Biochar Improves Soil Fertility and Crop Performance: A Case Study of Nigeria
Abstract
:1. Introduction
2. Feedstock for Biochar Production in Nigeria
3. Production and Properties of Biochar
3.1. Biochar Production Methods
3.2. Biochar Kilns
3.3. Properties of Biochar
4. Biochar and Soil Fertility
4.1. Biochar and Nutrient Supply
4.2. Biochar and Soil pH
4.3. Biochar and Soil CEC
4.4. Biochar and Nitrogen Use Efficiency
4.5. Biochar and Soil Carbon Storage
4.6. Biochar and Soil Microorganisms
4.7. Biochar and Micronutrients
5. Biochar and Crop Performance
6. Studies on Biochar in Africa
6.1. A Case Study of Recent Studies of Biochar in Nigeria
Feedstock | Temperature (°C) | State | Agroecological Zone * (Figure 5) | Scope | Effect | Author (s) |
---|---|---|---|---|---|---|
Prosopis africana tree | 580 | Kwara | DS | BC + K fertilizer | Improved sweet-potato performance and elevated soil pH, organic carbon content, nitrogen, phosphorus, potassium, calcium, and magnesium concentrations | [168] |
Maize stover | 463.36 | Ekiti | DS | Sole BC application | Decreased P adsorption | [124] |
Hardwood BC | 580 | Ondo | DS/HF | Poultry manure + hardwood BC | Enhanced the condition of impoverished acidic soil and bolstered the yield of sweet-potato tubers | [169] |
Tectona grandis, Irvingia gabonensis, and Gmelina arborea | - | Anambra | HF | Sole BC and goat dung, sawdust, and chicken droppings | BC gave the highest growth performance in terms of plant height, collar diameter, and number of leaves | [171] |
Bambara-seed-residue BC | - | Enugu | DS | BC + NPK | Enhanced soil characteristics and increased cucumber yield | [172] |
Sawdust, maize cob, swine dung, and poultry manure | 400 | Niger | NGS/SGS | BC + inorganic phosphate fertilizer | Favorable impact on soybean growth and nodulation | [173] |
Hardwood BC | 580 | Ondo | HF | BC + poultry manure | Increased leaf nutrient concentrations and mineral composition of sweet potato | [174] |
Maize-stalk BC | 400 | Gombe | SS/NGS/SGS | Sole BC | Improved soil organic carbon, total nitrogen, and accessible phosphorus but maize production and growth were not said to be significantly affected | [175] |
Maize cob, rice husk, cow dung, and chicken litter | 600 | Adamawa | NGS/SGS | BC + cow dung + chicken litter | Reduced nitrate leaching | [44] |
Rice-husk BC | >700 | Lagos | HF | Sole BC | Increased soil pH, CEC, and cowpea growth and yield | [176] |
Sawdust | - | Kwara | DS | Sole BC | Enhanced growth and yield characteristics of sesame | [177] |
Wood and cattle-dung BC | - | Bayelsa | HF | Sole BC application | Increased soil pH and elevated levels of organic material, accessible phosphorus, and exchangeable cations, decreased cadmium and nickel at the colloidal exchange sites of soil | [178] |
- | - | Nasarawa | DS | BC + micronutrients | Enhanced the growth and yield of soybean | [179] |
Rice-husk BC | - | Plateau | MA/DS/NGS | BC + NPK fertilizer | Improved nutritional status, soil qualities, and the development and yield of okra | [180] |
Rice straw | 400 | Ondo | HF | BC + fertilizer types (solid, liquid NPK and poultry manure) | Effective in rice-yield increase | [181] |
Rice husk | 350 | Ogun | DS | Sole BC | Improved soil Ca, Mg, K, Na, S, P, B, and CEC, which enhanced tomato agronomic performance and microbial biomass | [182] |
Rice husk | - | Kano | NGS/SS | BC + irrigation intervals | Increased number of tomato leaves and fruits | [42] |
Maize cob, rice husk, cow dung, and poultry litter | 600 | Kaduna | NGS | Sole BC | Maize-cob and poultry-litter BC have the ability to adsorb nitrate (Langmuir adsorption isotherm) NO3− adsorption on to poultry litter (Freundlich and Dubunin–Radushkevich, while Freundlich best described NO3− adsorption onto maize-cob BC) | [183] |
Wood | - | Cross River | HF | BC + poultry manure + urea | Whole BC and half poultry manure increased the pH value with a more beneficial result than BC alone or in combination with urea on an amaranth crop | [184] |
Hardwood | 580 | Ondo | HF | BC + poultry manure + NPK fertilizer | Utilizing NPK fertilizer, BC, and poultry manure at less-than-optimal levels led to enhanced soil physical characteristics across various tillage methods. This approach also resulted in an increased accessibility of essential nutrients in the soil, fostering greater growth and yield of carrot crops | [185] |
Rice husk | 550–600 | Enugu | DS | Sole BC | As the rate of rice-husk-biochar (BC) application rose, there was a corresponding increase in soil organic carbon content and improvement in aggregate stability | [186] |
-- | - | Abia | HF | BC + poultry manure | Significant improvement in soil chemical characteristics and the yield of fresh ginger rhizomes | [187] |
Softwood prune branches | - | Nasarawa | DS | BC + supplemental micronutrient | Okra vegetative-growth parameters increased with the application of both BC and micronutrients with no significant difference. Increased soil percentage of organic carbon, organic material, cation exchange capacity, nitrogen content, and pH levels | [188] |
6.2. Challenges and Opportunities for Biochar Implementation in Africa
7. Summary and Conclusions
- With seven agroecological zones in Nigeria, each vary in available biomass, with the dominating agricultural waste being mostly from grass species across the northern part and shrubs and trees in the southern part. Straw/husk/stover from rice, corn, and sorghum can be the best option as feedstock for biochar production, as well tree prunings and timber/wood by-products like sawdust being likely suitable.
- Knowledge Gaps and Potential Research Directions: This review suggests that although some studies have examined the impact of biochar on soil fertility and crop performance in specific Nigerian regions, knowledge gaps still exist, especially in low-fertility, semi-arid regions like the SLS. Future research should focus on addressing these gaps and exploring the optimal utilization of biochar in various agroecological zones across the country.
