Effects of Water Management and Rice Varieties on Greenhouse Gas Emissions in Central Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Gas Sampling and Analysis
2.3. Estimation of Greenhouse Gas Emissions and Cumulative Emissions
2.4. Estimation of Global Warming Potential
2.5. Other Data Acquired
2.6. Statistical Analysis
3. Results
3.1. Seasonal Variation of Soil Redox Potential, Volumetric Water Content, and Temperature
3.2. Dynamic of CH4 Emissions
3.3. Dynamic of N2O Emissions
3.4. Dynamic of CO2 Emissions
3.5. Cumulative CH4 and N2O Emissions, and GWP
4. Discussion
4.1. Dynamic of CH4, N2O, and CO2 Emissions
4.2. Cumulative CH4 and N2O Emissions, and GWP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A.M. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crop. Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Norton, G.J.; Shafaei, M.; Travis, A.J.; Deacon, C.M.; Danku, J.; Pond, D.; Cochrane, N.; Lockhart, K.; Salt, D.; Zhang, H.; et al. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crop. Res. 2017, 205, 1–13. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci. 2009, 49, 2246–2260. [Google Scholar] [CrossRef]
- Kudo, Y.; Noborio, K.; Shimoozono, N.; Kurihara, R. The effective water management practice for mitigating greenhouse gas emissions and maintaining rice yield in central Japan. Agric. Ecosyst. Environ. 2014, 186, 77–85. [Google Scholar] [CrossRef]
- Haque, A.N.A.; Uddin, M.K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Solaiman, Z.M.; Mosharrof, M. Biochar with alternate wetting and drying irrigation: A potential technique for paddy soil management. Agriculture 2021, 11, 367. [Google Scholar] [CrossRef]
- Tran, D.H.; Hoang, T.N.; Tokida, T.; Tirol-Padre, A.; Minamikawa, K. Impacts of alternate wetting and drying on greenhouse gas emission from paddy field in Central Vietnam. Soil Sci. Plant Nutr. 2018, 64, 14–22. [Google Scholar] [CrossRef]
- Setyanto, P.; Pramono, A.; Adriany, T.A.; Susilawati, H.L.; Tokida, T.; Padre, A.T.; Minamikawa, K. Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Sci. Plant Nutr. 2018, 64, 23–30. [Google Scholar] [CrossRef]
- Oo, A.Z.; Sudo, S.; Inubushi, K.; Chellappan, U.; Yamamoto, A.; Ono, K.; Mano, M.; Hayashida, S.; Koothan, V.; Osawa, T.; et al. Mitigation potential and yield-scaled global warming potential of early-season drainage from a rice paddy in Tamil Nadu, India. Agronomy 2018, 8, 202. [Google Scholar] [CrossRef]
- Oliver, V.; Cochrane, N.; Magnusson, J.; Brachi, E.; Monaco, S.; Volante, A.; Courtois, B.; Vale, G.; Price, A.; Teh, Y.A. Effects of water management and cultivar on carbon dynamics, plant productivity and biomass allocation in European rice systems. Sci. Total Environ. 2019, 685, 1139–1151. [Google Scholar] [CrossRef]
- Sander, B.O.; Wassmann, R.; Palao, L.K.; Nelson, A. Climate-based suitability assessment for alternate wetting and drying water management in the Philippines: A novel approach for mapping methane mitigation potential in rice production. Carbon Manag. 2017, 8, 331–342. [Google Scholar] [CrossRef]
- Tirol-Padre, A.; Minamikawa, K.; Tokida, T.; Wassmann, R.; Yagi, K. Site-specific feasibility of alternate wetting and drying as a greenhouse gas mitigation option in irrigated rice fields in Southeast Asia: A synthesis. Soil Sci. Plant Nutr. 2018, 64, 2–13. [Google Scholar] [CrossRef]
