Addressing the Microplastic Dilemma in Soil and Sediment with Focus on Biochar-Based Remediation Techniques: Review
Abstract
:1. Introduction
2. Microplastic in Soil
2.1. Sources of Microplastics in Soil
2.2. Risks of Microplastics in Soil
2.2.1. The Impact on Soil Ecosystem Services, Soil Properties and Functions
2.2.2. Association with Other Pollutants
2.2.3. The Impact of Microplastics on Soil Biota, Microbes, and Food Chain
2.2.4. The Impact of Microplastics on Ground Water
3. Microplastics in Sediments
3.1. Sources of Microplastic in Sediments
3.2. The Impacts of Microplastic on the Sediments
4. Environmental Fate and Risk Assessment of Microplastics
5. Remediation of Microplastics
5.1. Traditional and Emerging Method in Microplastic Remediation
5.2. Biochar Application in Microplastic Remediation
Biochar Type | Pyrolysis Temp. | Media | Response | Mechanism | Ref. |
---|---|---|---|---|---|
Pine and spruce bark | 475 °C then it was steam activated at 800 °C | Wastewater and storm water | The steam-activated BC were suitable adsorbent for MPs removal | Ion’s exchange | [97] |
Sugarcane bagasse | 350, 550, 750 °C | Water | Nano-plastics removal from BC produced at 750 °C was dramatically greater (>99%), compared to BC-550 (39%) and BC-350 (24%,) | Electrostatic interaction | [89] |
Sawdust and Mg/Zn modified magnetic BC | 550 °C | Water | Polystyrene removal efficiency ranged from 94.81%, to 99.46%, | Electrostatic and chemical bonding interactions | [105] |
Peanut shells and Fe3O4-BC | 500 °C | Sandy porous media | Fe3O4-BC highly inhibited the transport of polystyrene in porous media (until 92.36% retention efficiency). | Electrostatic adsorption and complexation | [112] |
Cellulose-BC and Fe3O4-BC | 400 °C | Porous media (quartz sand) | Decreasing the transport of MPs and increasing their retention in the media | Deposition | [107] |
Woodchips | 500 °C | Soil | BC could accelerate the removal of MPs | High sorption rate due to increasing soil DOC and larger specific surface area | [113] |
Oil seed rape and soft wood pellet | 550 and 700 °C | Soil | Soft wood pellet BC enhanced soil enzyme activity and bacterial diversity and evenness compared with oil seed rape in MPs contaminated soil | Microbial activation due to high surface area, high C content and providing essential elements | [114] |
Rice straw | 700 °C | Water | BC adsorbed 99.96% of MPs | Electrostatic attractions, surface complexation, H-bonding and π-π | [59] |
Date nuclei | 500 °C | Soil | BC mitigated the negative effect of MPs n soil, plant, and microorganisms | Electrostatic interaction and chemical bonding | [30] |
Corn straw | 500 °C | Soil | BC amendment enhanced bacterial community species evenness and richness and facilitated N and P metabolism cycle of MPs contaminated soil plants. | BC can promote the balance between roots’ nutrient absorption and bacterial community micro-environment in MP contaminated soil. | [115] |
Palm kernel and coconut shells | 600 °C | Water | Palm kernel shell BC removed higher percentage of MPs (96.65%) than coconut shell. | Filtration or adsorption | [4] |
Cotton stalk | 650–750 °C | Soil | BC improved shoot dry matter production and significantly alleviated the hazardous effects of MPs. | Promoting microbial activity, enhancing soil nutrients including N, P, and dissolved organic C content | [116] |
6. Conclusions
6.1. Limitation and Challenges of Using Biochar in Microplastic Removal from Soil and Sediment
- Particle size and adsorption efficiency: The surface area and particle size of biochar are two important variables that affect its capacity to adsorb microplastics. Specific biochar characteristics that effectively trap microplastics may be necessary for optimum adsorption efficacy; these characteristics should be carefully taken into account throughout selecting and producing the biochar.
- Residence period, movement, and mobility: Biochar can remain in the soil or sediment for a considerable amount of time with restricted mobility. It may sink to the bottom of the soil and become buried, minimizing its interaction with microplastics hanging in the top layers. Biochar may occasionally move from its intended place and cause less successful microplastic removal.
- Heterogeneous distribution of microplastics: The concentrations of microplastics in soils and sediments may spatially and temporally vary and they are not uniformly distributed. It might be difficult to identify hotspots of microplastic pollution, which makes it problematic to apply biochar for successful remediation in the targeted locations.
- Costs and scalability: One of the biggest obstacles to using and producing biochar on a wide scale is its cost. Significant energy, infrastructural, and resource requirements are involved in the large-scale manufacturing of biochar. Furthermore, the laborious and costly nature of spreading biochar to polluted regions limits its use for large-scale microplastic removal.