- BC research with SLS and SS soils are highly recommended in Nigeria at any scope or magnitude comprising sole BC application and BC macronutrient, micronutrient, and manure combinations and as a slow-release fertilizer,
- More micronutrient or more advanced BC research can be recommended in the other agroecological zones of Nigeria as the majority of the soils in these areas are rich in soil organic matter.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García, R.; Gil, M.V.; Fanjul, A.; González, A.; Majada, J.; Rubiera, F.; Pevida, C. Residual Pyrolysis Biochar as Additive to Enhance Wood Pellets Quality. Renew. Energy 2021, 180, 850–859. [Google Scholar] [CrossRef]
- Ok, Y.S.; Chang, S.X.; Gao, B.; Chung, H.J. SMART Biochar Technology—A Shifting Paradigm towards Advanced Materials and Healthcare Research. Environ. Technol. Innov. 2015, 4, 206–209. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R. Applications of Biomass Derived Biochar in Modern Science and Technology. Environ. Technol. Innov. 2021, 21, 101306. [Google Scholar] [CrossRef]
- Hamidzadeh, Z.; Ghorbannezhad, P.; Ketabchi, M.R.; Yeganeh, B. Biomass-Derived Biochar and Its Application in Agriculture. Fuel 2023, 341, 127701. [Google Scholar] [CrossRef]
- Awodun, M.; Oladele, S.; Adeyemo, A. Efficient Nutrient Use and Plant Probiotic Microbes Interaction. In Probiotics in Agroecosystem; Springer: Singapore, 2017; pp. 217–232. [Google Scholar] [CrossRef]
- Obi, F.; Ugwuishiwu, B.; Nwakaire, J. Agricultural Waste Concept, Generation, Utilization and Management. Niger. J. Technol. 2016, 35, 957. [Google Scholar] [CrossRef]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van Der Velde, M.; Diafas, I. Biochar Application to Soils—A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; Office for the Official Publications of the European Communities: Luxembourg, 2009. [Google Scholar] [CrossRef]
- Omulo, G.; Omulo, G. Biochar Potential in Improving Agricultural Production in East Africa. Appl. Biochar Environ. Saf. 2020, 123. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of Process Parameters on Production of Biochar from Biomass Waste through Pyrolysis: A Review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Jafri, N.; Wong, W.Y.; Doshi, V.; Yoon, L.W.; Cheah, K.H. A Review on Production and Characterization of Biochars for Application in Direct Carbon Fuel Cells. Process Saf. Environ. Prot. 2018, 118, 152–166. [Google Scholar] [CrossRef]
- Chi, N.T.L.; Anto, S.; Ahamed, T.S.; Kumar, S.S.; Shanmugam, S.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. A Review on Biochar Production Techniques and Biochar Based Catalyst for Biofuel Production from Algae. Fuel 2020, 287, 119411. [Google Scholar] [CrossRef]
- Canabarro, N.; Soares, J.F.; Anchieta, C.G.; Kelling, C.S.; Mazutti, M.A. Thermochemical Processes for Biofuels Production from Biomass. Sustain. Chem. Process. 2013, 1, 22. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of Temperature and Particle Size on Bio-Char Yield from Pyrolysis of Agricultural Residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Manyà, J.J. Pyrolysis for Biochar Purposes: A Review to Establish Current Knowledge Gaps and Research Needs. Environ. Sci. Technol. 2012, 46, 7939–7954. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Oladele, S.; Awodun, M. Response of Lowland Rice to Biofertilizesr Inoculation and Their Effects on Growth and Yield in Southwestern Nigeria. J. Agric. Environ. Sci. 2014, 3, 371–390. [Google Scholar]
- Ajala, R.; Awodun, M.; Oladele, S. Effects of Wood Ash Biomass Application on Growth Indices and Chlorophyll Content of Maize and Lima Bean Intercrop. Turk. J. Agric. Food Sci. Technol. 2017, 5, 614–621. [Google Scholar] [CrossRef]
- Faloye, O.T.; Alatise, M.O.; Ajayi, A.E.; Ewulo, B.S. Effects of Biochar and Inorganic Fertiliser Applications on Growth, Yield and Water Use Efficiency of Maize under Deficit Irrigation. Agric. Water Manag. 2019, 217, 165–178. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Krupnik, T.J.; Rahut, D.B.; Jat, M.L.; Stirling, C.M. Factors Affecting Farmers’ Use of Organic and Inorganic Fertilizers in South Asia. Environ. Sci. Pollut. Res. 2021, 28, 51480–51496. [Google Scholar] [CrossRef]
- Awopegba, M.; Oladele, S.; Awodun, M. Effect of Mulch Types on Nutrient Composition, Maize (Zea mays L.) Yield and Soil Properties of a Tropical Alfisol in Southwestern Nigeria. Eurasian J. Soil Sci. 2017, 6, 121. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating Physical and Chemical Properties of Highly Weathered Soils in the Tropics with Charcoal—A Review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Barrow, C.J. Biochar: Potential for Countering Land Degradation and for Improving Agriculture. Appl. Geogr. 2012, 34, 21–28. [Google Scholar] [CrossRef]
- Lehmann, J. A Handful of Carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Chagas, J.K.M.; de Figueiredo, C.C.; Ramos, M.L.G. Biochar Increases Soil Carbon Pools: Evidence from a Global Meta-Analysis. J. Environ. Manag. 2022, 305, 114403. [Google Scholar] [CrossRef] [PubMed]
- Niazi, N.K.; Bibi, I.; Shahid, M.; Ok, Y.S.; Burton, E.D.; Wang, H.; Shaheen, S.M.; Rinklebe, J.; Lüttge, A. Arsenic Removal by Perilla Leaf Biochar in Aqueous Solutions and Groundwater: An Integrated Spectroscopic and Microscopic Examination. Environ. Pollut. 2018, 232, 31–41. [Google Scholar] [CrossRef]
- Brewer, C.E.; Unger, R.; Schmidt-Rohr, K.; Brown, R.C.; Brewer, C.E.; Unger, R.; Schmidt-Rohr, K.; Brown, R.C. Criteria to Select Biochars for Field Studies Based on Biochar Chemical Properties. Bioenerg. Res. 2011, 4, 312–323. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of Pyrolysis Temperature and Manure Source on Physicochemical Characteristics of Biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterisation and Evaluation of Biochars for Their Application as a Soil Amendment. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Ahmad, M.; Vithanage, M.; Kim, K.R.; Chang, J.Y.; Lee, S.S.; Ok, Y.S. The Role of Biochar, Natural Iron Oxides, and Nanomaterials as Soil Amendments for Immobilizing Metals in Shooting Range Soil. Environ. Geochem. Health 2015, 37, 931–942. [Google Scholar] [CrossRef]