- Chidthaisong, A.; Cha-un, N.; Rossopa, B.; Buddaboon, C.; Kunuthai, C.; Sriphirom, P.; Towprayoon, S.; Tokida, T.; Padre, A.T.; Minamikawa, K. Evaluating the effects of alternate wetting and drying (AWD) on methane and nitrous oxide emissions from a paddy field in Thailand. Soil Sci. Plant Nutr. 2018, 64, 31–38. [Google Scholar] [CrossRef]
- Iida, T.; Kakuda, K.; Ishikawa, M.; Okubo, H. Variation in Methane and Nitrous Oxide Emission from Practical Paddy Fields with Intermittent Irrigation. Trans. JSIDRE 2007, 247, 45–52. [Google Scholar]
- Reddy, K.R.; Patkic, W.H. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biol. Biochem. 1975, 7, 87–94. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Ahmed, M.N.; Akter, M.; Singh, U.; Sander, B.O. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. J. Environ. Manag. 2022, 307, 114520. [Google Scholar] [CrossRef] [PubMed]
- Gaihre, Y.K.; Singh, U.; Islam, S.M.M.; Huda, A.; Islam, M.R.; Satter, M.A.; Sanabria, J.; Islam, M.R.; Shah, A.L. Impacts of urea deep placement on nitrous oxide and nitric oxide emissions from rice fields in Bangladesh. Geoderma 2015, 259–260, 370–379. [Google Scholar] [CrossRef]
- Firestone, M.K.; Davidson, E.A. Microbiological basis of NO and N2O production and consumption in soil. In Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere; Andreae, M.O., Schimel, D.S., Eds.; John Wiley and Sons: Chichester, UK, 1989; pp. 7–21. [Google Scholar]
- Tariq, A.; Vu, Q.D.; Jensen, L.S.; de Tourdonnet, S.; Sander, B.O.; Wassmann, R.; van Mai, T.; de Neergaard, A. Mitigating CH4 and N2O emissions from intensive rice production systems in northern Vietnam: Efficiency of drainage patterns in combination with rice residue incorporation. Agric. Ecosyst. Environ. 2017, 249, 101–111. [Google Scholar] [CrossRef]
- Yu, K.; Patrick, W.H. Redox window with minimum global warming potential contribution from rice soils. Soil Sci. Soc. Am. J. 2004, 68, 2086–2091. [Google Scholar] [CrossRef]
- Nishimura, S.; Sawamoto, T.; Akiyama, H.; Sudo, S.; Yagi, K. Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Glob. Biogeochem. Cycles 2004, 18, 1–10. [Google Scholar] [CrossRef]
- Gutierrez, J.; Kim, S.Y.; Kim, P.J. Effect of rice cultivar on CH4 emissions and productivity in Korean paddy soil. Field Crop. Res. 2013, 146, 16–24. [Google Scholar] [CrossRef]
- Habib, M.A.; Islam, S.M.M.; Haque, M.A.; Hassan, L.; Ali, M.Z.; Nayak, S.; Dar, M.H.; Gaihre, Y.K. Effects of Irrigation Regimes and Rice Varieties on Methane Emissions and Yield of Dry Season Rice in Bangladesh. Soil Syst. 2023, 7, 41. [Google Scholar] [CrossRef]
- Camargo, E.S.; Pedroso, G.M.; Minamikawa, K.; Shiratori, Y.; Bayer, C. Intercontinental comparison of greenhouse gas emissions from irrigated rice fields under feasible water management practices: Brazil and Japan. Soil Sci. Plant Nutr. 2018, 64, 59–67. [Google Scholar] [CrossRef]
- Kobayashi, A.; Hori, K.; Yamamoto, T.; Yano, M. Koshihikari: A premium short-grain rice cultivar—Its expansion and breeding in Japan. Rice 2018, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Atera, E.; Itoh, K.; Atera, E.A.; Onyango, J.C.; Azuma, T.; Asanuma, S.; Itoh, K. Field evaluation of selected NERICA rice cultivars in Western Kenya. Afr. J. Agric. Res. 2011, 6, 60–66. [Google Scholar]
- Chaichana, N.; Bellingrath-Kimura, S.D.; Komiya, S.; Fujii, Y.; Noborio, K.; Dietrich, O.; Pakoktom, T. Comparison of closed chamber and eddy covariance methods to improve the understanding of methane fluxes from rice paddy fields in Japan. Atmosphere 2018, 9, 356. [Google Scholar] [CrossRef]