- Environmental hazards and trade-offs: Although biochar is a viable option, it is crucial to take into account any possible trade-offs and risks to the environment related to its use. According to some research, using biochar in some situations may have unexpected ecological effects, such as changing the microbial populations in the soil or the availability of nutrients; these effects should be carefully considered.
6.2. Future Research into Biochar and Microplastic Pollution in Soil and Sediment
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, R.; Jones, D.L.; Li, Z.; Liu, Q.; Yan, C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2020, 703, 134722. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Pan, X.; Zhang, S.; Li, D.; Zhai, W.; Wang, Z.; Tao, J.; Mi, C.; Li, Q.; Crittenden, J.C. Distribution and source of microplastics in China’s second largest reservoir-Danjiangkou Reservoir. J. Environ. Sci. 2021, 102, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Cheng, P.; Adams, C.A.; Zhang, S.; Sun, Y.; Yu, H.; Wang, F. Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biol. Biochem. 2021, 155, 108179. [Google Scholar] [CrossRef]
- Hanif, M.A.; Ibrahim, N.; Dahalan, F.A.; Md Ali, U.F.; Hasan, M.; Azhari, A.W.; Jalil, A.A. Microplastics in facial cleanser: Extraction, identification, potential toxicity, and continuous-flow removal using agricultural waste–based biochar. Environ. Sci. Pollut. Res. 2023, 30, 60106–60120. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Xiong, X.; He, M.; Tsang, D.C.; Gupta, J.; Khan, E.; Harrad, S.; Hou, D.; Ok, Y.S.; Bolan, N.S. Microplastics as pollutants in agricultural soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar] [CrossRef]
- Khoironi, A.; Hadiyanto, H.; Anggoro, S.; Sudarno, S. Evaluation of polypropylene plastic degradation and microplastic identification in sediments at Tambak Lorok coastal area, Semarang, Indonesia. Mar. Pollut. Bull. 2020, 151, 110868. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, A.; Rakib, M.R.J.; Gupta, P.K.; Sharma, P.; Garg, A.; Girard, P.; Aminabhavi, T.M. Adsorptive behavior of micro (nano) plastics through biochar: Co-existence, consequences, and challenges in contaminated ecosystems. Sci. Total Environ. 2023, 856, 159097. [Google Scholar] [CrossRef]
- O’kelly, B.C.; El-Zein, A.; Liu, X.; Patel, A.; Fei, X.; Sharma, S.; Mohammad, A.; Goli, V.S.N.S.; Wang, J.J.; Li, D.; et al. Microplastics in soils: An environmental geotechnics perspective. Environ. Geotech. 2021, 8, 586–618. [Google Scholar] [CrossRef]
- Plastic in the OceanStatistics 2020–2021, 2021. Shocking Ocean Plastic Statistics: The Threat to Marine Life, The Ocean & Humanity. Available online: https://www.condorferries.co.uk/plastic-in-the-ocean-statistics (accessed on 9 June 2021).
- Zhou, Y.; Kumar, M.; Sarsaiya, S.; Sirohi, R.; Awasthi, S.K.; Sindhu, R.; Binod, P.; Pandey, A.; Bolan, N.S.; Zhang, Z.; et al. Challenges and opportunities in bioremediation of micro-nano plastics: A review. Sci. Total Environ. 2022, 802, 149823. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, Y.; Guo, W.; Chen, S.; Qiu, Y.; Zhang, P. A rapid staged protocol for efficient recovery of microplastics from soil and sediment matrices based on hydrophobic separation. Mar. Pollut. Bull. 2022, 182, 113978. [Google Scholar] [CrossRef]
- Tziourrou, P.; Kordella, S.; Ardali, Y.; Papatheodorou, G.; Karapanagioti, H.K. Microplastics formation based on degradation characteristics of beached plastic bags. Mar. Pollut. Bull. 2021, 169, 112470. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Sang, M.K.; Igalavithana, A.D.; Zhang, M.; Hou, D.; Oleszczuk, P.; Sung, J.; Ok, Y.S. Biochar alters chemical and microbial properties of microplastic-contaminated soil. Environ. Res. 2022, 209, 112807. [Google Scholar] [CrossRef] [PubMed]
- Razeghi, N.; Hamidian, A.H.; Wu, C.; Zhang, Y.; Yang, M. Microplastic sampling techniques in freshwaters and sediments: A review. Environ. Chem. Lett. 2021, 19, 4225–4252. [Google Scholar] [CrossRef] [PubMed]
- Accinelli, C.; Abbas, H.K.; Bruno, V.; Nissen, L.; Vicari, A.; Bellaloui, N.; Little, N.S.; Shier, W.T. Persistence in soil of microplastic films from ultra-thin compostable plastic bags and implications on soil Aspergillus flavus population. Waste Manag. 2020, 113, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Li, X.Y.; Liu, H.T. Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil. Sci. Total Environ. 2020, 742, 140355. [Google Scholar] [CrossRef]