- Butnan, S.; Deenik, J.L.; Toomsan, B.; Antal, M.J.; Vityakon, P. Biochar Characteristics and Application Rates Affecting Corn Growth and Properties of Soils Contrasting in Texture and Mineralogy. Geoderma 2015, 237–238, 105–116. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of Biochar Effects on Soil Hydrological Properties Using Meta-Analysis of Literature Data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential Role of Biochars in Decreasing Soil Acidification—A Critical Review. Sci. Total Environ. 2017, 581–582, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Bouqbis, L.; Daoud, S.; Koyro, H.W.; Kammann, C.I.; Ainlhout, L.F.Z.; Harrouni, M.C. Biochar from Argan Shells: Production and Characterization. Int. J. Recycl. Org. Waste Agric. 2016, 5, 361–365. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Song, L.; Song, X.; Hänninen, H.; Wu, J. Biochar Enhances Nut Quality of Torreya Grandis and Soil Fertility under Simulated Nitrogen Deposition. For. Ecol. Manag. 2017, 391, 321–329. [Google Scholar] [CrossRef]
- Laghari, M.; Mirjat, M.S.; Hu, Z.; Fazal, S.; Xiao, B.; Hu, M.; Chen, Z.; Guo, D. Effects of Biochar Application Rate on Sandy Desert Soil Properties and Sorghum Growth. Catena 2015, 135, 313–320. [Google Scholar] [CrossRef]
- Kimetu, J.M.; Lehmann, J.; Ngoze, S.O.; Mugendi, D.N.; Kinyangi, J.M.; Riha, S.; Verchot, L.; Recha, J.W.; Pell, A.N. Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality along a Degradation Gradient. Ecosystems 2008, 11, 726–739. [Google Scholar] [CrossRef]
- Raboin, L.M.; Razafimahafaly, A.H.D.; Rabenjarisoa, M.B.; Rabary, B.; Dusserre, J.; Becquer, T. Improving the Fertility of Tropical Acid Soils: Liming versus Biochar Application? A Long Term Comparison in the Highlands of Madagascar. Field Crop. Res. 2016, 199, 99–108. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H.M. Biochar for Crop Production: Potential Benefits and Risks. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Zheng, J.; Han, J.; Liu, Z.; Xia, W.; Zhang, X.; Li, L.; Liu, X.; Bian, R.; Cheng, K.; Zheng, J.; et al. Biochar Compound Fertilizer Increases Nitrogen Productivity and Economic Benefits but Decreases Carbon Emission of Maize Production. Agric. Ecosyst. Environ. 2017, 241, 70–78. [Google Scholar] [CrossRef]
- Shepherd, J.G.; Buss, W.; Sohi, S.P.; Heal, K.V. Bioavailability of Phosphorus, Other Nutrients and Potentially Toxic Elements from Marginal Biomass-Derived Biochar Assessed in Barley (Hordeum vulgare) Growth Experiments. Sci. Total Environ. 2017, 584–585, 448–457. [Google Scholar] [CrossRef]
- Amin, M.A.; Ahmad, U.B.; Aliyu, A.M.; Adam, I.A.; Aliyu, R.W. Growth and Yield Response of Tomato to Different Soil Amendment Techniques under Different Water Stress. South Asian Res. J. Agric. Fish. 2023, 5, 1–9. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G. Environmental Applications in Nigeria: Challenges, Peculiarities and Prospects. Mat 2020, 2020, 111. [Google Scholar] [CrossRef]
- Solomon, R.I. Biochar Amendments for Reducing Nitrate Leaching from Soils of Different Textural Classes in the Nigerian Savanna. Turk. J. Agric. Food Sci. Technol. 2022, 10, 1363–1368. [Google Scholar] [CrossRef]
- Osayi, J.I.; Iyuke, S.; Ogbeide, S.E. Biocrude Production through Pyrolysis of Used Tyres. J. Catal. 2014, 1–9. [Google Scholar] [CrossRef]
- Yang, Z.; Kumar, A.; Huhnke, R.L.; Buser, M.; Capareda, S. Pyrolysis of Eastern Redcedar: Distribution and Characteristics of Fast and Slow Pyrolysis Products. Fuel 2016, 166, 157–165. [Google Scholar] [CrossRef]
- Solar, J.; de Marco, I.; Caballero, B.M.; Lopez-Urionabarrenechea, A.; Rodriguez, N.; Agirre, I.; Adrados, A. Influence of Temperature and Residence Time in the Pyrolysis of Woody Biomass Waste in a Continuous Screw Reactor. Biomass Bioenergy 2016, 95, 416–423. [Google Scholar] [CrossRef]
- Toloue Farrokh, N.; Suopajärvi, H.; Mattila, O.; Umeki, K.; Phounglamcheik, A.; Romar, H.; Sulasalmi, P.; Fabritius, T. Slow Pyrolysis of By-Product Lignin from Wood-Based Ethanol Production—A Detailed Analysis of the Produced Chars. Energy 2018, 164, 112–123. [Google Scholar] [CrossRef]
- Setter, C.; Silva, F.T.M.; Assis, M.R.; Ataíde, C.H.; Trugilho, P.F.; Oliveira, T.J.P. Slow Pyrolysis of Coffee Husk Briquettes: Characterization of the Solid and Liquid Fractions. Fuel 2020, 261, 116420. [Google Scholar] [CrossRef]
- Garcia-Perez, M.; Lewis, T.; Kruger, C.E. Methods for Producing Biochar and Advanced Biofuels in Washington State; Washington State University: Pullman, WA, USA, 2010. [Google Scholar]
- Brassard, P.; Godbout, S.; Raghavan, V. Pyrolysis in Auger Reactors for Biochar and Bio-Oil Production: A Review. Biosyst. Eng. 2017, 161, 80–92. [Google Scholar] [CrossRef]
- Patel, S.; Kundu, S.; Halder, P.; Veluswamy, G.; Pramanik, B.; Paz-Ferreiro, J.; Surapaneni, A.; Shah, K. Slow Pyrolysis of Biosolids in a Bubbling Fluidised Bed Reactor Using Biochar, Activated Char and Lime. J. Anal. Appl. Pyrolysis 2019, 144, 104697. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, P.; Zhang, H.; Yuan, W. Biochar Production and Applications in Agro and Forestry Systems: A Review. Sci. Total Environ. 2020, 723, 137775. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, S.S.; Ly, H.V.; Kim, J.; Woo, H.C. Effects of Water-Washing Saccharina Japonica on Fast Pyrolysis in a Bubbling Fluidized-Bed Reactor. Biomass Bioenergy 2017, 98, 112–123. [Google Scholar] [CrossRef]
- Liu, Z.; Niu, W.; Chu, H.; Zhou, T.; Niu, Z. Effect of the Carbonization Temperature on the Properties of Biochar Produced from the Pyrolysis of Crop Residues. Bioresources 2018, 13, 3429–3446. [Google Scholar] [CrossRef]
- Peng, F.; He, P.W.; Luo, Y.; Lu, X.; Liang, Y.; Fu, J. Adsorption of Phosphate by Biomass Char Deriving from Fast Pyrolysis of Biomass Waste. Clean 2012, 40, 493–498. [Google Scholar] [CrossRef]
