Soil and Water Losses with Simulated Rainfall Considering Experimental Plots and Rainfall Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rainfall Simulator Description
2.2. Experimental Procedure
2.3. Statistical Analysis
3. Results
3.1. Precipitation Intensity, Water Use Efficiency, and the Uniformity Coefficient
3.2. Characterization of the Rainfall Patterns
3.3. Spatial Distribution of the Precipitation Intensity
3.4. Water and Soil Losses
4. Discussion
4.1. Precipitation Intensity, Water Use Efficiency, and the Uniformity Coefficient
4.2. Characterization of the Rainfall Patterns
4.3. Spatial Distribution of the Precipitation Intensity
4.4. Water and Soil Losses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abudi, I.; Carmi, G.; Berliner, P. Rainfall simulator for field runoff studies. J. Hydrol. 2012, 454–455, 76–81. [Google Scholar] [CrossRef]
- Carvalho, D.F.; Eduardo, E.N.; Almeida, W.S.; Santos, L.A.F.; Alves Sobrinho, T. Water erosion and soil water infiltration in different stages of corn development and tillage systems. Rev. Bras. Eng. Agrícola Ambient. 2015, 19, 1072–1078. [Google Scholar] [CrossRef]
- Zhao, L.; Hou, R.; Wu, F.; Keesstra, S. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil Tillage Res. 2018, 179, 47–53. [Google Scholar] [CrossRef]
- Kabelka, D.; Kincl, D.; Janeček, M.; Vopravil, J.; Vráblík, P. Reduction in soil organic matter loss caused by water erosion in inter-rows of hop gardens. Soil Water Res. 2019, 14, 172–182. [Google Scholar] [CrossRef]
- Kavian, A.; Mohammad, M.; Cerdà, A.; Fallah, M.; Abdollahi, Z. Simulated raindrop’s characteristic measurements. A new approach of image processing tested under laboratory rainfall simulation. Catena 2018, 167, 190–197. [Google Scholar] [CrossRef]
- Wang, B.; Steiner, J.; Zheng, F.; Gowda, P. Impact of rainfall pattern on interrill erosion process. Earth Surf. Process. Landf. 2017, 42, 1833–1846. [Google Scholar] [CrossRef]
- Marques, V.S.; Ceddia, M.B.; Antunes, M.A.H.; Carvalho, D.F.; Anache, J.A.A.; Rodrigues, D.B.B.; Oliveira, P.T.S. USLE K-Factor Method Selection for a Tropical Catchment. Sustainability 2019, 11, 1840. [Google Scholar] [CrossRef]
- Falcão, K.S.; Panachuki, E.; Monteiro, F.N.; Menezes, R.S.; Rodrigues, D.B.B.; Sone, J.S.; Oliveira, P.T.S. Surface runoff and soil erosion in a natural regeneration area of the Brazilian Cerrado. Int. Soil Water Conserv. Res. 2020, 8, 124–130. [Google Scholar] [CrossRef]
- Munster, C.L.; Taucer, P.I.; Wilcox, B.P.; Porter, S.C.; Richards, C.E. An approach for simulating rainfall above the tree canopy at the hillslope scale. Trans. ASABE 2006, 49, 915–942. [Google Scholar] [CrossRef]
- Carvalho, D.F.; Macedo, P.M.S.; Pinto, M.F.; Almeida, W.S.; Schultz, N. Soil loss and runoff obtained with customized precipitation patterns simulated by InfiAsper. Int. Soil Water Conserv. Res. 2022, 10, 407–413. [Google Scholar] [CrossRef]
- Iserloh, T.; Ries, J.B.; Arnáez, J.; Boix-Fayos, C.; Butzen, V.; Cerdà, A.; Echeverría, M.T.; Fernández-Gálvez, J.; Fister, W.; Geißler, C.; et al. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena 2013, 110, 100–112. [Google Scholar] [CrossRef]
- Mhaske, S.N.; Pathak, K.; Basak, A. A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory. Catena 2019, 172, 408–420. [Google Scholar] [CrossRef]
- Sousa, S.F.; Mendes, T.A.; Siqueira, E.Q. Development and calibration of a rainfall simulator for hydrological studies. Rev. Bras. Recur. Hídr. 2017, 22, e59. [Google Scholar] [CrossRef]
- Dunkerley, D. The case for increased validation of rainfall simulation as a tool for researching runoff, soil erosion, and related processes. Catena 2021, 202, 105283. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Foster, G.R.; Moldenhauer, W.C. Storm patterns effect on infiltration, runoff, and erosion. Trans. ASAE 1988, 31, 414–420. [Google Scholar] [CrossRef]
