The Effects of Brackish Irrigation on Soil Ion Accumulation and Growth of Atriplex Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling
2.3. Irrigation Scheduling
2.4. Physical Analysis
2.5. Chemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Physical and Chemical Analysis
3.2. Ion Concentrations
3.3. Distance from Emitter
3.4. Depth from Soil Surface
3.5. Irrigation Treatments
3.6. Duration of Study
3.7. Aboveground Plant Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Oceanic and Atmospheric Administration (NOAA); National Centers for Environmental Information. Climate at a Glance: State Wide Time Series. Available online: https://www.ncdc.noaa.gov/cog/ (accessed on 14 January 2020).
- USGS Water Use Data for New Mexico. Available online: https://waterdata.usgs.gov/nm/nwis/water_use (accessed on 14 January 2020).
- Funk, J.; Barnett-Loro, C.; Rising, M.; Deyette, J. Confronting Climate Change in New Mexico. 2016. Available online: https://www.ucsusa.org/NewMexicoClimateChange (accessed on 14 January 2020).
- Lewis, L. Overview of Fresh and Brackish Water Quality in New Mexico; New Mexico Bureau of Geology and Mineral Resources: Socorro, NM, USA, 2016; Volume 583, pp. 1–62. [Google Scholar]
- Lansford, R.; Hernandez, J.M.; Enis, P.; Truby, D.; Mapel, C. Evaluation of Available Saline Water Resources in New Mexico for the Production of Microalgae; Solar Energy Research Inst.: Golden, CO, USA, 1990. [Google Scholar] [CrossRef]
- Eke, J.; Yusuf, A.; Giwa, A.; Sodiq, A. The Global Status of Desalination: An Assessment of Current Desalination Technologies, Plants and Capacity. Desalination 2020, 495, 114633. [Google Scholar] [CrossRef]
- Graham, J.S. Brackish and Saline Groundwater in New Mexico. In New Mexico Earth Matters; New Mexico Bureau of Geology and Mineral Resources: Socorro, NM, USA, 2015. [Google Scholar]
- Oron, G.; Appelbaum, S.; Guy, O. Reuse of Brine from Inland Desalination Plants with Duckweed, Fish and Halophytes toward Increased Food Production and Improved Environmental Control. Desalination 2023, 549, 116317. [Google Scholar] [CrossRef]
- Cavalcante Júnior, R.; Vasconcelos Freitas, M.; da Silva, N.; de Azevedo Filho, F. Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region. Energies 2019, 12, 904. [Google Scholar] [CrossRef]
- Ben Salem, H.; Norman, H.C.; Nefzaoui, A.; Mayberry, D.E.; Pearce, K.L.; Revell, D.K. Potential Use of Oldman Saltbush (Atriplex nummularia Lindl.) in Sheep and Goat Feeding. Small Rumin. Res. 2010, 91, 13–28. [Google Scholar] [CrossRef]
- Kronberg, S.L. Improving Cattle Nutrition on the Great Plains with Shrubs and Fecal Seeding of Fourwing Saltbush. Rangel. Ecol. Manag. 2015, 68, 285–289. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil Salinity under Climate Change: Challenges for Sustainable Agriculture and Food Security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef]
- Franzen, D.; Wick, A.; Augustin, C.; Kalwar, N. Saline and Sodic Soils. North Dakota State University Extension Service. 2017. Available online: https://www.ag.ndsu.edu/langdonrec/soil-health/saline-sodic-soils (accessed on 14 January 2020).
