Cognitive Soil Digital Twin for Monitoring the Soil Ecosystem: A Conceptual Framework
Abstract
:1. Introduction
2. Background and State-of-the-Art
2.1. Digital Twin Technologies
- Real-time mapping of a physical entity with high fidelity: The digital twin must be a complete virtual copy of its physical counterpart, with high-precision sensors providing accurate measurements, which, in turn, enable the twin to simulate and predict the different system states.
- Entire lifecycle data management: As the physical counterpart is dynamic, it is necessary to store the entire lifecycle data of the system, enabling functions such as historical state analysis, health analysis, and other data mining and analytical activities. Due to the high volume of such data, distributed data storage architectures must be considered. These elaborate analytical processes rely heavily on the data stored and managed throughout the system’s lifecycle, but empower the retrospective examination of the soil’s past conditions, which is essential for assessing the performance and health of the system over time.
- Self-evolution: The digital twin should be able to adapt to changes and evolve; changes recorded in the physical counterpart ought to be reflected in the twin, with the data collected in real-time enabling the evolution and maturity of the twin in parallel with the physical counterpart. The self-evolution aspect also concerns the update of the various models and simulations when new data become available.
- Multi-disciplinarity in virtual modelling and simulation: Different disciplines such as computer science, communications and automation and domain-specific knowledge (such as soil science in the case of the soil digital twin) must be fused to provide high-fidelity virtual modelling technologies. In effect, multi-domain data and knowledge coupled with multi-timescale and multi-dimensional information must be combined in order to provide accurate modelling and simulation.
2.2. Tools and Techniques for Soil Monitoring
2.3. Limitations of Contemporary Approaches
2.4. Advantages of a Cognitive Soil Digital Twin
2.4.1. Real-Time Monitoring and Data Fusion
2.4.2. Simulation and Scenario Analysis
2.4.3. Policy Support and Environmental Management
3. Proposed Architecture for a Cognitive Soil Digital Twin
3.1. System Components
3.1.1. Physical Layer: Data Acquisition and Feedback
3.1.2. Data Integration and Fusion
3.1.3. Data Analytics: Geospatial Modelling and Simulation
3.1.4. Visualisation and Interaction
- Enhancing understanding: Visualisation and user interface tools are crucial for digital twins as they translate complex data and simulations into accessible visual representations. These tools provide stakeholders with an intuitive understanding of intricate systems, fostering better decision-making and enabling effective communication across technical and non-technical audiences.
- Interactivity and engagement: Visualisation and user interface tools offer interactivity and engagement, allowing users to explore, manipulate, and analyse the digital twin’s virtual environment. This hands-on experience not only deepens understanding, but also empowers users to test scenarios, validate hypotheses, and collaborate in real-time, ultimately driving innovation and efficiency in various industries.
3.2. Technological Stack of a Cognitive Digital Twin
3.2.1. Sensor Networks and Internet of Things
3.2.2. Data Infrastructure and Management
- Scalability and elasticity: The architecture should possess the capacity to scale seamlessly as the volume and complexity of incoming data expand. It should also exhibit elasticity to handle sudden surges in data influx without compromising performance. Various databases provide both horizontal and vertical scaling, e.g., MongoDB, DynamoDB, and Cassandra [85].
- Data integration and fusion: The data infrastructure must be capable of seamlessly integrating data from various sources, regardless of format or origin. This entails overcoming data silos and harmonising data from disparate sensors and platforms to provide a coherent and holistic view of soil behaviour. For example, platforms and initiatives such as the SensorThings API or Telegraf (https://www.influxdata.com/time-series-platform/telegraf/, accessed on 12 September 2023) provide standardised interfaces for seamless integration and management of sensor data [86].
- Real-time processing: Given the dynamic nature of soil systems and the need for timely decision-making, the architecture’s data-processing capabilities should be optimised for real-time or near-real-time analysis. This empowers users to make informed decisions promptly.