- Li, Y.; Yao, J.; Nie, P.; Feng, X.; Liu, J. An effective method for the rapid detection of microplastics in soil. Chemosphere 2021, 276, 128696. [Google Scholar] [CrossRef]
- Anagnosti, L.; Varvaresou, A.; Pavlou, P.; Protopapa, E.; Carayanni, V. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? Mar. Pollut. Bull. 2021, 162, 111883. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.; Sin, A.; Kim, G.; Khan, S.; Nadagouda, M.N.; Sahle-Demessie, E.; Han, C. Pretreatment methods for monitoring microplastics in soil and freshwater sediment samples: A comprehensive review. Sci. Total Environ. 2023, 871, 161718. [Google Scholar] [CrossRef]
- Kieu-Le, T.C.; Thuong, Q.T.; Tran, Q.V.; Strady, E. Baseline concentration of microplastics in surface water and sediment of the northern branches of the Mekong River Delta, Vietnam. Mar. Pollut. Bull. 2023, 187, 114605. [Google Scholar] [CrossRef]
- Ding, W.; Li, Z.; Qi, R.; Jones, D.L.; Liu, Q.; Liu, Q.; Yan, C. Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics. Sci. Total Environ. 2021, 781, 146884. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C.R. Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 2015, 111, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Alomar, C.; Estarellas, F.; Deudero, S. Microplastics in the Mediterranean Sea: Deposition in coastal shallow sediments, spatial variation and preferential grain size. Mar. Environ. Res. 2016, 115, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Amin, B.; Febriani, I.S.; Nurrachmi, I.; Fauzi, M. The occurrence and distribution of microplastic in sediment of the coastal waters of Bengkalis Island Riau Province. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 695, p. 012041. [Google Scholar] [CrossRef]
- Duan, J.; Bolan, N.; Li, Y.; Ding, S.; Atugoda, T.; Vithanage, M.; Sarkar, B.; Tsang, D.C.; Kirkham, M.B. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Res. 2021, 196, 117011. [Google Scholar] [CrossRef] [PubMed]
- Chai, B.; Wei, Q.; She, Y.; Lu, G.; Dang, Z.; Yin, H. Soil microplastic pollution in an e-waste dismantling zone of China. Waste Manag. 2020, 118, 291–301. [Google Scholar] [CrossRef]
- Zhou, J.; Gui, H.; Banfield, C.C.; Wen, Y.; Zang, H.; Dippold, M.A.; Charlton, A.; Jones, D.L. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol. Biochem. 2021, 156, 108211. [Google Scholar] [CrossRef]
- Möller, J.N.; Löder, M.G.J.; Laforsch, C. Finding Microplastics in Soils: A Review of Analytical Methods. Environ. Sci. Technol. 2020, 54, 2078–2090. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Mostafa, A.A.; Zedan, A.; Elbltagy, H.M.; Dawoud, S.F.M.; Elbanna, B.A.; El-Shazly, S.A.; El-Sadawy, A.A.; Sharaf-Eldin, A.M.; Darweesh, M.; et al. Potential Effect of Biochar on Soil Properties, Microbial Activity and Vicia faba Properties Affected by Microplastics Contamination. Agronomy 2023, 13, 149. [Google Scholar] [CrossRef]
- Iqbal, B.; Zhao, T.; Yin, W.; Zhao, X.; Xie, Q.; Khan, K.Y.; Zhao, X.; Nazar, M.; Li, G.; Du, D. Impacts of soil microplastics on crops: A review. Appl. Soil Ecol. 2023, 181, 104680. [Google Scholar] [CrossRef]
- Badola, N.; Bahuguna, A.; Sasson, Y.; Chauhan, J.S. Microplastics removal strategies: A step toward finding the solution. Front. Environ. Sci. Eng. 2022, 16, 1–18. [Google Scholar] [CrossRef]
- Xu, Z.; Qian, X.; Wang, C.; Zhang, C.; Tang, T.; Zhao, X.; Li, L. Environmentally relevant concentrations of microplastic exhibits negligible impacts on thiacloprid dissipation and enzyme activity in soil. Environ. Res. 2020, 189, 109892. [Google Scholar] [CrossRef]
- Zang, H.; Zhou, J.; Marshall, M.R.; Chadwick, D.R.; Wen, Y.; Jones, D.L. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system? Soil Biol. Biochem. 2020, 148, 107926. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, X.; Zhao, M.; Deng, W.; Cao, Y.; Wu, J.; Zhou, J. Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions. Front. Environ. Sci. Eng. 2022, 16, 3. [Google Scholar] [CrossRef]