- Levy, P.E.; Gray, A.; Leeson, S.R.; Gaiawyn, J.; Kelly, M.P.C.; Cooper, M.D.A.; Dinsmore, K.J.; Jones, S.K.; Sheppard, L.J. Quantification of uncertainty in trace gas fluxes measured by the static chamber method. Eur. J. Soil Sci. 2011, 62, 811–821. [Google Scholar] [CrossRef]
- de Mello, W.Z.; Hines, M.E. Application of static and dynamic enclosures for determining dimethyl sulfide and carbonyl sulfide exchange in Sphagnum peatlands: Implications for the magnitude and direction of flux. J. Geophys. Res. 1994, 99, 14601–14607. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Wassmann, R.; Villegas-Pangga, G. Impact of elevated temperatures on greenhouse gas emissions in rice systems: Interaction with straw incorporation studied in a growth chamber experiment. Plant Soil 2013, 373, 857–875. [Google Scholar] [CrossRef]
- IPCC. Annex II: Glossary. In Climate Change 2014 Impacts, Adaptation Vulnerability. Part B Reg. Aspect Contribution Working Group II to Fifth Assessment Report Intergovernmental Panel Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1757–1776. [Google Scholar]
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Akter, M.; al Mahmud, A.; Singh, U.; Sander, B.O. Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh. Sci. Total Environ. 2020, 734, 139382. [Google Scholar] [CrossRef]
- Minamikawa, K.; Sakai, N.; Yagi, K. Methane Emission from Paddy Fields and its Mitigation Options on a Field Scale. Microbes Environ. 2006, 21, 135–147. [Google Scholar] [CrossRef]
- Kimura, M.; Miura, Y.; Watanabe, A.; Katoh, T.; Haraguchi, H. Methane Emission from Paddy Field (Part 1) Effect of Fertilization, Growth Stage and Midsummer Drainage: Pot Experiment. Environ. Sci. 1991, 4, 265–271. [Google Scholar]
- Kimura, M.; Murase, J.; Lu, Y. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol. Biochem. 2004, 36, 1399–1416. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Wassmann, R.; Tirol-Padre, A.; Villegas-Pangga, G.; Aquino, E.; Kimball, B.A. Seasonal assessment of greenhouse gas emissions from irrigated lowland rice fields under infrared warming. Agric. Ecosyst. Environ. 2014, 184, 88–100. [Google Scholar] [CrossRef]
- Feng, J.; Chen, C.; Zhang, Y.; Song, Z.; Deng, A.; Zheng, C.; Zhang, W. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agric. Ecosyst. Environ. 2013, 164, 220–228. [Google Scholar] [CrossRef]
- Win, E.P.; Win, K.K.; Bellingrath-Kimura, S.D.; Oo, A.Z. Influence of rice varieties, organic manure and water management on greenhouse gas emissions from paddy rice soils. PLoS ONE 2021, 16, e0253755. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.B.; Anders, M.; Adviento-Borbe, M.A.; van Kessel, C.; McClung, A.; Linquist, B.A. Seasonal Methane and Nitrous Oxide Emissions of Several Rice Cultivars in Direct-Seeded Systems. J. Environ. Qual. 2015, 44, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.X.; Zhang, H.S.; Zhang, H.; Cai, X.H.; Song, Y.; Kang, L. The characteristics of methane flux from an irrigated rice farm in East China measured using the eddy covariance method. Agric. For. Meteorol. 2018, 249, 228–238. [Google Scholar] [CrossRef]
- Komiya, S.; Noborio, K.; Katano, K.; Pakoktom, T.; Siangliw, M.; Toojinda, T. Contribution of Ebullition to Methane and Carbon Dioxide Emission from Water between Plant Rows in a Tropical Rice Paddy Field. Int. Sch. Res. Not. 2015, 2015, 623901. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Biswas, J.C.; Singh, U.; Ahmed, M.N.; Sanabria, J.; Saleque, M.A. Nitrous oxide and nitric oxide emissions from lowland rice cultivation with urea deep placement and alternate wetting and drying irrigation. Sci. Rep. 2018, 8, 17623. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Glob. Chang. Biol. 2013, 19, 2956–2964. [Google Scholar] [CrossRef]