- Data quality and validation: Ensuring the accuracy and reliability of data is crucial. The infrastructure should include mechanisms for data quality assessment and validation, identifying outliers or errors that could lead to misleading insights. The exact mechanisms used in each database management system differ, but most address these using data constraints, enforcing data types, using referential integrity, and/or providing trigger mechanisms (e.g., to detect outliers before inserting new data).
- Security and privacy: As data encompass sensitive information, the infrastructure must be fortified with robust security measures to safeguard against unauthorised access, data breaches, and cyber threats. Data privacy concerns, including compliance with regulations such as the General Data Protection Regulation (GDPR), must also be rigorously addressed.
- Transparency and ownership: A clear delineation of data ownership and sharing rights is essential to establish trust among stakeholders. Additionally, transparency in data-processing and analytics methodologies fosters credibility in the insights derived from the digital twin.
3.2.3. Cloud Computing and High-Performance Computing
3.2.4. AI/ML Algorithms and Models
3.2.5. Visualisation and User Interface Tools
3.2.6. Backup and Disaster-Recovery Systems
3.2.7. Performance Evaluation and Iterative Improvement
4. Challenges and Opportunities
4.1. Challenges for Developing a Soil Digital Twin
4.1.1. Data Acquisition and Integration
4.1.2. Model Accuracy, Uncertainty, and Validation
4.1.3. Privacy and Security
4.1.4. End-User Engagement and Acceptance
4.2. Opportunities of the System
4.2.1. Data-Driven Research and Analysis Using Co-Design
4.2.2. Education and Outreach
4.2.3. Innovation in Sensor Technology
4.2.4. Policy Evaluation: Climate Resilience and Adaptation and Soil Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
API | Application Programming Interface |
AR | Augmented reality |
CPU | Central Processing Unit |
ESA | European Space Agency |
GDPR | General Data Protection Regulation |
HPC | high-performance computing |
IoT | Internet of Things |
MIR | Mid-infrared |
ML | Machine learning |
UAV | Unmanned aerial vehicle |
VNIR | Visible to near infrared |
XR | Extended reality |
References
- Delgado-Baquerizo, M.; Reich, P.B.; Trivedi, C.; Eldridge, D.J.; Abades, S.; Alfaro, F.D.; Bastida, F.; Berhe, A.A.; Cutler, N.A.; Gallardo, A.; et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 2020, 4, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, M.; Coyne, M.S.; Sistani, K.R. How Much Margin Is Left for Degrading Agricultural Soils? The Coming Soil Crises. Soil Syst. 2022, 6, 22. [Google Scholar] [CrossRef]
- Rickson, R.J.; Deeks, L.K.; Graves, A.; Harris, J.A.H.; Kibblewhite, M.G.; Sakrabani, R. Input constraints to food production: The impact of soil degradation. Food Secur. 2015, 7, 351–364. [Google Scholar] [CrossRef]
- Decaëns, T.; Jiménez, J.; Gioia, C.; Measey, G.; Lavelle, P. The values of soil animals for conservation biology. Eur. J. Soil Biol. 2006, 42, S23–S38. [Google Scholar] [CrossRef]
- Vidal, M.M.J. Criteria for Assessing the Environmental Quality of Soils in a Mediterranean Region for Different Land Use. Soil Syst. 2023, 7, 75. [Google Scholar] [CrossRef]
- Panagos, P.; Montanarella, L.; Barbero, M.; Schneegans, A.; Aguglia, L.; Jones, A. Soil priorities in the European Union. Geoderma Reg. 2022, 29, e00510. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Fogli, D. A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications. IEEE Access 2019, 7, 167653–167671. [Google Scholar] [CrossRef]