- Blöcker, L.; Watson, C.; Wichern, F. Living in the plastic age-Different short-term microbial response to microplastics addition to arable soils with contrasting soil organic matter content and farm management legacy. Environ. Pollut. 2020, 267, 115468. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Song, W.; Tian, H.; Zhang, K.; Li, B.; Du, Z.; Zhang, W.; Wang, J.; Wang, J.; Zhu, L. The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm Metaphire guillelmi gut microbiota. Chemosphere 2021, 267, 129219. [Google Scholar] [CrossRef]
- Khant, N.A.; Kim, H. Review of current issues and management strategies of microplastics in groundwater environments. Water 2022, 14, 1020. [Google Scholar] [CrossRef]
- Yadav, S.; Gupta, E.; Patel, A.; Srivastava, S.; Mishra, V.K.; Singh, P.C.; Srivastava, P.K.; Barik, S.K. Unravelling the emerging threats of microplastics to agroecosystems. Rev. Environ. Sci. Biotechnol 2022, 21, 771–798. [Google Scholar] [CrossRef]
- Wang, B.; Smith, M.; Liu, Y.; Pileggi, V.; Chang, S. Microplastic isolation method for wastewater and sludge samples by removal of excess organic and inorganic interferences. Chemosphere 2023, 329, 138625. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wangjin, X.; Wang, Y.; Meng, G.; Chen, Y. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. J. Environ. Sci. 2020, 87, 272–280. [Google Scholar] [CrossRef]
- Munir, M.A.M.; Yousaf, B.; Ali, M.U.; Dan, C.; Abbas, Q.; Arif, M.; Yang, X. In situ synthesis of micro-plastics embedded sewage-sludge co-pyrolyzed biochar: Implications for the remediation of Cr and Pb availability and enzymatic activities from the contaminated soil. J. Clean. Prod. 2021, 302, 127005. [Google Scholar] [CrossRef]
- Katsumi, N.; Kusube, T.; Nagao, S.; Okochi, H. The input–output balance of microplastics derived from coated fertilizer in paddy fields and the timing of their discharge during the irrigation season. Chemosphere 2021, 279, 130574. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Sun, X.; Peng, Y.; Xiao, L. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 2020, 243, 125271. [Google Scholar] [CrossRef] [PubMed]
- Elbasiouny, H.; Mustafa, A.A.; Zedan, A.; Amer, S.M.; Albeialy, N.O.; Alkharsawey, D.S.; Aeash, N.R.; Abuomar, A.O.; Hamd, R.E.; Elbltagy, H.; et al. Impact of Pollution by Microplastic on Soil, Soil Microbes and Plants and Its Remediation by The Biochar: A review. Egypt. J. Soil Sci. 2022, 62, 325–334. [Google Scholar] [CrossRef]
- Wan, L.; Cheng, H.; Liu, Y.; Shen, Y.; Liu, G.; Su, X. Global meta-analysis reveals differential effects of microplastics on soil ecosystem. Sci. Total Environ. 2023, 867, 161403. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Chen, X.; He, Y.; Bolan, N.; Rinklebe, J.; Lam, S.S.; Peng, W.; Sonne, C. A discussion of microplastics in soil and risks for ecosystems and food chains. Chemosphere 2023, 313, 137637. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, Y.; Zhang, Z.; Cui, M. The positive effects of polypropylene and polyvinyl chloride microplastics on agricultural soil quality. J. Soils Sediments 2023, 23, 1304–1314. [Google Scholar] [CrossRef]
- Zhang, G.S.; Zhang, F.X.; Li, X.T. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Sci Total Environ. 2019, 670, 1–7. [Google Scholar] [CrossRef]
- Alvarado-Zambrano, D.; Rivera-Hernández, J.R.; Green-Ruiz, C. First insight into microplastic groundwater pollution in Latin America: The case of a coastal aquifer in Northwest Mexico. Environ. Sci. Pollut. Res. 2023, 30, 73600–73611. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mao, S.; Ye, Y.; Lü, J.; Jing, F.; Guo, Y.; Liu, H.; Wang, P.; Ma, W.; Qi, P.; et al. Micro-polyethylene particles reduce the toxicity of nano zinc oxide in marine microalgae by adsorption. Environ. Pollut. 2021, 290, 118042. [Google Scholar] [CrossRef]
- Li, J.; Song, Y.; Cai, Y. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks. Environ. Pollut. 2020, 257, 113570. [Google Scholar] [CrossRef]
- Irfan, T.; Khalid, S.; Taneez, M.; Hashmi, M.Z. Plastic driven pollution in Pakistan: The first evidence of environmental exposure to microplastic in sediments and water of Rawal Lake. Environ. Sci. Pollut. Res. 2020, 27, 15083–15092. [Google Scholar] [CrossRef]