- Li, X.; Yuan, W.; Xu, H.; Cai, Z.; Yagi, K. Effect of timing and duration of midseason aeration on CH4 and N2O emissions from irrigated lowland rice paddies in China. Nutr. Cycl. Agroecosyst. 2011, 91, 293–305. [Google Scholar] [CrossRef]
- Minamikawa, K.; Nishimura, S.; Sawamoto, T.; Nakajima, Y.; Yagi, K. Annual emissions of dissolved CO2, CH4, and N2O in the subsurface drainage from three cropping systems. Glob. Chang. Biol. 2010, 16, 796–809. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Jiang, J.; Zheng, X.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Bogena, H.R.; Vereecken, H.; Brüggemann, N. Characterizing Redox Potential Effects on Greenhouse Gas Emissions Induced by Water-Level Changes. Vadose Zone J. 2018, 17, 1–13. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, M.; Xiong, Y.; Shaaban, M.; Yuan, J.; Hu, R. Comparison of N2O Emissions From Cold Waterlogged and Normal Paddy Fields. Front. Environ. Sci. 2021, 9, 660133. [Google Scholar] [CrossRef]
- Lage Filho, N.M.; Cardoso, A.D.S.; de Azevedo, J.C.; Faturi, C.; da Silva, T.C.; Domingues, F.N.; Ruggieri, A.C.; Reis, R.A.; do Rêgo, A.C. Land Use, Temperature, and Nitrogen Affect Nitrous Oxide Emissions in Amazonian Soils. Agronomy 2022, 12, 1608. [Google Scholar] [CrossRef]
- Cao, Y.; Shan, Y.; Wu, P.; Zhang, P.; Zhang, Z.; Zhao, F.; Zhu, T. Mitigating the global warming potential of rice paddy fields by straw and straw-derived biochar amendments. Geoderma 2021, 396, 115081. [Google Scholar] [CrossRef]
- Mboyerwa, P.A.; Kibret, K.; Mtakwa, P.; Aschalew, A. Greenhouse gas emissions in irrigated paddy rice as influenced by crop management practices and nitrogen fertilization rates in eastern Tanzania. Front. Sustain. Food Syst. 2022, 6, 868479. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, K.; Tao, Y.; Li, Z.; Zhang, G.; Li, S.; Chen, F. Carbon Dioxide Flux from Rice Paddy Soils in Central China: Effects of Intermittent Flooding and Draining Cycles. PLoS ONE 2013, 8, e56562. [Google Scholar] [CrossRef]
- Hadi, A.; Inubushi, K.; Yagi, K. Effect of water management on greenhouse gas emissions and microbial properties of paddy soils in Japan and Indonesia. Paddy Water Environ. 2010, 8, 319–324. [Google Scholar] [CrossRef]
- Jiang, Y.; Carrijo, D.; Huang, S.; Chen, J.; Balaine, N.; Zhang, W.; van Groenigen, K.J.; Linquist, B. Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crop. Res. 2019, 234, 47–54. [Google Scholar] [CrossRef]
- Chidthaisong, A.; Watanabe, I. Methane formation and emission from flooded rice soil incorporated with 13C-labeled rice straw. Soil Biol. Biochem. 1997, 29, 1173–1181. [Google Scholar] [CrossRef]
- Riya, S.; Zhou, S.; Watanabe, Y.; Sagehashi, M.; Terada, A.; Hosomi, M. CH4 and N2O emissions from different varieties of forage rice (Oryza sativa L.) treating liquid cattle waste. Sci. Total Environ. 2012, 419, 178–186. [Google Scholar] [CrossRef]
Varieties | CH4 Emission (mg m−2 d−1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
60 DAS | 68 DAS | 70 DAS | 77 DAS | 80 DAS | 82 DAS | 103 DAS | 110 DAS | 111 DAS | ||||||||||
AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | |
KH | −0.5 | 34.5 | 1.6 b | 75.3 a | 36.7 bc | 134.1 a | −28.6 c | 162.1 a | 17.3 bc | 142.5 a | 10.8 b | 116.8 a | 27.7 ab | 85.4 a | 31.1 b | 86.5 a | 11.4 b | 88.2 a |