- Onay, O. Influence of Pyrolysis Temperature and Heating Rate on the Production of Bio-Oil and Char from Safflower Seed by Pyrolysis, Using a Well-Swept Fixed-Bed Reactor. Fuel Process. Technol. 2007, 88, 523–531. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and Inorganic Contaminants Removal from Water with Biochar, a Renewable, Low Cost and Sustainable Adsorbent—A Critical Review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Prabakar, D.; Manimudi, V.T.; Sampath, S.; Mahapatra, D.M.; Rajendran, K.; Pugazhendhi, A. Advanced Biohydrogen Production Using Pretreated Industrial Waste: Outlook and Prospects. Renew. Sustain. Energy Rev. 2018, 96, 306–324. [Google Scholar] [CrossRef]
- Benedetti, V.; Patuzzi, F.; Baratieri, M. Characterization of Char from Biomass Gasification and Its Similarities with Activated Carbon in Adsorption Applications. Appl. Energy 2018, 227, 92–99. [Google Scholar] [CrossRef]
- Muvhiiwa, R.; Kuvarega, A.; Llana, E.M.; Muleja, A. Study of Biochar from Pyrolysis and Gasification of Wood Pellets in a Nitrogen Plasma Reactor for Design of Biomass Processes. J. Environ. Chem. Eng. 2019, 7, 103391. [Google Scholar] [CrossRef]
- Kumar, U.; Maroufi, S.; Rajarao, R.; Mayyas, M.; Mansuri, I.; Joshi, R.K.; Sahajwalla, V. Cleaner Production of Iron by Using Waste Macadamia Biomass as a Carbon Resource. J. Clean. Prod. 2017, 158, 218–224. [Google Scholar] [CrossRef]
- Yu, K.L.; Lau, F.; Loke Show, P.; Ong, H.C.; Ling, T.C.; Chen, W.-H.; Ng, E.P.; Chang, J.-S. Recent Developments on Algal Biochar Production and Characterization. Bioresour. Technol. 2017, 246, 2–11. [Google Scholar] [CrossRef]
- van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. Biomass Upgrading by Torrefaction for the Production of Biofuels: A Review. Biomass Bioenergy 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Phanphanich, M.; Mani, S. Impact of Torrefaction on the Grindability and Fuel Characteristics of Forest Biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Medic, D.; Darr, M.; Potter, B.; Shah, A. Effect of Torrefaction Process Parameters on Biomass Feedstock Upgrading. In Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting 2010, ASABE 2010, Pittsburgh, PA, USA, 20–23 June 2010; Volume 5, p. 1. [Google Scholar] [CrossRef]
- Yao, Z.; You, S.; Ge, T.; Wang, C.H. Biomass Gasification for Syngas and Biochar Co-Production: Energy Application and Economic Evaluation. Appl. Energy 2018, 209, 43–55. [Google Scholar] [CrossRef]
- Kai, X.; Meng, Y.; Yang, T.; Li, B.; Xing, W. Effect of Torrefaction on Rice Straw Physicochemical Characteristics and Particulate Matter Emission Behavior during Combustion. Bioresour. Technol. 2019, 278, 1–8. [Google Scholar] [CrossRef]
- Pala, M.; Kantarli, I.C.; Buyukisik, H.B.; Yanik, J. Hydrothermal Carbonization and Torrefaction of Grape Pomace: A Comparative Evaluation. Bioresour. Technol. 2014, 161, 255–262. [Google Scholar] [CrossRef]
- Zanli, B.L.G.L.; Gbossou, K.C.; Tang, W.; Kamoto, M.; Chen, J. A Review of Biochar Potential in Cote d’Ivoire in Light of the Challenges Facing Sub-Saharan Africa. Biomass Bioenergy 2022, 165, 106581. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, B.J.; Lin, Y.Y.; Chu, Y.S.; Ubando, A.T.; Show, P.L.; Ong, H.C.; Chang, J.S.; Ho, S.H.; Culaba, A.B.; et al. Progress in Biomass Torrefaction: Principles, Applications and Challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. [Google Scholar] [CrossRef]
- Bababe, B.; Mustapha, B.; Zubairu, A.M. Effects of Biochar Incorporation on Aggregate Formation in a Clay Soil, Maiduguri. 2021; unpublished. [Google Scholar]
- Wijitkosum, S.; Jiwnok, P. Elemental Composition of Biochar Obtained from Agricultural Waste for Soil Amendment and Carbon Sequestration. Appl. Sci. 2019, 9, 3980. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Niazi, N.K.; Hassan, N.E.E.; Bibi, I.; Wang, H.; Tsang, D.C.W.; Ok, Y.S.; Bolan, N.; Rinklebe, J. Wood-Based Biochar for the Removal of Potentially Toxic Elements in Water and Wastewater: A Critical Review. Int. Mater. Rev. 2018, 64, 216–247. [Google Scholar] [CrossRef]
- Dey, D.; Mondal, P. Chemical Science Review and Letters A Comprehensive Review on Biochar-The Black Carbon: Production Technologies, Physico-Chemical Properties and Utilization for Sustainable Environment. Chem. Sci. Rev. Lett. 2020, 9, 578–594. [Google Scholar] [CrossRef]
- Ji, M.; Wang, X.; Usman, M.; Liu, F.; Dan, Y.; Zhou, L.; Campanaro, S.; Luo, G.; Sang, W. Effects of Different Feedstocks-Based Biochar on Soil Remediation: A Review. Environ. Pollut. 2022, 294, 118655. [Google Scholar] [CrossRef]
- Wang, L.; Olsen, M.N.P.; Moni, C.; Dieguez-Alonso, A.; de la Rosa, J.M.; Stenrød, M.; Liu, X.; Mao, L. Comparison of Properties of Biochar Produced from Different Types of Lignocellulosic Biomass by Slow Pyrolysis at 600 °C. Appl. Energy Combust. Sci. 2022, 12, 100090. [Google Scholar] [CrossRef]
- Hong, Z.; Zhong, F.; Niu, W.; Zhang, K.; Su, J.; Liu, J.; Li, L.; Wu, F. Effects of Temperature and Particle Size on the Compositions, Energy Conversions and Structural Characteristics of Pyrolysis Products from Different Crop Residues. Energy 2020, 190, 116413. [Google Scholar] [CrossRef]
- He, X.; Liu, Z.; Niu, W.; Yang, L.; Zhou, T.; Qin, D.; Niu, Z.; Yuan, Q. Effects of Pyrolysis Temperature on the Physicochemical Properties of Gas and Biochar Obtained from Pyrolysis of Crop Residues. Energy 2018, 143, 746–756. [Google Scholar] [CrossRef]
- dos Reis Ferreira, R.A.; da Silva Meireles, C.; Assunção, R.M.N.; Reis Soares, R. Heat Required and Kinetics of Sugarcane Straw Pyrolysis by TG and DSC Analysis in Different Atmospheres. J. Therm. Anal. Calorim. 2018, 132, 1535–1544. [Google Scholar] [CrossRef]
- Intani, K.; Latif, S.; Kabir, A.K.M.R.; Müller, J. Effect of Self-Purging Pyrolysis on Yield of Biochar from Maize Cobs, Husks and Leaves. Bioresour. Technol. 2016, 218, 541–551. [Google Scholar] [CrossRef]
- Li, Y.; Gupta, R.; Zhang, Q.; You, S. Review of Biochar Production via Crop Residue Pyrolysis: Development and Perspectives. Bioresour. Technol. 2023, 369, 128423. [Google Scholar] [CrossRef]