- Yao, J.F.; Yang, Y.; Wang, X.C.; Zhang, X.P. Systematic review of digital twin technology and applications. Vis. Comput. Ind. Biomed. Art 2023, 6, 10. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems; Springer International Publishing: Cham, Switzerland, 2016; pp. 85–113. [Google Scholar] [CrossRef]
- Li, L.; Lei, B.; Mao, C. Digital twin in smart manufacturing. J. Ind. Inf. Integr. 2022, 26, 100289. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Wang, W.; Zheng, Y.; Lv, H.; Lv, Z. Big data analysis of the Internet of Things in the digital twins of smart city based on deep learning. Future Gener. Comput. Syst. 2022, 128, 167–177. [Google Scholar] [CrossRef]
- Priyanka, E.; Thangavel, S.; Gao, X.Z.; Sivakumar, N. Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques. J. Ind. Inf. Integr. 2022, 26, 100272. [Google Scholar] [CrossRef]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors 2022, 22, 498. [Google Scholar] [CrossRef]
- Lang, S.; Tiede, D.; Riedler, B. Digital |Earth| observation. Eur. J. Remote Sens. 2021, 54, 1–5. [Google Scholar] [CrossRef]
- Nativi, S.; Mazzetti, P.; Craglia, M. Digital Ecosystems for Developing Digital Twins of the Earth: The Destination Earth Case. Remote Sens. 2021, 13, 2119. [Google Scholar] [CrossRef]
- Bharath, G.; Ch, R.; Karthik, M.; Chowdary, M. Revelation of Geospatial Information using Augmented Reality. In Proceedings of the 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 25–27 March 2021. [Google Scholar] [CrossRef]
- Fritz, S.; Fonte, C.; See, L. The Role of Citizen Science in Earth Observation. Remote Sens. 2017, 9, 357. [Google Scholar] [CrossRef]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine Learning for the Geosciences: Challenges and Opportunities. IEEE Trans. Knowl. Data Eng. 2019, 31, 1544–1554. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Singh, M.; Srivastava, R.; Fuenmayor, E.; Kuts, V.; Qiao, Y.; Murray, N.; Devine, D. Applications of Digital Twin across Industries: A Review. Appl. Sci. 2022, 12, 5727. [Google Scholar] [CrossRef]
- Sharma, A.; Kosasih, E.; Zhang, J.; Brintrup, A.; Calinescu, A. Digital Twins: State of the art theory and practice, challenges, and open research questions. J. Ind. Inf. Integr. 2022, 30, 100383. [Google Scholar] [CrossRef]
- Brevik, E.C.; Calzolari, C.; Miller, B.A.; Pereira, P.; Kabala, C.; Baumgarten, A.; Jordán, A. Soil mapping, classification, and pedologic modelling: History and future directions. Geoderma 2016, 264, 256–274. [Google Scholar] [CrossRef]
- Ballabio, C.; Panagos, P.; Monatanarella, L. Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 2016, 261, 110–123. [Google Scholar] [CrossRef]
- Rossel, R.V.; Walvoort, D.; McBratney, A.; Janik, L.; Skjemstad, J. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Stenberg, B.; Rossel, R.A.V.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science. Adv. Agron. 2010, 107, 163–215. [Google Scholar] [CrossRef]
- Ge, Y.; Thomasson, J.A.; Sui, R. Remote sensing of soil properties in precision agriculture: A review. Front. Earth Sci. 2011, 5, 229–238. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsakiridis, N.; Chabrillat, S.; Demattê, J.A.M.; Ben-Dor, E.; Gholizadeh, A.; Zalidis, G.; van Wesemael, B. Earth Observation Data-Driven Cropland Soil Monitoring: A Review. Remote Sens. 2021, 13, 4439. [Google Scholar] [CrossRef]
- Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.; Bemmelen, J.V.; Colangeli, G.; Lehmann, A. Knowledge generation using satellite earth observations to support sustainable development goals (SDG): A use case on Land degradation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102068. [Google Scholar] [CrossRef]