DP | 5.9 | 51.0 | 14.3 b | 65.5 a | 6.3 c | 102.2 ab | 23.1 bc | 118.8 ab | 4.0 c | 125.0 ab | −2.3 b | 136.7 a | −0.5 b | 78.8 a | 14.7 b | 61.5 a | 38.7 ab | 82.4 a |
ANOVA (p values) | ||||||||||||||||||
I | ns | * | * | * | * | * | * | * | * | |||||||||
V | ns | ns | ns | ns | ns | ns | ns | ns | ns | |||||||||
I × V | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Varieties | N2O Emission (mg m−2 d−1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
60 DAS | 68 DAS | 70 DAS | 77 DAS | 80 DAS | 82 DAS | 103 DAS | 110 DAS | 111 DAS | ||||||||||
AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | |
KH | 13.11 a | 2.51 b | 14.42 a | 0.06 bc | 6.66 a | −1.93 b | 0.15 | 2.59 | 1.73 a | −1.42 b | −4.90 | −1.81 | 2.31 | 0.70 | 1.53 a | −6.73 b | 3.36 a | −1.11 b |
DP | 5.08 a | −0.17 b | 9.39 ab | −1.82 c | 3.51 a | −6.59 b | 3.47 | 1.31 | 1.70 a | −3.12 b | −5.31 | −1.97 | 1.85 | 0.01 | 2.19 a | −0.84 b | 5.01 a | 1.99 b |
ANOVA (p values) | ||||||||||||||||||
I | * | * | * | ns | * | ns | ns | * | * | |||||||||
V | ns | ns | ns | ns | ns | ns | ns | ns | ns | |||||||||
I × V | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Varieties | CO2 Emission (g m−2 d−1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
60 DAS | 68 DAS | 70 DAS | 77 DAS | 80 DAS | 82 DAS | 103 DAS | 110 DAS | 111 DAS | ||||||||||
AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | |
KH | 4.80 a | −9.47 b | −0.92 | −12.50 | −30.11 | −38.13 | −6.30 | −12.79 | −11.78 | −15.11 | −25.12 | −24.22 | −13.00 | −23.88 | −12.41 | −19.65 | −15.68 | −20.30 |
DP | 9.24 a | −8.61 b | −10.11 | −10.39 | −28.35 | −38.44 | −8.28 | −15.08 | −10.64 | −13.94 | −16.60 | −26.59 | −10.31 | −22.41 | −8.59 | −18.98 | −20.76 | −18.48 |
ANOVA (p values) | ||||||||||||||||||
I | * | ns | ns | ns | ns | ns | ns | ns | ns | |||||||||
V | ns | ns | ns | ns | ns | ns | ns | ns | ns | |||||||||
I × V | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Varieties | Water Management | CH4 (kg ha−1) | N2O (g ha−1) | GWP (kg CO2 Equivalent ha−1) | |||
---|---|---|---|---|---|---|---|
AWD | CF | AWD | CF | AWD | CF | ||
KH | 8.79 b | 64.94 a | 1920.99 a | −436.64 b | 755.24 c | 1702.61 a | |
DP | 8.55 b | 60.56 a | 1532.67 a | −367.06 b | 645.49 c | 1598.46 b | |
Effect of water management | |||||||
Mean | AWD | 8.67 b | 1726.83 a | 700.37 b | |||
CF | 62.75 a | −401.85 b | 1650.54 a | ||||
ANOVA (p values) | |||||||
Irrigation (I) | * | * | * | ||||
Varieties (V) | ns | ns | ns | ||||
I × V | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phungern, S.; Azizan, S.N.F.; Yusof, N.B.; Noborio, K. Effects of Water Management and Rice Varieties on Greenhouse Gas Emissions in Central Japan. Soil Syst. 2023, 7, 89. https://doi.org/10.3390/soilsystems7040089
Phungern S, Azizan SNF, Yusof NB, Noborio K. Effects of Water Management and Rice Varieties on Greenhouse Gas Emissions in Central Japan. Soil Systems. 2023; 7(4):89. https://doi.org/10.3390/soilsystems7040089
Chicago/Turabian StylePhungern, Sunchai, Siti Noor Fitriah Azizan, Nurtasbiyah Binti Yusof, and Kosuke Noborio. 2023. "Effects of Water Management and Rice Varieties on Greenhouse Gas Emissions in Central Japan" Soil Systems 7, no. 4: 89. https://doi.org/10.3390/soilsystems7040089
APA StylePhungern, S., Azizan, S. N. F., Yusof, N. B., & Noborio, K. (2023). Effects of Water Management and Rice Varieties on Greenhouse Gas Emissions in Central Japan. Soil Systems, 7(4), 89. https://doi.org/10.3390/soilsystems7040089