- Li, X.; Peng, B.; Liu, Q.; Zhang, H. Microwave Pyrolysis Coupled with Conventional Pre-Pyrolysis of the Stalk for Syngas and Biochar. Bioresour. Technol. 2022, 348, 126745. [Google Scholar] [CrossRef]
- Pütün, A.E.; Özean, A.; Pütün, E. Pyrolysis of Hazelnut Shells in a Fixed-Bed Tubular Reactor: Yields and Structural Analysis of Bio-Oil. J. Anal. Appl. Pyrolysis 1999, 52, 33–49. [Google Scholar] [CrossRef]
- Aysu, T.; Küçük, M.M. Biomass Pyrolysis in a Fixed-Bed Reactor: Effects of Pyrolysis Parameters on Product Yields and Characterization of Products. Energy 2014, 64, 1002–1025. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Abduljabbar, A.; Vithanage, M.; Ok, Y.S.; Ahmad, M.; Ahmad, M.; Elfaki, J.; Abdulazeem, S.S.; Al-Wabel, M.I. Biochar Production from Date Palm Waste: Charring Temperature Induced Changes in Composition and Surface Chemistry. J. Anal. Appl. Pyrolysis 2015, 115, 392–400. [Google Scholar] [CrossRef]
- Alhazmi, H.; Loy, A.C.M. A Review on Environmental Assessment of Conversion of Agriculture Waste to Bio-Energy via Different Thermochemical Routes: Current and Future Trends. Bioresour. Technol. Rep. 2021, 14, 100682. [Google Scholar] [CrossRef]
- Leng, L.; Huang, H. An Overview of the Effect of Pyrolysis Process Parameters on Biochar Stability. Bioresour. Technol. 2018, 270, 627–642. [Google Scholar] [CrossRef]
- Liew, Y.W.; Arumugasamy, S.K.; Selvarajoo, A. Potential of Biochar as Soil Amendment: Prediction of Elemental Ratios from Pyrolysis of Agriculture Biomass Using Artificial Neural Network. Water Air Soil Pollut. 2022, 233, 54. [Google Scholar] [CrossRef]
- Pariyar, P.; Kumari, K.; Jain, M.K.; Jadhao, P.S. Evaluation of Change in Biochar Properties Derived from Different Feedstock and Pyrolysis Temperature for Environmental and Agricultural Application. Sci. Total Environ. 2020, 713, 136433. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Biswas, A.B. Pyrolysis of Orange Bagasse: Comparative Study and Parametric Influence on the Product Yield and Their Characterization. J. Environ. Chem. Eng. 2019, 7, 102903. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An Overview on Engineering the Surface Area and Porosity of Biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef] [PubMed]
- Igalavithana, A.D.; Ok, Y.S.; Usman, A.R.A.; Al-Wabel, M.I.; Oleszczuk, P.; Lee, S.S. The Effects of Biochar Amendment on Soil Fertility. In Agricultural and Environmental Applications of Biochar: Advances and Barriers; Soil Science Society of America: Madison, WI, USA, 2015; pp. 123–144. [Google Scholar] [CrossRef]
- Bruun, T.B.; Elberling, B.; de Neergaard, A.; Magid, J. Organic Carbon Dynamics in Different Soil Types after Conversion of Forest to Agriculture. Land Degrad. Dev. 2015, 26, 272–283. [Google Scholar] [CrossRef]
- Khalifa, N.; Yousef, L.F. A Short Report on Changes of Quality Indicators for a Sandy Textured Soil after Treatment with Biochar Produced from Fronds of Date Palm. Energy Procedia 2015, 74, 960–965. [Google Scholar] [CrossRef]
- Smith, P.; House, J.I.; Bustamante, M.; Sobocká, J.; Harper, R.; Pan, G.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C.; et al. Global Change Pressures on Soils from Land Use and Management. Glob. Chang. Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil Degradation in the European Mediterranean Region: Processes, Status and Consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.A.; Panagos, P.; Borrelli, P. Global Phosphorus Shortage Will Be Aggravated by Soil Erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef] [PubMed]
- Vanlauwe, B.; Bationo, A.; Chianu, J.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Pypers, P.; Tabo, R.; Shepherd, K.D.; et al. Integrated Soil Fertility Management. Outlook Agric. 2010, 39, 17–24. [Google Scholar] [CrossRef]
- Carlson, J.; Saxena, J.; Basta, N.; Hundal, L.; Busalacchi, D.; Dick, R.P. Application of Organic Amendments to Restore Degraded Soil: Effects on Soil Microbial Properties. Environ. Monit. Assess. 2015, 187, 109. [Google Scholar] [CrossRef]
- Rinklebe, J.; Shaheen, S.M.; Frohne, T. Amendment of Biochar Reduces the Release of Toxic Elements under Dynamic Redox Conditions in a Contaminated Floodplain Soil. Chemosphere 2016, 142, 41–47. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and Remedial Benefits and Risks of Applying Biochar to Soil: Current Knowledge and Future Research Directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef]
- Randolph, P.; Bansode, R.R.; Hassan, O.A.; Rehrah, D.; Ravella, R.; Reddy, M.R.; Watts, D.W.; Novak, J.M.; Ahmedna, M. Effect of Biochars Produced from Solid Organic Municipal Waste on Soil Quality Parameters. J. Environ. Manag. 2017, 192, 271–280. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K. Biochemical Cycling of Nitrogen and Phosphorus in Biochar-Amended Soils. Soil Biol. Biochem. 2016, 103, 1–15. [Google Scholar] [CrossRef]
- Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences. Adv. Agron. 2011, 112, 103–143. [Google Scholar] [CrossRef]
- Güereña, D.; Lehmann, J.; Hanley, K.; Enders, A.; Hyland, C.; Riha, S. Nitrogen Dynamics Following Field Application of Biochar in a Temperate North American Maize-Based Production System. Plant Soil 2013, 365, 239–254. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and Negative Carbon Mineralization Priming Effects among a Variety of Biochar-Amended Soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Diatta, A.A.; Fike, J.H.; Battaglia, M.L.; Galbraith, J.M.; Baig, M.B. Effects of Biochar on Soil Fertility and Crop Productivity in Arid Regions: A Review. Arab. J. Geosci. 2020, 13, 595. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Taskin, M.B.; Sahin, O.; Kaya, E.C.; Atakol, A. Effect of Phosphorus-Enriched Biochar and Poultry Manure on Growth and Mineral Composition of Lettuce (Lactuca sativa L. Cv.) Grown in Alkaline Soil. Soil Use Manag. 2014, 30, 182–188. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Qian, W.; Wang, R.H. Comparison of the Ameliorating Effects on an Acidic Ultisol between Four Crop Straws and Their Biochars. J. Soils Sediments 2011, 11, 741–750. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface Chemistry Variations among a Series of Laboratory-Produced Biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Lentz, R.D.; Ippolito, J.A. Biochar and Manure Affect Calcareous Soil and Corn Silage Nutrient Concentrations and Uptake. J. Environ. Qual. 2012, 41, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar Impact on Nutrient Leaching from a Midwestern Agricultural Soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar Reduced Nitrate Leaching and Improved Soil Moisture Content without Yield Improvements in a Four-Year Field Study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- El-Naggar, A.; Awad, Y.M.; Tang, X.Y.; Liu, C.; Niazi, N.K.; Jien, S.H.; Tsang, D.C.W.; Song, H.; Ok, Y.S.; Lee, S.S. Biochar Influences Soil Carbon Pools and Facilitates Interactions with Soil: A Field Investigation. Land Degrad. Dev. 2018, 29, 2162–2171. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Lee, S.E.; Lee, Y.H.; Tsang, D.C.W.; Rinklebe, J.; Kwon, E.E.; Ok, Y.S. Heavy Metal Immobilization and Microbial Community Abundance by Vegetable Waste and Pine Cone Biochar of Agricultural Soils. Chemosphere 2017, 174, 593–603. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.; Shaheen, S.M.; Ok, Y.S.; Rinklebe, J. Biochar Affects the Dissolved and Colloidal Concentrations of Cd, Cu, Ni, and Zn and Their Phytoavailability and Potential Mobility in a Mining Soil under Dynamic Redox-Conditions. Sci. Total Environ. 2018, 624, 1059–1071. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of Cow Manure Biochar on Maize Productivity under Sandy Soil Condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, X.; Wang, S.; Xing, G.; Zhou, Y. Effects of the Addition of Rice-Straw-Based Biochar on Leaching and Retention of Fertilizer N in Highly Fertilized Cropland Soils. Soil Sci. Plant Nutr. 2013, 59, 771–782. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Anawar, H.M. Application of Biochars for Soil Constraints: Challenges and Solutions. Pedosphere 2015, 25, 631–638. [Google Scholar] [CrossRef]
- Han, F.; Ren, L.; Zhang, X.C. Effect of Biochar on the Soil Nutrients about Different Grasslands in the Loess Plateau. Catena 2016, 137, 554–562. [Google Scholar] [CrossRef]
- Lehmann, J.; Da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient Availability and Leaching in an Archaeological Anthrosol and a Ferralsol of the Central Amazon Basin: Fertilizer, Manure and Charcoal Amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Ilori, A.O.A.; Ogbonnaya, O.U.; Asaolu, J.I.; Shittu, O.S.; Fasina, A.S. Characterization of Biochar and Phosphorus Adsorption in Charnockite-Originated Soils. J. Saudi Soc. Agric. Sci. 2023, 22, 54–61. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-Smart Soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef]
- El-Naggar, A.H.; Usman, A.R.A.; Al-Omran, A.; Ok, Y.S.; Ahmad, M.; Al-Wabel, M.I. Carbon Mineralization and Nutrient Availability in Calcareous Sandy Soils Amended with Woody Waste Biochar. Chemosphere 2015, 138, 67–73. [Google Scholar] [CrossRef]
- Zhang, M.; Ok, Y.S. Biochar Soil Amendment for Sustainable Agriculture with Carbon and Contaminant Sequestration. Carbon Manag. 2014, 5, 255–257. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Kumari, S.; Pathak, H. Characterisation, Stability, and Microbial Effects of Four Biochars Produced from Crop Residues. Geoderma 2015, 239–240, 293–303. [Google Scholar] [CrossRef]
- Wang, L.; Barta-Rajnai, E.; Skreiberg, O.; Khalil, R.; Czégény, Z.; Jakab, E.; Barta, Z.; Grønli, M. Impact of Torrefaction on Woody Biomass Properties. Energy Procedia 2017, 105, 1149–1154. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Herbert, S.; Xing, B. Impacts of Adding Biochar on Nitrogen Retention and Bioavailability in Agricultural Soil. Geoderma 2013, 206, 32–39. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Quilliam, R.S.; Glanville, H.C.; Wade, S.C.; Jones, D.L. Life in the ‘Charosphere’—Does Biochar in Agricultural Soil Provide a Significant Habitat for Microorganisms? Soil Biol. Biochem. 2013, 65, 287–293. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal Responses to Biochar in Soil—Concepts and Mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Gomez, J.D.; Denef, K.; Stewart, C.E.; Zheng, J.; Cotrufo, M.F. Biochar Addition Rate Influences Soil Microbial Abundance and Activity in Temperate Soils. Eur. J. Soil Sci. 2014, 65, 28–39. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Joseph, S.; Jiang, C.-Y.; Wu, M.; Li, Z.-P.; Li, M.; Liu, M.; Joseph, S.; Jiang, C.-Y.; et al. Change in Water Extractable Organic Carbon and Microbial PLFAs of Biochar during Incubation with an Acidic Paddy Soil. Soil Res. 2015, 53, 763–771. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Y.; Xiang, Y.; Zhang, R.; Lu, H. Responses of Soil Microbial Community Structure Changes and Activities to Biochar Addition: A Meta-Analysis. Sci. Total Environ. 2018, 643, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil Bacterial and Fungal Communities across a PH Gradient in an Arable Soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Farrell, M.; Kuhn, T.K.; Macdonald, L.M.; Maddern, T.M.; Murphy, D.V.; Hall, P.A.; Singh, B.P.; Baumann, K.; Krull, E.S.; Baldock, J.A. Microbial Utilisation of Biochar-Derived Carbon. Sci. Total Environ. 2013, 465, 288–297. [Google Scholar] [CrossRef]
- Biochar for Environmental Management: Science and Technology—Google Books. Available online: https://books.google.hu/books?hl=en&lr=&id=NjngCgAAQBAJ&oi=fnd&pg=PA85&dq=Thies+E,+Rilling+M+(2009)+Characteristics+of+biochar:+biological+properties.+In+%E2%80%98Biochar+for+%09environmental+management.+In:+Lehmann+J,+Joseph+S+(eds)+Science+and+technology.+%09Earthscan,+London&ots=oNH5KialmG&sig=Dxum-bkKcNrc2YowfKpqEicWomc&redir_esc=y#v=onepage&q&f=false (accessed on 14 September 2023).