- Besson, A.; Cousin, I.; Samouëlian, A.; Boizard, H.; Richard, G. Structural heterogeneity of the soil tilled layer as characterized by 2D electrical resistivity surveying. Soil Tillage Res. 2004, 79, 239–249. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014, 223–225, 33–45. [Google Scholar] [CrossRef]
- Weihermüller, L.; Huisman, J.; Lambot, S.; Herbst, M.; Vereecken, H. Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J. Hydrol. 2007, 340, 205–216. [Google Scholar] [CrossRef]
- Kim, Y.; Evans, R.; Iversen, W. Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network. IEEE Trans. Instrum. Meas. 2008, 57, 1379–1387. [Google Scholar] [CrossRef]
- Corwin, D.; Scudiero, E. Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. Adv. Agron. 2019, 158, 1–130. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy; Vienna, Austria, 2022. [Google Scholar]
- McBratney, A.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma 2019, 352, 395–413. [Google Scholar] [CrossRef]
- Dondini, M.; Richards, M.; Pogson, M.; Jones, E.O.; Rowe, R.L.; Keith, A.M.; McNamara, N.P.; Smith, J.U.; Smith, P. Evaluation of the ECOSSE model for simulating soil organic carbon underiMiscanthus/iand short rotation coppice-willow crops in Britain. GCB Bioenergy 2015, 8, 790–804. [Google Scholar] [CrossRef]
- Zhang, X. Simulating eroded soil organic carbon with the SWAT-C model. Environ. Model. Softw. 2018, 102, 39–48. [Google Scholar] [CrossRef]
- Flathers, E.; Gessler, P.E. Building an Open Science Framework to Model Soil Organic Carbon. J. Environ. Qual. 2018, 47, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Dondini, M.; Richards, M.I.A.; Pogson, M.; McCalmont, J.; Drewer, J.; Marshall, R.; Morrison, R.; Yamulki, S.; Harris, Z.M.; Alberti, G.; et al. Simulation of greenhouse gases following land-use change to bioenergy crops using the ECOSSE model: A comparison between site measurements and model predictions. GCB Bioenergy 2015, 8, 925–940. [Google Scholar] [CrossRef]
- Guimberteau, M.; Zhu, D.; Maignan, F.; Huang, Y.; Yue, C.; Dantec-Nédélec, S.; Ottlé, C.; Jornet-Puig, A.; Bastos, A.; Laurent, P.; et al. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: Model description and validation. Geosci. Model Dev. 2018, 11, 121–163. [Google Scholar] [CrossRef]
- Molina, L.G.; Moreno Pérez, E.D.C.; Pérez, A.B. Simulation of soil organic carbon changes in Vertisols under conservation tillage using the RothC model. Sci. Agric. 2017, 74, 235–241. [Google Scholar] [CrossRef]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Liew, M.W.V.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Samarinas, N.; Tziolas, N.; Zalidis, G. Improved Estimations of Nitrate and Sediment Concentrations Based on SWAT Simulations and Annual Updated Land Cover Products from a Deep Learning Classification Algorithm. ISPRS Int. J. Geo-Inf. 2020, 9, 576. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Anderson, K.; Ryan, B.; Sonntag, W.; Kavvada, A.; Friedl, L. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo-Spat. Inf. Sci. 2017, 20, 77–96. [Google Scholar] [CrossRef]
- Negahban, A.; Smith, J.S. Simulation for manufacturing system design and operation: Literature review and analysis. J. Manuf. Syst. 2014, 33, 241–261. [Google Scholar] [CrossRef]
- Andries, A.; Morse, S.; Murphy, R.J.; Lynch, J.; Woolliams, E.R. Using Data from Earth Observation to Support Sustainable Development Indicators: An Analysis of the Literature and Challenges for the Future. Sustainability 2022, 14, 1191. [Google Scholar] [CrossRef]