- Yao, J.; Wang, H.; Ma, C.; Cao, Y.; Chen, W.; Gu, L.; He, Q.; Liu, C.; Xiong, J.; Ma, J.; et al. Cotransport of thallium (I) with polystyrene plastic particles in water-saturated porous media. J. Hazard. Mater. 2022, 422, 126910. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Lee, J.; Brown, R.J.; Kim, K.H. Environmental fate, ecotoxicity biomarkers, and potential health effects of micro-and nano-scale plastic contamination. J. Hazard. Mater. 2021, 403, 123910. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sheng, G.D.; O’Connor, P. Microplastics combined with tetracycline in soils facilitate the formation of antibiotic resistance in the Enchytraeus crypticus microbiome. Environ. Pollut. 2020, 264, 114689. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bhagwat, A. Microplastics: A potential threat to groundwater resources. Groundw. Sustain. Dev. 2022, 19, 100852. [Google Scholar] [CrossRef]
- Viaroli, S.; Lancia, M.; Re, V. Microplastics contamination of groundwater: Current evidence and future perspectives. A review. Sci. Total Environ. 2022, 824, 153851. [Google Scholar] [CrossRef] [PubMed]
- Lwanga, E.H.; van Roshum, I.; Munhoz, D.R.; Meng, K.; Rezaei, M.; Goossens, D.; Bijsterbosch, J.; Alexandre, N.; Oosterwijk, J.; Krol, M.; et al. Microplastic appraisal of soil, water, ditch sediment and airborne dust: The case of agricultural systems. Environ. Pollut. 2023, 316, 120513. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, C.; Zhao, H.; Shi, J.; Liu, Z.; Li, C.; Song, F. Efficient removal of microplastics from aqueous solution by a novel magnetic biochar: Performance, mechanism, and reusability. Environ. Sci. Pollut. Res. 2023, 30, 26914–26928. [Google Scholar] [CrossRef]
- Severini, E.; Ducci, L.; Sutti, A.; Robottom, S.; Sutti, S.; Celico, F. River–Groundwater Interaction and Recharge Effects on Microplastics Contamination of Groundwater in Confined Alluvial Aquifers. Water 2022, 14, 1913. [Google Scholar] [CrossRef]
- Ghanbari, N.; Fataei, E.; Naji, A.; Imani, A.A.; Nasehi, F. Microplastic pollution in sediments in the urban section of the Qara Su River, Iran. Appl. Water Sci. 2022, 12, 192. [Google Scholar] [CrossRef]
- Tursi, A.; Baratta, M.; Easton, T.; Chatzisymeon, E.; Chidichimo, F.; De Biase, M.; De Filpo, G. Microplastics in aquatic systems, a comprehensive review: Origination, accumulation, impact, and removal technologies. RSC Adv. 2022, 12, 28318–28340. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, J.; Liu, H.; Lu, X. Vertical distribution of microplastics in the sediment profiles of the Lake Taihu, eastern China. Sustain. Environ. Res. 2022, 32, 44. [Google Scholar] [CrossRef]
- Martin, J.; Lusher, A.; Thompson, R.C.; Morley, A. The Deposition and Accumulation of Microplastics in Marine Sediments and Bottom Water from the Irish Continental Shelf. Sci. Rep. 2017, 7, 10772. [Google Scholar] [CrossRef]
- Silori, R.; Shrivastava, V.; Mazumder, P.; Mootapally, C.; Pandey, A.; Kumar, M. Understanding the underestimated: Occurrence, distribution, and interactions of microplastics in the sediment and soil of China, India, and Japan. Environ. Pollut. 2023, 320, 120978. [Google Scholar] [CrossRef] [PubMed]
- Langknecht, T.; Lao, W.; Wong, C.S.; Kotar, S.; El Khatib, D.; Robinson, S.; Burgess, R.M.; Ho, K.T. Comparison of two procedures for microplastics analysis in sediments based on an interlaboratory exercise. Chemosphere 2023, 313, 137479. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.; Chase, Z.; Zhang, J.; Holl, M.M.B.; Willis, K.; Williams, A.; Hardesty, B.D.; Wilcox, C. Microplastic pollution in deep-sea sediments from the Great Australian Bight. Front. Mar. Sci. 2020, 7, 808. [Google Scholar] [CrossRef]
- Oliveira, M.; Almeida, M. The why and how of micro (nano) plastic research. TrAC Trends Anal. Chem. 2019, 114, 196–201. [Google Scholar] [CrossRef]
- de Ruijter, V.N.; Redondo-Hasselerharm, P.E.; Gouin, T.; Koelmans, A.A. Quality criteria for microplastic effect studies in the context of risk assessment: A critical review. Environ. Sci. Technol. 2020, 54, 11692–11705. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Bohlén, M.; Lindblad, C.; Hedenqvist, M.; Hakonen, A. Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Res. 2021, 198, 117123. [Google Scholar] [CrossRef]
- Udovicki, B.; Andjelkovic, M.; Cirkovic-Velickovic, T.; Rajkovic, A. Microplastics in food: Scoping review on health effects, occurrence, and human exposure. Food Contam. 2022, 9, 7. [Google Scholar] [CrossRef]