- Babcock, M.; Kumar Shukla, M.; Picchioni, G.A.; Mexal, J.G.; Daniel, D.E. Chemical and Physical Properties of Chihuahuan Desert Soils Irrigated with Industrial Effluent. Arid. Land Res. Manag. 2009, 23, 47–66. [Google Scholar] [CrossRef]
- Adhikari, P.; Shukla, M.; Mexal, J. Spatial Variability of Infiltration Rate and Sodium Content of Desert Soils: Implications for Management of Irrigation Using Treated Wastewater. Trans. ASABE 2012, 55, 1711–1721. [Google Scholar] [CrossRef]
- Cox, C.; Jin, L.; Ganjegunte, G.; Borrok, D.; Lougheed, V.; Ma, L. Soil Quality Changes due to Flood Irrigation in Agricultural Fields along the Rio Grande in Western Texas. Appl. Geochem. 2018, 90, 87–100. [Google Scholar] [CrossRef]
- Sheng, Z. Impacts of Groundwater Pumping and Climate Variability on Groundwater Availability in the Rio Grande Basin. Ecosphere 2013, 4, art5. [Google Scholar] [CrossRef]
- Katuri, J.R.; Trifonov, P.; Arye, G. Spatial Distribution of Salinity and Sodicity in Arid Climate Following Long Term Brackish Water Drip Irrigated Olive Orchard. Water 2019, 11, 2556. [Google Scholar] [CrossRef]
- Rizqi, F.; Murtiningrum; Ngadisih. Positioning of Soil Moisture Sensors for Actual Conditions of Crop Water Requirement in the Controlled Drip Irrigation System. In Proceedings of the IOP Conference Series: Earth and Environmental Science, The 3rd International Symposium on Agricultural and Biosystem Engineering, South Sulawesi, Indonesia, 6–8 August 2019; Volume 355, p. 012019. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Rengasamy, P.; McDonald, G.K. High Concentrations of Na+ and Cl− Ions in Soil Solution Have Simultaneous Detrimental Effects on Growth of Faba Bean under Salinity Stress. J. Exp. Bot. 2010, 61, 4449–4459. [Google Scholar] [CrossRef]
- Flowers, T.J.; Munns, R.; Colmer, T.D. Sodium Chloride Toxicity and the Cellular Basis of Salt Tolerance in Halophytes. Ann. Bot. 2014, 115, 419–431. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Lorente, B.L.; Ortuño, M.; Câmara, J.S.; Gil-Izquierdo, A.; Bañón, S.; Sánchez-Blanco, M.J. Recycled Wastewater and Reverse Osmosis Brine Use for Halophytes Irrigation: Differences in Physiological, Nutritional and Hormonal Responses of Crithmum maritimum and Atriplex halimus Plants. Agronomy 2021, 11, 627. [Google Scholar] [CrossRef]
- Suganya, K.; Poornima, R.; Selvaraj, P.S.; Parameswari, E.; Kalaiselvi, P. Potential of Halophytes in Managing Soil Salinity and Mitigating Climate Change for Environmental Sustainability. Environ. Conserv. J. 2021, 22, 103–110. [Google Scholar] [CrossRef]
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- Shaygan, M.; Baumgartl, T. Reclamation of Salt-Affected Land: A Review. Soil Syst. 2022, 6, 61. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Bhowmik, P.C.; Hossain, M.A.; Rahman, M.M.; Prasad, M.N.V.; Ozturk, M.; Fujita, M. Potential Use of Halophytes to Remediate Saline Soils. BioMed Res. Int. 2014, 2014, 589341. [Google Scholar] [CrossRef]
- Ozturk, O.F.; Shukla, M.K.; Stringam, B.; Picchioni, G.A.; Gard, C. Irrigation with Brackish Water Changes Evapotranspiration, Growth and Ion Uptake of Halophytes. Agric. Water Manag. 2018, 195, 142–153. [Google Scholar] [CrossRef]
- Kankarla, V.; Shukla, M.K.; VanLeeuwen, D.; Schutte, B.C.; Picchioni, G.A. Growth, Evapotranspiration, and Ion Uptake Characteristics of Alfalfa and Triticale Irrigated with Brackish Groundwater and Desalination Concentrate. Agronomy 2019, 9, 789. [Google Scholar] [CrossRef]
- dos Santos, M.A.; Freire, M.R.; Freire, F.J.; da Rocha, A.T.; de Lucena, P.G.; Ladislau, C.M.P.; de Melo, H.F. Reclamation of Saline Soil under Association between Atriplex nummularia L. and Glycophytes Plants. Agriculture 2022, 12, 1124. [Google Scholar] [CrossRef]
- Brackish Groundwater National Desalination Research Facility. Bureau of Reclamation: Well Water Data. Available online: https://www.usbr.gov/research/bgndrf/water.html (accessed on 1 February 2020).
- Blanney, H.F.; Criddle, W.D. Determining Consumptive Use and Irrigation Water Requirements; Technical Bulletin No. 1275; United States Department of Agriculture: Washington, DC, USA, 1962. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle Size Analysis. In Methods of Soil Analysis. Part I, 2nd ed.; ASA Monograph No. 9: Madison, WI, USA, 1986; pp. 337–382. [Google Scholar]
- Gavlak, R.; Horneck, D.A.; Miller, R.F. Plant, Soil and Water Reference Methods for the Western Region; Western Region Extension Publication: Jackson, TN, USA, 2005; Volume 125. [Google Scholar]
- United States Environmental Protection Agency. Method 6020: Inductively Coupled Plasma—Mass Spectrometry; United States Environmental Protection Agency: Washington, DC, USA, 1994. [Google Scholar]
- Robbins, C.W. Sodium Absorption Ratio-Exchangeable Sodium Percentage Relationships in a High Potassium Saline-Sodic Soil. Irrig. Sci. 1983, 5, 173–179. [Google Scholar] [CrossRef]
- Lamond, R.; Whitney, D.A. Management of Saline and Sodic Soils; MF-1022; Department of Agronomy, University of Kansas: Manhattan, KS, USA, 1992. [Google Scholar]
- Davis, J.M.; Waskom, R.M.; Bauder, T.A. Managing Sodic Soils; Fact Sheet No. 0.504; University of Colorado: Denver, CO, USA, 2012; Available online: https://extension.colostate.edu/docs/pubs/crops/00504.pdf (accessed on 20 February 2020).