- Du, J.; Zhang, Y.; Qu, M.; Yin, Y.; Fan, K.; Hu, B.; Zhang, H.; Wei, M.; Ma, C. Effects of Biochar on the Microbial Activity and Community Structure during Sewage Sludge Composting. Bioresour. Technol. 2019, 272, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Kasozi, G.N.; Zimmerman, A.R.; Nkedi-Kizza, P.; Gao, B. Catechol and Humic Acid Sorption onto a Range of Laboratory-Produced Black Carbons (Biochars). Environ. Sci. Technol. 2010, 44, 6189–6195. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black Carbon Decomposition and Incorporation into Soil Microbial Biomass Estimated by 14C Labeling. Soil Biol. Biochem. 2009, 41, 210–219. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to Improve Soil Fertility. A Review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and Its Importance on Nutrient Dynamics in Soil and Plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of Biochars to Evaluate Recalcitrance and Agronomic Performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef]
- Baronti, S.; Vaccari, F.P.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandini, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of Biochar Application on Plant Water Relations in Vitis vinifera (L.). Eur. J. Agron. 2014, 53, 38–44. [Google Scholar] [CrossRef]
- Abujabhah, I.S.; Doyle, R.; Bound, S.A.; Bowman, J.P. The Effect of Biochar Loading Rates on Soil Fertility, Soil Biomass, Potential Nitrification, and Soil Community Metabolic Profiles in Three Different Soils. J. Soils Sediments 2016, 16, 2211–2222. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of Biochar, Compost and Biochar–Compost for Soil Quality, Maize Yield and Greenhouse Gas Emissions in a Tropical Agricultural Soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shangguan, Z. Positive Effects of Apple Branch Biochar on Wheat Yield Only Appear at a Low Application Rate, Regardless of Nitrogen and Water Conditions. J. Soils Sediments 2018, 18, 3235–3243. [Google Scholar] [CrossRef]
- Rodríguez-Vila, A.; Atuah, L.; Abubakari, A.H.; Atorqui, D.W.; Abdul-Karim, A.; Coole, S.; Hammond, J.; Robinson, S.; Sizmur, T. Effect of Biochar on Micronutrient Availability and Uptake Into Leafy Greens in Two Urban Tropical Soils With Contrasting Soil PH. Front. Sustain. Food Syst. 2022, 6, 821397. [Google Scholar] [CrossRef]
- Sizmur, T.; Quilliam, R.; Puga, A.P.; Moreno-Jiménez, E.; Beesley, L.; Gomez-Eyles, J.L. Application of Biochar for Soil Remediation. Agric. Environ. Appl. Biochar Adv. Barriers 2015, 63, 295–324. [Google Scholar] [CrossRef]
- Gomez-Eyles, J.L.; Beesley, L.; Moreno-Jiménez, E.; Ghosh, U.; Sizmur, T. The Potential of Biochar Amendments to Remediate Contaminated Soils. Biochar Soil Biota 2013, 4, 77–107. [Google Scholar] [CrossRef]
- Schimmelpfennig, S.; Müller, C.; Grünhage, L.; Koch, C.; Kammann, C. Biochar, Hydrochar and Uncarbonized Feedstock Application to Permanent Grassland—Effects on Greenhouse Gas Emissions and Plant Growth. Agric. Ecosyst. Environ. 2014, 191, 39–52. [Google Scholar] [CrossRef]
- Ch’Ng, H.Y.; Ahmed, O.H.; Majid, N.M.A. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes. Sci. World J. 2014, 2014, 506356. [Google Scholar] [CrossRef]
- Steiner, C.; Bellwood-Howard, I.; Häring, V.; Tonkudor, K.; Addai, F.; Atiah, K.; Abubakari, A.H.; Kranjac-Berisavljevic, G.; Marschner, B.; Buerkert, A. Participatory Trials of on-Farm Biochar Production and Use in Tamale, Ghana. Agron. Sustain. Dev. 2018, 38, 12. [Google Scholar] [CrossRef]
- Akoto-Danso, E.K.; Manka’abusi, D.; Steiner, C.; Werner, S.; Häring, V.; Nyarko, G.; Marschner, B.; Drechsel, P.; Buerkert, A. Agronomic Effects of Biochar and Wastewater Irrigation in Urban Crop Production of Tamale, Northern Ghana. Nutr. Cycl. Agroecosyst. 2019, 115, 231–247. [Google Scholar] [CrossRef]
- Faye, A.; Stewart, Z.P.; Diome, K.; Edward, C.T.; Fall, D.; Ganyo, D.K.K.; Akplo, T.M.; Vara Prasad, P.V. Single Application of Biochar Increases Fertilizer Efficiency, C Sequestration, and PH over the Long-Term in Sandy Soils of Senegal. Sustainability 2021, 13, 11817. [Google Scholar] [CrossRef]
- Sukartono; Utomo, W.H.; Kusuma, Z.; Nugroho, W.H. Soil Fertility Status, Nutrient Uptake, and Maize (Zea mays L.) Yield Following Biochar and Cattle Manure Application on Sandy Soils of Lombok, Indonesia. J. Trop. Agric. 2011, 49, 47–52. [Google Scholar]
- Yeboah, E.; Ofori, P.; Quansah, G.; Dugan, E.; Sohi, S. Improving Soil Productivity through Biochar Amendments to Soils. Afr. J. Environ. Sci. Technol. 2009, 3, 34–41. [Google Scholar] [CrossRef]
- Manka’abusi, D.; Steiner, C.; Akoto-Danso, E.K.; Lompo, D.J.P.; Haering, V.; Werner, S.; Marschner, B.; Buerkert, A. Biochar Application and Wastewater Irrigation in Urban Vegetable Production of Ouagadougou, Burkina Faso. Nutr. Cycl. Agroecosyst. 2019, 115, 263–279. [Google Scholar] [CrossRef]
- Häring, V.; Manka’Abusi, D.; Akoto-Danso, E.K.; Werner, S.; Atiah, K.; Steiner, C.; Lompo, D.J.P.; Adiku, S.; Buerkert, A.; Marschner, B. Effects of Biochar, Waste Water Irrigation and Fertilization on Soil Properties in West African Urban Agriculture. Sci. Rep. 2017, 7, 10738. [Google Scholar] [CrossRef] [PubMed]
- Koné, S.; Galiegue, X. Potential Development of Biochar in Africa as an Adaptation Strategy to Climate Change Impact on Agriculture. Environ. Manag. 2023, 72, 1189–1203. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, G.; Martinsen, V.; Shitumbanuma, V.; Alling, V.; Breedveld, G.D.; Rutherford, D.W.; Sparrevik, M.; Hale, S.E.; Obia, A.; Mulder, J. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia. Agronomy 2013, 3, 256–274. [Google Scholar] [CrossRef]
- Mahmoud, Y.; Njenga, M.; Sundberg, C.; Roing de Nowina, K. Soils, Sinks, and Smallholder Farmers: Examining the Benefits of Biochar Energy Transitions in Kenya. Energy Res. Soc. Sci. 2021, 75, 102033. [Google Scholar] [CrossRef]
- Olorunfemi, I.E.; Komolafe, A.A.; Fasinmirin, J.T.; Olufayo, A.A. Biomass Carbon Stocks of Different Land Use Management in the Forest Vegetative Zone of Nigeria. Acta Oecologica 2019, 95, 45–56. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Adebiyi, O.V.; Ibaba, A.L.; Aremu, C.; Ajibade, R.O. Effects of Wood Biochar and Potassium Fertilizer on Soil Properties, Growth and Yield of Sweet Potato (Ipomea batata). Heliyon 2022, 8, e11728. [Google Scholar] [CrossRef]