- Bridson, J.H.; Gaugler, E.C.; Smith, D.A.; Northcott, G.L.; Gaw, S. Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches. J. Hazard. Mater. 2021, 414, 125571. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, S.; Zhang, C.; Qin, W.; Lv, C. A framework for systematic microplastic ecological risk assessment at a national scale. Environ. Pollut. 2023, 327, 121631. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Gholami, M.; Farzadkia, M.; Djalalinia, S. Microplastics removal technologies from aqueous environments: A systematic review. J. Environ. Health Sci. Eng. 2023, 21, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to microplastic pollution–Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, G.; Yu, H.; Xing, J. Dynamic membrane for micro-particle removal in wastewater treatment: Performance and influencing factors. Sci. Total Environ. 2018, 627, 332–340. [Google Scholar] [CrossRef]
- Perren, W.; Wojtasik, A.; Cai, Q. Removal of microbeads from wastewater using electrocoagulation. ACS Omega 2018, 3, 3357–3364. [Google Scholar] [CrossRef]
- Hidayaturrahman, H.; Lee, T.G. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar. Pollut. Bull. 2019, 146, 696–702. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, T.; Chen, W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci. Total Environ. 2020, 700, 134520. [Google Scholar] [CrossRef]
- Skaf, D.W.; Punzi, V.L.; Rolle, J.T.; Kleinberg, K.A. Removal of micron-sized microplastic particles from simulated drinking water via alum coagulation. Chem. Eng. J. 2020, 386, 123807. [Google Scholar] [CrossRef]
- Sun, M.; Chen, W.; Fan, X.; Tian, C.; Sun, L.; Xie, H. Cooperative recyclable magnetic microsubmarines for oil and microplastics removal from water. Appl. Mater. Today 2020, 20, 100682. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Chen, Y.; Miao, C.; Wang, Y.-R.; Gao, G.-K.; Yang, R.-X.; Zhu, H.-J.; Wang, J.-H.; Li, S.-L.; Lan, Y.-Q. Metal–organic framework-based foams for efficient microplastics removal. J. Mater. Chem. A 2020, 8, 14644–14652. [Google Scholar] [CrossRef]
- Borah, S.J.; Gupta, A.K.; Gupta, A.; Bhawna; Kumar, S.; Sharma, R.; Kumar, R.; Kumar, P.; Dubey, K.K.; Kaushik, S.; et al. Grasping the supremacy of microplastic in the environment to understand its implications and eradication: A review. J. Mater. Sci. 2023, 58, 12899–12928. [Google Scholar] [CrossRef]
- Roy, T.; Dey, T.K.; Jamal, M. Microplastic/nanoplastic toxicity in plants: An imminent concern. Environ. Monit. Assess. 2023, 195, 27. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Pathak, V.M.; Bagheri, A.R.; Bilal, M. Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies. Environ. Res. 2021, 200, 111762. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, N.; Santhiya, D.; Sharma, J.G. Microbial remediation of micro-nano plastics: Current knowledge and future trends. Environ. Pollut. 2020, 265, 115044. [Google Scholar] [CrossRef] [PubMed]
- Ajith, M.P.; Aswathi, M.; Priyadarshini, E.; Rajamani, P. Recent innovations of nanotechnology in water treatment: A comprehensive review. Bioresour. Technol. 2021, 342, 126000. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Ganie, Z.A.; Khandelwal, N.; Tiwari, E.; Singh, N.; Darbha, G.K. Biochar-facilitated remediation of nanoplastic contaminated water: Effect of pyrolysis temperature induced surface modifications. J. Hazard. Mater. 2021, 417, 126096. [Google Scholar] [CrossRef] [PubMed]
- Ambaye, T.G.; Vaccari, M.; van Hullebusch, E.D.; Amrane, A.; Rtimi, S. Mechanisms adsorption capacities of biochar for the removal of organic inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol. 2021, 18, 3273–3294. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Darweesh, M.; Elbltagy, H.; Abo-Alhamd, F.G.; Amer, A.A.; Elsegaiy, M.A.; Khattab, I.A.; Elsharawy, E.A.; Elbehiry, F.; El-Ramady, H.; et al. Correction to: Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: A review. Environ. Monit. Assess 2021, 193, 542. [Google Scholar] [CrossRef]
- Tan, M.; Zhang, H.; Chi, J. Responses of bioavailability and degradation of phenanthrene in soils with or without earthworms to the addition of mixed particles of biochar and polyethylene. J. Soils Sediments 2022, 22, 185–195. [Google Scholar] [CrossRef]