- Alves Sobrinho, T.; Gomez-Macpherson, H.; Gomez, J.A. A portable integrated rainfall and overland flow Simulator. Soil Use Manag. 2008, 24, 163–170. [Google Scholar] [CrossRef]
- Panachuki, E.; Santos, M.A.N.; Pavei, D.S.; Alves Sobrinho, T.; Silva, M.A.C.; Montanari, R. Soil and water loss in Ultisol of the Cerrado-Pantanal Ecotone under different management systems. Afr. J. Agric. Res. 2015, 10, 926–932. [Google Scholar] [CrossRef]
- Almeida, W.S.; Panachuki, E.; Oliveira, P.T.S.; Silva, R.M.; Alves Sobrinho, T.; Carvalho, D.F. Effect of soil tillage and vegetal cover on soil water infiltration. Soil Tillage Res. 2018, 175, 130–138. [Google Scholar] [CrossRef]
- Alves, M.A.B.; Souza, A.P.; Almeida, F.T.; Hoshide, A.K.; Araujo, H.B.; Silva, A.F.; Carvalho, D.F. Influence of land use and crop cover on soil erosion in agricultural frontier areas in the Cerrado-Amazon ecotone, Brazil. Sustainability 2023, 15, 4954. [Google Scholar] [CrossRef]
- Morin, J.; Goldberg, D.; Seginer, I. A rainfall simulator with rotating disk. Trans. ASAE 1967, 10, 74–77. [Google Scholar] [CrossRef]
- Macedo, P.M.S.; Pinto, M.F.; Alves Sobrinho, T.; Schultz, N.; Coutinho, T.A.R.; Carvalho, D.F. A Modified portable rainfall simulator for soil erosion assessment under different rainfall patterns. J. Hydrol. 2021, 596, 126052. [Google Scholar] [CrossRef]
- Nielsen, K.T.; Moldrup, P.; Thorndahl, S.; Nielsen, J.E.; Duus, L.B.; Rasmussen, S.H.; Uggerby, M.; Rasmussen, M.R. Automated rainfall simulator for variable rainfall on urban green areas. Hydrol. Process. 2019, 33, 3364–3377. [Google Scholar] [CrossRef]
- Green, D.; Pattison, I. Christiansen uniformity revisited: Re-thinking uniformity assessment in rainfall simulator studies. Catena 2022, 217, 106424. [Google Scholar] [CrossRef]
- Christiansen, J.E. Irrigation by Sprinkling; California Agricultural Experiment Station: Berkeley, CA, USA, 1942. [Google Scholar]
- Dunkerley, D. Rain event properties in nature and in rainfall simulation experiments: A comparative review with recommendations for increasingly systematic study and reporting. Hydrol. Process 2008, 22, 4415–4435. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. A review of the design and operation of runoff and soil loss plots. Catena 2016, 145, 257–265. [Google Scholar] [CrossRef]
- Amore, E.; Modica, C.; Nearing, M.A.; Santoro, V.C. Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins. J. Hydrol. 2004, 293, 100–114. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Cunha, T.J.F.; Oliveira, J.B. Brazilian Soil Classification System, 5th ed.; National Center for Soil Research: Rio de Janeiro, Spain, 2018; pp. 287–306. [Google Scholar]
- Ferreira, D. Sisvar: A computer statistical analysis system. Ciênc. Agrotecnol. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Cerdà, A.; Ibáñez, S.; Calvo, A. Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Technol. 1997, 11, 163–170. [Google Scholar] [CrossRef]
- Lasanta, T.; Garcıía-Ruiz, J.M.; Pérez-Rontomé, C.; Sancho-Marcén, C. Runoff and sediment yield in a semi-arid environment: The effect of land management after farmland abandonment. Catena 2000, 38, 265–278. [Google Scholar] [CrossRef]
- León, J.; Echeverría, M.; Badía, D.; Martí, C.; Álvarez, C. Effectiveness of wood chips cover at reducing erosion in two contrasted burnt soils. Z. Fur Geomorphol. Suppl. 2013, 57, 27–37. [Google Scholar] [CrossRef]
- Iserloh, T.; Fister, W.; Seeger, M.; Willger, H.; Ries, J. A small portable rainfall simulator for reproducible experiments on soil erosion. Soil Tillage Res. 2012, 124, 131–137. [Google Scholar] [CrossRef]
- Mayerhofer, C.; Meißl, G.; Klebinder, K.; Kohl, B.; Markart, G. Comparison of the results of a small-plot and a large-plot rainfall simulator—Effects of land use and land cover on surface runoff in Alpine catchments. Catena 2017, 156, 184–196. [Google Scholar] [CrossRef]