- Ananthi, N.; Divya, J.; Divya, M.; Janani, V. IoT based smart soil monitoring system for agricultural production. In Proceedings of the 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 7–8 April 2017. [Google Scholar] [CrossRef]
- Sklenicka, P.; Zouhar, J.; Molnarova, K.J.; Vlasak, J.; Kottova, B.; Petrzelka, P.; Gebhart, M.; Walmsley, A. Trends of soil degradation: Does the socio-economic status of land owners and land users matter? Land Use Policy 2020, 95, 103992. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Z.; Jiang, H.; Wang, C.; Liu, J.; Liang, D. Big Earth Data: A new challenge and opportunity for Digital Earth’s development. Int. J. Digit. Earth 2016, 10, 1–12. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef]
- Mohamed, K.S. IoT Physical Layer: Sensors, Actuators, Controllers and Programming. In The Era of Internet of Things; Springer International Publishing: New York, NY, USA, 2019; pp. 21–47. [Google Scholar] [CrossRef]
- Purnomo, F.A.; Yoeseph, N.M.; Bawono, S.A.T.; Hartono, R. Development of air temperature and soil moisture monitoring systems with LoRA technology. J. Phys. Conf. Ser. 2021, 1825, 012029. [Google Scholar] [CrossRef]
- Prakosa, S.W.; Faisal, M.; Adhitya, Y.; Leu, J.S.; Köppen, M.; Avian, C. Design and Implementation of LoRa Based IoT Scheme for Indonesian Rural Area. Electronics 2021, 10, 77. [Google Scholar] [CrossRef]
- Gomes, V.; Queiroz, G.; Ferreira, K. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef]
- Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Chen, H.; Lippitt, C.D. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sens. 2022, 14, 3253. [Google Scholar] [CrossRef]
- Wang, T.; Ke, H.; Zheng, X.; Wang, K.; Sangaiah, A.K.; Liu, A. Big Data Cleaning Based on Mobile Edge Computing in Industrial Sensor-Cloud. IEEE Trans. Ind. Inform. 2020, 16, 1321–1329. [Google Scholar] [CrossRef]
- Jin, M.; Bai, Y.; Devys, E.; Di, L. Toward a Standardized Encoding of Remote Sensing Geo-Positioning Sensor Models. Remote Sens. 2020, 12, 1530. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef]
- Chen, G.; Lu, H.; Zou, W.; Li, L.; Emam, M.; Chen, X.; Jing, W.; Wang, J.; Li, C. Spatiotemporal fusion for spectral remote sensing: A statistical analysis and review. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 259–273. [Google Scholar] [CrossRef]
- Sun, K.; Zhu, Y.; Pan, P.; Hou, Z.; Wang, D.; Li, W.; Song, J. Geospatial data ontology: The semantic foundation of geospatial data integration and sharing. Big Earth Data 2019, 3, 269–296. [Google Scholar] [CrossRef]
- Arvor, D.; Belgiu, M.; Falomir, Z.; Mougenot, I.; Durieux, L. Ontologies to interpret remote sensing images: Why do we need them? GIScience Remote Sens. 2019, 56, 911–939. [Google Scholar] [CrossRef]
- Augustin, H.; Sudmanns, M.; Tiede, D.; Lang, S.; Baraldi, A. Semantic Earth Observation Data Cubes. Data 2019, 4, 102. [Google Scholar] [CrossRef]
- Ma, Y.; Minasny, B.; Malone, B.P.; Mcbratney, A.B. Pedology and digital soil mapping (DSM). Eur. J. Soil Sci. 2019, 70, 216–235. [Google Scholar] [CrossRef]
- Dai, Y.; Shangguan, W.; Wei, N.; Xin, Q.; Yuan, H.; Zhang, S.; Liu, S.; Lu, X.; Wang, D.; Yan, F. A review of the global soil property maps for Earth system models. Soil 2019, 5, 137–158. [Google Scholar] [CrossRef]
- Mitran, T.; Meena, R.S.; Chakraborty, A. Geospatial Technologies for Crops and Soils: An Overview. In Geospatial Technologies for Crops and Soils; Springer: Singapore, 2020; pp. 1–48. [Google Scholar] [CrossRef]