- Gamalero, E.; Bona, E.; Todeschini, V.; Lingua, G. Saline and Arid Soils: Impact on Bacteria, Plants, and Their Interaction. Biology 2020, 9, 116. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Pagliai, M.; Vignozzi, N. Effect of Reclamation on the Structure of Silty-Clay Soils Irrigated with Saline-Sodic Waters. Int. Agrophysics 2015, 29, 23–30. [Google Scholar] [CrossRef]
- Rasouli, F.; Kiani Pouya, A.; Karimian, N. Wheat Yield and Physico-Chemical Properties of a Sodic Soil from Semi-Arid Area of Iran as Affected by Applied Gypsum. Geoderma 2013, 193–194, 246–255. [Google Scholar] [CrossRef]
- Buelow, M.C.; Steenwerth, K.; Parikh, S.J. The Effect of Mineral-Ion Interactions on Soil Hydraulic Conductivity. Agric. Water Manag. 2015, 152, 277–285. [Google Scholar] [CrossRef]
- Horneck, D.S.; Ellsworth, J.W.; Hopkins, B.G.; Sullivan, D.M. Managing Salt Affected Soils for Crop Production; Pacific North West 601-E; Oregon State University: Corvallis, OR, USA; University of Idaho: Moscow, ID, USA; Washington State University: Pullman, WA, USA, 2007. [Google Scholar]
- Provin, T.L.; McFarland, M.L. Essential Nutrients for Plants: ESC-009; Texas A&M AgriLife Extension Service: College Station, TX, USA, 2014. [Google Scholar]
- Garnier, E.; Berger, A.; Rambal, S. Water Balance and Pattern of Soil Water Uptake in a Peach Orchard. Agric. Water Manag. 1986, 11, 145–158. [Google Scholar] [CrossRef]
- Araya Vargas, J.; Gil, P.M.; Meza, F.; Yáñez, G.; Menanno, G.; García-Gutiérrez, V.; Jesús, A.; Poblete, F.; Figueroa, R.; Maringue, J.; et al. Soil Electrical Resistivity Monitoring as a Practical Tool for Evaluating Irrigation Systems Efficiency at the Orchard Scale: A Case Study in a Vineyard in Central Chile. Irrig. Sci. 2020, 39, 123–143. [Google Scholar] [CrossRef]
- Flores, A.M.; Shukla, M.K.; Schutte, B.J.; Picchioni, G.; Daniel, D. Physiologic Response of Six Plant Species Grown in Two Contrasting Soils and Irrigated with Brackish Groundwater and RO Concentrate. Arid. Land Res. Manag. 2017, 31, 182–203. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Hassoun, P.; Lebas, F. Saltbush (Atriplex halimus). Feedipedia. Available online: https://www.feedipedia.org/node/24708 (accessed on 20 February 2020).