- Neumann, M.; Kavka, P.; Devátý, J.; Stašek, J.; Strouhal, L.; Tejkl, A.; Kubínová, R.; Rodrigo-Comino, J. Effect of plot size and precipitation magnitudes on the activation of soil erosion processes using simulated rainfall experiments in vineyards. Front. Environ. Sci. 2022, 10, 949774. [Google Scholar] [CrossRef]
- Parsons, A.J.; Stone, P.M. Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion. Catena 2006, 67, 68–78. [Google Scholar] [CrossRef]
- Li, X.; Chang, S.X.; Salifu, K.F. Soil texture and layering effects on water and salt dynamics in the presence of a water table: A review. Environ. Rev. 2014, 22, 1–10. [Google Scholar] [CrossRef]
- Dunkerley, D. Effects of rainfall intensity fluctuations on infiltration and runoff: Rainfall simulation on dry land soils, Fowlers Gap, Australia. Hydrol. Process. 2012, 26, 2211–2224. [Google Scholar] [CrossRef]
- Schindler Wildhaber, Y.; Bänninger, D.; Burri, K.; Alewell, C. Evaluation and application of a portable rainfall simulator on subalpine grassland. Catena 2012, 91, 56–62. [Google Scholar] [CrossRef]
- Alavinia, M.; Saleh, F.N.; Asadi, H. Effects of rainfall patterns on runoff and rainfall-induced erosion. Int. J. Sediment Res. 2019, 34, 270–278. [Google Scholar] [CrossRef]
Horizon * | PD | BD | TP | Ks | Sand | Silt | Clay | ||
---|---|---|---|---|---|---|---|---|---|
Coarse | Fine | Total | |||||||
(g cm−3) | (%) | (m h−1) | (%) | ||||||
Ap (0.0–0.18 m) | 2.38 | 1.64 | 31.10 | 0.0358 | 66 | 17 | 83 | 4 | 13 |
A (0.18–0.34 m) | 2.42 | 1.57 | 35.17 | 0.0629 | 64 | 17 | 81 | 8 | 11 |
AB (0.34–0.41 m) | 2.29 | 1.58 | 31.23 | 0.0489 | 56 | 16 | 72 | 8 | 20 |
BA (0.41–0.51 m) | 2.26 | 1.72 | 24.17 | 0.0671 | 42 | 11 | 53 | 9 | 38 |
Bt1 (0.51–0.92 m) | 2.06 | 1.45 | 29.86 | 0.0782 | 28 | 4 | 32 | 16 | 52 |
Rotation (rpm) | WC (L min−1) | Circular Plot | Rectangular Plot | ||||
---|---|---|---|---|---|---|---|
PI (mm h−1) | WUE (%) | CU (%) | PI (mm h−1) | WUE (%) | CU (%) | ||
138 | 2.24 | 146.4 | 54.4 | 84.9 | 114.9 | 59.5 | 81.2 |
264 | 1.61 | 99.5 | 51.6 | 89.3 | 80.8 | 58.4 | 82.5 |
420 | 1.19 | 75.7 | 53.0 | 90.3 | 62.1 | 60.6 | 81.0 |
684 | 0.58 | 34.3 | 49.3 | 83.0 | 35.4 | 71.0 | 72.2 |
804 | 0.50 | 26.7 | 44.3 | 75.8 | 28.2 | 65.1 | 67.5 |
Plots | Rainfall Patterns | |||
---|---|---|---|---|
Advanced | Intermediate | Delayed | Constant | |
Rectangular | 78.2 | 79.0 | 78.5 | 77.7 |
Circular | 83.5 | 83.8 | 83.5 | 81.7 |
Rainfall Patterns | Runoff Depth (mm) | Soil Loss (g m−2) | ||
---|---|---|---|---|
Circular Plot | Rectangular Plot | Circular Plot | Rectangular Plot | |
Advanced | 14.4 ± 0.7 aA | 6.7 ± 3.5 bB | 27.2 ± 7.2 aA | 7.8 ± 3.9 bAB |
Intermediate | 14.3 ± 2.0 aA | 12.0 ± 1.1 aA | 16.8 ± 0.9 aAB | 13.1 ± 3.0 aA |
Delayed | 10.4 ± 2.7 bAB | 14.1 ± 2.4 aA | 10.6 ± 1.2 aBC | 14.1 ± 7.5 aA |
Constant | 7.8 ± 2.0 aB | 7.1 ± 2.4 aB | 7.2 ± 2.3 aC | 5.7 ± 1.2 aB |
CV (%) | 20.67 | 32.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, D.F.; Alves, A.S.; Macedo, P.M.S.; de Oliveira, P.T.S.; Schultz, N. Soil and Water Losses with Simulated Rainfall Considering Experimental Plots and Rainfall Patterns. Soil Syst. 2023, 7, 87. https://doi.org/10.3390/soilsystems7040087
de Carvalho DF, Alves AS, Macedo PMS, de Oliveira PTS, Schultz N. Soil and Water Losses with Simulated Rainfall Considering Experimental Plots and Rainfall Patterns. Soil Systems. 2023; 7(4):87. https://doi.org/10.3390/soilsystems7040087
Chicago/Turabian Stylede Carvalho, Daniel Fonseca, Amanda Sales Alves, Pietro Menezes Sanchez Macedo, Paulo Tarso Sanches de Oliveira, and Nivaldo Schultz. 2023. "Soil and Water Losses with Simulated Rainfall Considering Experimental Plots and Rainfall Patterns" Soil Systems 7, no. 4: 87. https://doi.org/10.3390/soilsystems7040087
APA Stylede Carvalho, D. F., Alves, A. S., Macedo, P. M. S., de Oliveira, P. T. S., & Schultz, N. (2023). Soil and Water Losses with Simulated Rainfall Considering Experimental Plots and Rainfall Patterns. Soil Systems, 7(4), 87. https://doi.org/10.3390/soilsystems7040087