- Huang, Z.; Shen, Y.; Li, J.; Fey, M.; Brecher, C. A Survey on AI-Driven Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics. Sensors 2021, 21, 6340. [Google Scholar] [CrossRef]
- Nie, J.; Wang, Y.; Li, Y.; Chao, X. Artificial intelligence and digital twins in sustainable agriculture and forestry: A survey. Turk. J. Agric. For. 2022, 46, 642–661. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.A.; Vuelvas, J.; Correa, C.A.; Vallejo, V.E.; Patino, D. Machine learning and remote sensing techniques applied to estimate soil indicators—Review. Ecol. Indic. 2022, 135, 108517. [Google Scholar] [CrossRef]
- Simoes, R.; Camara, G.; Queiroz, G.; Souza, F.; Andrade, P.R.; Santos, L.; Carvalho, A.; Ferreira, K. Satellite Image Time Series Analysis for Big Earth Observation Data. Remote Sens. 2021, 13, 2428. [Google Scholar] [CrossRef]
- Zepp, S.; Heiden, U.; Bachmann, M.; Möller, M.; Wiesmeier, M.; van Wesemael, B. Optimized bare soil compositing for soil organic carbon prediction of topsoil croplands in Bavaria using Landsat. ISPRS J. Photogramm. Remote Sens. 2023, 202, 287–302. [Google Scholar] [CrossRef]
- Masood, T.; Egger, J. Augmented reality in support of Industry 4.0—Implementation challenges and success factors. Robot. Comput. Integr. Manuf. 2019, 58, 181–195. [Google Scholar] [CrossRef]
- Qiu, C.; Zhou, S.; Liu, Z.; Gao, Q.; Tan, J. Digital assembly technology based on augmented reality and digital twins: A review. Virtual Real. Intell. Hardw. 2019, 1, 597–610. [Google Scholar] [CrossRef]
- Makhataeva, Z.; Varol, H. Augmented Reality for Robotics: A Review. Robotics 2020, 9, 21. [Google Scholar] [CrossRef]
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Ning, H.; Li, Y.; Shi, F.; Yang, L.T. Heterogeneous edge computing open platforms and tools for Internet of things. Future Gener. Comput. Syst. 2020, 106, 67–76. [Google Scholar] [CrossRef]
- Bittencourt, L.; Immich, R.; Sakellariou, R.; Fonseca, N.; Madeira, E.; Curado, M.; Villas, L.; DaSilva, L.; Lee, C.; Rana, O. The Internet of Things, Fog and Cloud continuum: Integration and challenges. Internet Things 2018, 3-4, 134–155. [Google Scholar] [CrossRef]
- Wu, D.; Sakr, S.; Zhu, L. Big Data Storage and Data Models. In Handbook of Big Data Technologies; Springer International Publishing: New York, NY, USA, 2017; pp. 3–29. [Google Scholar] [CrossRef]
- Jazayeri, M.; Liang, S.; Huang, C.Y. Implementation and Evaluation of Four Interoperable Open Standards for the Internet of Things. Sensors 2015, 15, 24343–24373. [Google Scholar] [CrossRef]
- Sawadogo, P.; Darmont, J. On data lake architectures and metadata management. J. Intell. Inf. Syst. 2020, 56, 97–120. [Google Scholar] [CrossRef]
- Nambiar, A.; Mundra, D. An Overview of Data Warehouse and Data Lake in Modern Enterprise Data Management. Big Data Cogn. Comput. 2022, 6, 132. [Google Scholar] [CrossRef]
- Imran, H.A.; Wazir, S.; Ikram, A.J.; Ikram, A.A.; Ullah, H.; Ehsan, M. HPC as a Service: A naive model. arXiv 2020, arXiv:2003.00465. [Google Scholar] [CrossRef]
- Killough, B.; Rizvi, S.; Lubawy, A. Advancements in the Open Data Cube and the Use of Analysis Ready Data in the Cloud. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar] [CrossRef]
- Ruf, P.; Madan, M.; Reich, C.; Ould-Abdeslam, D. Demystifying MLOps and Presenting a Recipe for the Selection of Open-Source Tools. Appl. Sci. 2021, 11, 8861. [Google Scholar] [CrossRef]
- Kreuzberger, D.; Kühl, N.; Hirschl, S. Machine Learning Operations (MLOps): Overview, Definition, and Architecture. IEEE Access 2023, 11, 31866–31879. [Google Scholar] [CrossRef]
