
CTR | 47.0 | 1983 | 1914 | 750.02 | 42.19 | 56.68 | - |
A | 57.5 | 1983 | 1914 | 750.65 | 34.49 | 46.34 | 0.39 |
B | 58.0 | 1983 | 1914 | 896.07 | 34.19 | 48.45 | 0.098 |
C | 58.4 | 1983 | 1914 | 750.02 | 33.96 | 45.62 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maffia, A.; Marra, F.; Canino, F.; Oliva, M.; Mallamaci, C.; Celano, G.; Muscolo, A. Comparative Study of Fertilizers in Tomato-Grown Soils: Soil Quality, Sustainability, and Carbon/Water Footprints. Soil Syst. 2023, 7, 109. https://doi.org/10.3390/soilsystems7040109
Maffia A, Marra F, Canino F, Oliva M, Mallamaci C, Celano G, Muscolo A. Comparative Study of Fertilizers in Tomato-Grown Soils: Soil Quality, Sustainability, and Carbon/Water Footprints. Soil Systems. 2023; 7(4):109. https://doi.org/10.3390/soilsystems7040109
Chicago/Turabian StyleMaffia, Angela, Federica Marra, Francesco Canino, Mariateresa Oliva, Carmelo Mallamaci, Giuseppe Celano, and Adele Muscolo. 2023. "Comparative Study of Fertilizers in Tomato-Grown Soils: Soil Quality, Sustainability, and Carbon/Water Footprints" Soil Systems 7, no. 4: 109. https://doi.org/10.3390/soilsystems7040109
APA StyleMaffia, A., Marra, F., Canino, F., Oliva, M., Mallamaci, C., Celano, G., & Muscolo, A. (2023). Comparative Study of Fertilizers in Tomato-Grown Soils: Soil Quality, Sustainability, and Carbon/Water Footprints. Soil Systems, 7(4), 109. https://doi.org/10.3390/soilsystems7040109