- Guo, R.; Yan, L.; Rao, P.; Wang, R.; Guo, X. Nitrogen and sulfur co-doped biochar derived from peanut shell with enhanced adsorption capacity for diethyl phthalate. Environ. Pollut. 2020, 258, 113674. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, B.; Li, Y.; Tang, D.; Xu, K.; Li, D. Application of biochar in the remediation of contaminated soil with high concentration of lead and zinc. Adv. Civ. Eng. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- El-Ramady, H.; El-Henawy, A.; Amer, M.; Omara, A.E.-D.; Elsakhawy, T.; Elbasiouny, H.; Elbehiry, F.; Elyazid, D.A.; El-Mahrouk, M. Agricultural waste and its nano-management: Mini review. Egypt. J. Soil Sci. 2020, 60, 349–364. [Google Scholar] [CrossRef]
- Zuhara, S.; Mackey, H.R.; Al-Ansari, T.; McKay, G. A review of prospects and current scenarios of biomass co-pyrolysis for water treatment. Biomass Convers. Biorefinery 2022, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Siipola, V.; Pflugmacher, S.; Romar, H.; Wendling, L.; Koukkari, P. Low-cost biochar adsorbents for water purification including microplastics removal. Appl. Sci. 2020, 10, 788. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, L.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the removal of contaminants from soil and water: A review. Biochar 2022, 4, 19. [Google Scholar] [CrossRef]
- Nkoh, J.N.; Ajibade, F.O.; Atakpa, E.O.; Abdulaha-Al Baquy, M.; Mia, S.; Odii, E.C.; Xu, R. Reduction of heavy metal uptake from polluted soils and associated health risks through biochar amendment: A critical synthesis. J. Hazard. Mater. Adv. 2022, 6, 100086. [Google Scholar] [CrossRef]
- Shang, Q.; Chi, J. Impact of biochar coexistence with polar/nonpolar microplastics on phenanthrene sorption in soil. J. Hazard. Mater. 2023, 447, 130761. [Google Scholar] [CrossRef]
- Ahmad, M.; Lubis, N.M.; Usama, M.; Ahmad, J.; Al-Wabel, M.I.; Al-Swadi, H.A.; Rafique, M.I.; Al-Farraj, A.S. Scavenging microplastics and heavy metals from water using jujube waste-derived biochar in fixed-bed column trials. Environ. Pollut. 2023, 335, 122319. [Google Scholar] [CrossRef]
- Dong, M.; He, L.; Jiang, M.; Zhu, Y.; Wang, J.; Gustave, W.; Wang, S.; Deng, Y.; Zhang, X.; Wang, Z. Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review. Int. J. Environ. Res. Public Health 2023, 20, 1679. [Google Scholar] [CrossRef]
- Jaafarzadeh Haghighi Fard, N.; Jahedi, F.; Dehdarirad, H. The Possibility of Microplastic Removal by Earthworms and Comparing With Conventional Chemical Removal Methods (A Global and Deeply Systematic Review). J. Polym. Environ. 2023, 31, 1–15. [Google Scholar] [CrossRef]
- Dad, F.P.; Khan, W.-U.; Kirkham, M.B.; Bolan, N.; Tanveer, M. Microplastics: A review of their impacts on different life forms and their removal methods. Environ. Sci. Pollut. Res. 2023, 30, 86632–86655. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, C.; Huang, Q.-X.; Chi, Y.; Yan, J.-H. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars. J. Hazard. Mater. 2021, 419, 126486. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Fawzy, S.; Farghali, M.; El-Azazy, M.; Elgarahy, A.M.; Fahim, R.A.; Maksoud, M.I.A.A.; Ajlan, A.A.; Yousry, M.; Saleem, Y.; et al. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environ. Chem. Lett. 2022, 20, 2385–2485. [Google Scholar] [CrossRef]
- Tong, M.; He, L.; Rong, H.; Li, M.; Kim, H. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment. Water Res. 2020, 169, 115284. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Cheng, M.; Zeng, G.; Tan, X.; Wu, H.; Liang, J.; Shen, M.; Song, B.; Liu, J.; Yang, H.; et al. Insights into catalytic removal and separation of attached metals from natural-aged microplastics by magnetic biochar activating oxidation process. Water Res. 2020, 179, 115876. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.S.; Shaikh, H.M.; Asif, M.; Al-Ghurabi, E.H. Engineered biochar from wood apple shell waste for high-efficient removal of toxic phenolic compounds in wastewater. Sci. Rep. 2021, 11, 2586. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Zhang, J.; Liu, J.; Liu, B.; Chen, G. Preparation and application of magnetic biochar in water treatment: A critical review. Sci. Total Environ. 2020, 711, 134847. [Google Scholar] [CrossRef]