- Martín, C.; Langendoerfer, P.; Zarrin, P.S.; Díaz, M.; Rubio, B. Kafka-ML: Connecting the data stream with ML/AI frameworks. Future Gener. Comput. Syst. 2022, 126, 15–33. [Google Scholar] [CrossRef]
- Vuolo, F.; Ng, W.T.; Atzberger, C. Smoothing and gap-filling of high resolution multi-spectral time series: Example of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 202–213. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Blázquez-García, A.; Conde, A.; Mori, U.; Lozano, J.A. A Review on Outlier/Anomaly Detection in Time Series Data. ACM Comput. Surv. 2021, 54, 1–33. [Google Scholar] [CrossRef]
- Gettelman, A.; Geer, A.J.; Forbes, R.M.; Carmichael, G.R.; Feingold, G.; Posselt, D.J.; Stephens, G.L.; van den Heever, S.C.; Varble, A.C.; Zuidema, P. The future of Earth system prediction: Advances in model-data fusion. Sci. Adv. 2022, 8, eabn3488. [Google Scholar] [CrossRef]
- Gelfand, A.E.; Banerjee, S. Bayesian Modelling and Analysis of Geostatistical Data. Annu. Rev. Stat. Appl. 2017, 4, 245–266. [Google Scholar] [CrossRef]
- Schmidinger, J.; Heuvelink, G.B. Validation of uncertainty predictions in digital soil mapping. Geoderma 2023, 437, 116585. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Chen, Z.; Zhang, C.; Yu, H. Spatiotemporal forecasting in earth system science: Methods, uncertainties, predictability and future directions. Earth-Sci. Rev. 2021, 222, 103828. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Cardona, C.G.; Mohd-Yusof, J. Uncertainty Quantification in AI for Science. In Artificial Intelligence for Science; World Scientific: Singapore, 2023; pp. 553–570. [Google Scholar] [CrossRef]
- Yang, P.; Xiong, N.; Ren, J. Data Security and Privacy Protection for Cloud Storage: A Survey. IEEE Access 2020, 8, 131723–131740. [Google Scholar] [CrossRef]
- Kayes, A.S.M.; Kalaria, R.; Sarker, I.H.; Islam, M.S.; Watters, P.A.; Ng, A.; Hammoudeh, M.; Badsha, S.; Kumara, I. A Survey of Context-Aware Access Control Mechanisms for Cloud and Fog Networks: Taxonomy and Open Research Issues. Sensors 2020, 20, 2464. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Tian, Z.; Du, C.; Zuo, Q.; Su, S.; Fang, B. A Survey on Access Control in the Age of Internet of Things. IEEE Internet Things J. 2020, 7, 4682–4696. [Google Scholar] [CrossRef]
- Kounoudes, A.D.; Kapitsaki, G.M. A mapping of IoT user-centric privacy preserving approaches to the GDPR. Internet Things 2020, 11, 100179. [Google Scholar] [CrossRef]
- Finck, M.; Pallas, F. They who must not be identified—Distinguishing personal from non-personal data under the GDPR. Int. Data Priv. Law 2020, 10, 11–36. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsakiridis, N.L.; Samarinas, N.; Kalopesa, E.; Zalidis, G.C. Cognitive Soil Digital Twin for Monitoring the Soil Ecosystem: A Conceptual Framework. Soil Syst. 2023, 7, 88. https://doi.org/10.3390/soilsystems7040088
Tsakiridis NL, Samarinas N, Kalopesa E, Zalidis GC. Cognitive Soil Digital Twin for Monitoring the Soil Ecosystem: A Conceptual Framework. Soil Systems. 2023; 7(4):88. https://doi.org/10.3390/soilsystems7040088
Chicago/Turabian StyleTsakiridis, Nikolaos L., Nikiforos Samarinas, Eleni Kalopesa, and George C. Zalidis. 2023. "Cognitive Soil Digital Twin for Monitoring the Soil Ecosystem: A Conceptual Framework" Soil Systems 7, no. 4: 88. https://doi.org/10.3390/soilsystems7040088
APA StyleTsakiridis, N. L., Samarinas, N., Kalopesa, E., & Zalidis, G. C. (2023). Cognitive Soil Digital Twin for Monitoring the Soil Ecosystem: A Conceptual Framework. Soil Systems, 7(4), 88. https://doi.org/10.3390/soilsystems7040088