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985. [Google Scholar]
- Li, X.; Kang, Y. Agricultural Utilization and Vegetation Establishment on Saline-Sodic Soils Using a Water–Salt Regulation Method for Scheduled Drip Irrigation. Agric. Water Manag. 2020, 231, 105995. [Google Scholar] [CrossRef]
- Li, P.; Ren, L. Evaluating the Saline Water Irrigation Schemes Using a Distributed Agro-Hydrological Model. J. Hydrol. 2021, 594, 125688. [Google Scholar] [CrossRef]
- Glenn, E.P.; Anday, T.; Chaturvedi, R.; Martinez-Garcia, R.; Pearlstein, S.; Soliz, D.; Nelson, S.G.; Felger, R.S. Three Halophytes for Saline-Water Agriculture: An Oilseed, a Forage and a Grain Crop. Environ. Exp. Bot. 2013, 92, 110–121. [Google Scholar] [CrossRef]
- Ventura, Y.; Eshel, A.; Pasternak, D.; Sagi, M. The Development of Halophyte-Based Agriculture: Past and Present. Ann. Bot. 2014, 115, 529–540. [Google Scholar] [CrossRef] [PubMed]
Irrigation (3 Replicates) | Distance from Emitter (2 Sides) | Soil Depth | Time of Sampling |
---|---|---|---|
80% ET0 | 30 cm | 0–25 cm | Baseline |
60% ET0 | 60 cm | 25–50 cm | End of Year One |
90 cm | End of Year Three |
Parameter Name | Reporting Units | Well 2 | Well 3 |
---|---|---|---|
Total Alkalinity (as CaCO3) | mg/L CaCO3 | 210.17 | 181.00 |
Chloride | mg/L | 582.83 | 649.67 |
Hardness, Total (as CaCO3) | mg/L | 2463.33 | 1830.00 |
Nitrogen, Nitrate (as N) | mg/L | 6.63 | 2.55 |
Calcium | mg/L | 489.67 | 424.33 |
Magnesium | mg/L | 301.17 | 188.33 |
Sodium | mg/L | 652.5 | 350.63 |
Potassium | mg/L | 2.44 | 2.93 |
Solids, Filterable Total Dissolved Solids | mg/L | 5155.00 | 3420.00 |
EC (calculated from TDS) | dS/m | 6.45 | 5.34 |
pH—Aqueous | pH units | 7.35 | 7.35 |
Parameter | Unit | Depth | Irrigation | Distance from Emitter | Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0–25 cm | 25–50 cm | 60% | 80% | 30 cm | 60 cm | 90 cm | Baseline | End of Year 1 | End of Year 3 | ||
Electrical Conductivity | dS/m | 23.31 | 23.99 | 26.96 * | 20.34 | 18.66 * | 31.88 ** | 20.43 | 20.10 | 20.72 | 30.12 * |
Sodium Absorption Ratio | mEq/L | 14.13 | 15.24 | 16.76 * | 14.14 | 9.78 | 18.02 * | 18.56 * | 10.89 * | 19.29 ** | 16.18 |
Exchangeable Sodium Percentage | % | 15.28 | 16.59 | 17.92 * | 13.63 | 10.48 | 18.55 * | 18.53 * | 12.44 * | 20.43 ** | 16.78 |
Magnesium | mg/L | 563.89 | 562.41 | 649.03 * | 485.71 | 474.96 * | 603.63 | 623.52 ** | 410.51 * | 588.47 | 703.13 ** |
Calcium | mg/L | 5811.46 * | 4347.24 | 5229.56 | 5685.56 | 5192.70 | 5580.56 | 5599.42 | 1270.53 * | 7348.61 | 7753.55 ** |
Potassium | mg/L | 559.81 | 502.37 | 535.69 | 598.27 * | 474.48 | 613.82 * | 612.65 * | 250.45 | 746.45 * | 704.04 * |
Nitrogen (as Nitrate) | mg/L | 117.37 | 89.03 | 107.07 | 85.00 | 18.72 * | 100.99 | 168.38 ** | 190.65 ** | 60.18 | 37.26 * |
Chloride | mg/L | 3055.71 | 3297.76 | 3912.15 * | 2348.89 | 1366.04 * | 4057.39 ** | 3968.14 | 4907.27 ** | 2899.47 | 1584.84 * |
Sodium | mg/L | 1372.50 | 1412.74 | 1556.96 * | 1160.67 | 749.72 | 1645.67 * | 1681.05 * | 1870.86 ** | 1189.78 | 1015.81 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerra, S.M.; Shukla, M.K.; Jeon, S.; O’Meara, S. The Effects of Brackish Irrigation on Soil Ion Accumulation and Growth of Atriplex Species. Soil Syst. 2023, 7, 84. https://doi.org/10.3390/soilsystems7040084
Cerra SM, Shukla MK, Jeon S, O’Meara S. The Effects of Brackish Irrigation on Soil Ion Accumulation and Growth of Atriplex Species. Soil Systems. 2023; 7(4):84. https://doi.org/10.3390/soilsystems7040084
Chicago/Turabian StyleCerra, Sarah M., Manoj K. Shukla, Soyoung Jeon, and Scott O’Meara. 2023. "The Effects of Brackish Irrigation on Soil Ion Accumulation and Growth of Atriplex Species" Soil Systems 7, no. 4: 84. https://doi.org/10.3390/soilsystems7040084
APA StyleCerra, S. M., Shukla, M. K., Jeon, S., & O’Meara, S. (2023). The Effects of Brackish Irrigation on Soil Ion Accumulation and Growth of Atriplex Species. Soil Systems, 7(4), 84. https://doi.org/10.3390/soilsystems7040084