- Yang, H.; Yu, H.; Wang, J.; Ning, T.; Chen, P.; Yu, J.; Di, S.; Zhu, S. Magnetic porous biochar as a renewable and highly effective adsorbent for the removal of tetracycline hydrochloride in water. Environ. Sci. Pollut. Res. Int. 2021, 28, 61513–61525. [Google Scholar] [CrossRef]
- Wang, X.; Dan, Y.; Diao, Y.; Liu, F.; Wang, H.; Sang, W.; Zhang, Y. Transport characteristics of polystyrene microplastics in saturated porous media with biochar/Fe3O4-biochar under various chemical conditions. Sci. Total Environ. 2022, 847, 157576. [Google Scholar] [CrossRef]
- Ren, X.; Tang, J.; Wang, L.; Sun, H. Combined effects of microplastics and biochar on the removal of polycyclic aromatic hydrocarbons and phthalate esters and its potential microbial ecological mechanism. Front. Microbiol. 2021, 12, 647766. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, P.D.; Palansooriya, K.N.; Sang, M.K.; Oh, D.X.; Park, J.; Hwang, S.Y.; Igalavithana, A.D.; Gu, C.; Ok, Y.S. Combined effect of biochar and soil moisture on soil chemical properties and microbial community composition in microplastic-contaminated agricultural soil. Soil Use Manag. 2022, 38, 1446–1458. [Google Scholar] [CrossRef]
- Ran, T.; Li, J.; Liao, H.; Zhao, Y.; Yang, G.; Long, J. Effects of biochar amendment on bacterial communities and their function predictions in a microplastic-contaminated Capsicum annuum L. soil. Environ. Technol. Innov. 2023, 31, 103174. [Google Scholar] [CrossRef]
- Khalid, A.R.; Shah, T.; Asad, M.; Ali, A.; Samee, E.; Adnan, F.; Bhatti, M.F.; Marhan, S.; Kammann, C.I.; Haider, G. Biochar alleviated the toxic effects of PVC microplastic in a soil-plant system by upregulating soil enzyme activities and microbial abundance. Environ. Pollut. 2023, 332, 121810. [Google Scholar] [CrossRef]
- Elbasiouny, H.Y.; Elbehiry, F.; Al Anany, F.S.; Almashad, A.A.; Khalifa, A.M.; Khalil, A.M.M.; Elramady, H.; Brevik, E.C. Contaminate Remediation with Biochar and Nanobiochar Focusing on Food Waste Biochar: A Review. Egypt. J. Soil Sci. 2023, 63, 641–658. [Google Scholar] [CrossRef]
Media | Remediation or Removal Technique | Efficiency | Ref. |
---|---|---|---|
Wastewater | Membrane bioreactor and different technologies such as rapid sand filtration, discfilter, and dissolved air flotation | 99.9% by Membrane bioreactor, 97% by rapid sand filtration, 95 by dissolved air flotation, and 40–98.5 by discfilter | [75] |
Wastewater | Dynamic membrane supports mesh through filtration | Turbidity 1 NTU after filtration to 20 min verifying the effective removal of MPs | [76] |
Wastewater | Electrocoagulation | More than 90% | [77] |
Wastewater | Coagulation and some technologies like ozone, membrane disc-filter, and rapid sand filtration. | Ranged between 75% to 91.9% and increased into >98% after tertiary treatment | [78] |
Drinking water | Coagulation together with sedimentation and filtration by granular activated carbon | 40.5–54.5% in the first method, 56.8–60.9% in the second method | [79] |
Drinking water | Coagulation by alum and Al | Water turbidity less than 1.0 NTU (the starting was with turbidity of 16 NTU) | [80] |
Sea water | Adsorption by fabricated hollow microsubmarines from “hedgehog” magnetic microsubmarine based on sunflower pollen grains. | Removing MPs controllably in a noncontact method | [81] |
Drinking water and sea water | Series of zirconium metal–organic framework-based foam materials combined with filtration | Up to 95.5 ± 1.2% | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbasiouny, H.; Elbehiry, F. Addressing the Microplastic Dilemma in Soil and Sediment with Focus on Biochar-Based Remediation Techniques: Review. Soil Syst. 2023, 7, 110. https://doi.org/10.3390/soilsystems7040110
Elbasiouny H, Elbehiry F. Addressing the Microplastic Dilemma in Soil and Sediment with Focus on Biochar-Based Remediation Techniques: Review. Soil Systems. 2023; 7(4):110. https://doi.org/10.3390/soilsystems7040110
Chicago/Turabian StyleElbasiouny, Heba, and Fathy Elbehiry. 2023. "Addressing the Microplastic Dilemma in Soil and Sediment with Focus on Biochar-Based Remediation Techniques: Review" Soil Systems 7, no. 4: 110. https://doi.org/10.3390/soilsystems7040110
APA StyleElbasiouny, H., & Elbehiry, F. (2023). Addressing the Microplastic Dilemma in Soil and Sediment with Focus on Biochar-Based Remediation Techniques: Review. Soil Systems, 7(4), 110. https://doi.org/10.3390/soilsystems7040110