- Agbede, T.M.; Oyewumi, A. Soil Properties, Sweet Potato Growth and Yield under Biochar, Poultry Manure and Their Combination in Two Degraded Alfisols of Humid Tropics. Sci. Hortic. 2022, 304, 111331. [Google Scholar] [CrossRef]
- Agbede, T.M.; Oyewumi, A. Benefits of Biochar, Poultry Manure and Biochar–Poultry Manure for Improvement of Soil Properties and Sweet Potato Productivity in Degraded Tropical Agricultural Soils. Resour. Environ. Sustain. 2022, 7, 100051. [Google Scholar] [CrossRef]
- Anozie, E.L.; Egwunatum, A.E.; Igbinosa, I.O.; Umeh, C.L.; Udeze, U. Evaluating the Effects of Biochar and Organic Soil Amendments on Seedling Development of Annona Muricata. Linn. Asian J. Res. Agric. For. 2023, 9, 1–9. [Google Scholar] [CrossRef]
- Okebalama, C.B.; Asogwa, K.C.; Uzoh, I.M.; Marschner, B. Impact of Bambara Seed Residue Biochar and NPK on Soil Fertility, Aggregate Carbon and Nitrogen Concentrations and Yield of Cucumber. Agro-Science 2022, 21, 53–65. [Google Scholar] [CrossRef]
- Adekanmbi, A.A.; Oghenewiro, F.; Fagbenro, J.A.; Bala, A.; Osunde, O.A. Effect of four biochar types and inorganic phosphate fertilizer on growth and nodulation of soybean (Glycine max (L.) Moench). Plant Physiol. Soil Chem. 2022, 2, 24–28. [Google Scholar] [CrossRef]
- Agbede, T.M.; Oyewumi, A. Effects of Biochar, Poultry Manure and Their Mixture on Essential Nutrients of Sweet Potato Leaves and Storage Roots in Degraded Tropical Alfisols of Southwest Nigeria. Commun. Soil Sci. Plant Anal. 2022, 53, 1903–1916. [Google Scholar] [CrossRef]
- Mustapha, Y.; Manu, I.; Alhassan, I. Use of Biochar for Enhance Carbon Sequestration to Mitigate Climate Change and Growth of Maize in Sudan Savanna Zone of Nigeria. Braz. J. Sci. 2022, 1, 63–75. [Google Scholar] [CrossRef]
- Sanni, K.O.; Dayo-Olagbende, G.O.; Godonu, K.G.; Dada, B.F.; Ewulo, B.S.; Ojeniyi, S.O.; Oduntan, O.O.; Bello, A.A. Effect of Rice Husk Biochar on Soil Physicochemical Properties and Performance of Cowpea (Vigna ungiuculata). Rev. Contemp. Sci. Acad. Stud. 2022, 2, 1–7. [Google Scholar] [CrossRef]
- Eifediyi, E.K.; Imam, A.Y.; Ahamefule, H.E.; Ogedegbe, F.O.; Isimikalu, T.O. Influence of Sawdust Biochar Application on the Growth, Morphological Characters and Yield of Four Varieties of Sesame (Sesamum indicum L.). Int. J. Recycl. Org. Waste Agric. 2022, 11, 189–200. [Google Scholar] [CrossRef]
- Tate, J.O.; Dickson, A.A.; Diri, K.H. Influence of Locally Pyrolysed Wood and Cattle Dung Biochar on Macronutrients Distribution and Heavy Metal Toxicity in Diesel Contaminated Soils. J. Soil Water Sci. 2022, 6, 236–243. [Google Scholar] [CrossRef]
- Sodah, M.G.; Jayeoba, O.J.; Amana, S.M.; Jibrin, I.M. Growth and Yield of Soybean (Glycine max. L. Merril) as Influenced by Combined Application of Biochar and Micronutrient. Fudma J. Sci. 2022, 6, 204–209. [Google Scholar] [CrossRef]
- Ibrahim, I.I. Efficacy of Biochar and NPK Fertilizer on Soil Properties and Yield of Okra (Abelmeschus esculentus L.) in Guinea Savanna Region of Nigeria. J. Environ. Bioremediat. Toxicol. 2022, 5, 6–10. [Google Scholar] [CrossRef]
- Eze, R.C.; Akinbile, C.O.; Ewulo, B.S.; Abolude, A.T. Effects of Biochar Concentrations and Fertilizer Types on Drip-Irrigated Upland Rice Performance. J. Rice Res. Dev. 2022, 5, 402–415. [Google Scholar] [CrossRef]
- Adebajo, S.O.; Oluwatobi, F.; Akintokun, P.O.; Ojo, A.E.; Akintokun, A.K.; Gbodope, I.S. Impacts of Rice-Husk Biochar on Soil Microbial Biomass and Agronomic Performances of Tomato (Solanum lycopersicum L.). Sci. Rep. 2022, 12, 1787. [Google Scholar] [CrossRef] [PubMed]
- Abdu, N.; Yusuf, A.A.; Mukhtar, B.; Solomon, R.I. Kinetics and Thermodynamics of Nitrate Adsorption by Biochar. EQA Int. J. Environ. Qual. 2021, 41, 17–32. [Google Scholar] [CrossRef]
- Iren, O.B.; Ediene, V.F. Soil PH and Microbial Properties as Affected by Integrated Use of Biochar, Poultry Manure and Urea. Pak. J. Biol. Sci. 2021, 24, 90–98. [Google Scholar] [CrossRef]
- Agbede, T.M. Effect of Tillage, Biochar, Poultry Manure and NPK 15-15-15 Fertilizer, and Their Mixture on Soil Properties, Growth and Carrot (Daucus carota L.) Yield under Tropical Conditions. Heliyon 2021, 7, e07391. [Google Scholar] [CrossRef]
- Ebido, N.E.; Edeh, I.G.; Unagwu, B.O.; Nnadi, A.L.; Ozongwu, O.V.; Obalum, S.E.; Igwe, C.A. Rice-Husk Biochar Effects on Organic Carbon, Aggregate Stability and Nitrogen-Fertility of Coarse-Textured Ultisols Evaluated Using Celosia Argentea Growth. Sains Tanah J. Soil Sci. Agroclimatol. 2021, 18, 177–187. [Google Scholar] [CrossRef]
- Nwangwu, B.C.; Anedo, E.O. Influence of Combined Biochar and Poultry Manure on Selected Soil Chemical Properties and Ginger Yield in an Ultisol of Umudike, South-East Nigeria. Niger. Agric. J. 2021, 52, 258–262. Available online: https://www.ajol.info/index.php/naj/article/view/214989 (accessed on 15 September 2023).
- Adamu, M.B.; Junaidu, U.G. Effect of Biochar and Supplementary Application of Micronutrient on Soil and Growth of Okra in Lafia, Nigeria. Int. J. Environ. Agric. Biotechnol. 2021, 6, 1–8. [Google Scholar] [CrossRef]
- Oniosun, T. Agro-Ecological Zoning with Respect to Farming System in Nigeria. How Does Global Warming Affect This? Oniosun Temidayo Isaiah. 2013. Available online: https://www.academia.edu/3690423/Agro_ecological_zoning_with_respect_to_farming_system_in_Nigeria_How_does_global_warming_affect_this (accessed on 18 June 2023).
- Khorram, M.S.; Wang, Y.; Jin, X.; Fang, H.; Yu, Y. Reduced Mobility of Fomesafen through Enhanced Adsorption in Biochar-Amended Soil. Environ. Toxicol. Chem. 2015, 34, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Byakola, T.; Yiga, A. AGROfuels in Africa-• UGANDA-Climate & Development Initiative. 2007. Available online: https://www.biofuelwatch.org.uk/docs/ABN_Agro.pdf (accessed on 30 June 2023).
- Zhang, Y.; Wang, J.; Feng, Y. The Effects of Biochar Addition on Soil Physicochemical Properties: A Review. Catena 2021, 202, 105284. [Google Scholar] [CrossRef]
- Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, Climate Change and Soil: A Review to Guide Future Research; CSIRO: Canberra, Australia, 2009. [Google Scholar]
- Prapagdee, S.; Tawinteung, N. Effects of Biochar on Enhanced Nutrient Use Efficiency of Green Bean, Vigna radiata L. Environ. Sci. Pollut. Res. 2017, 24, 9460–9467. [Google Scholar] [CrossRef] [PubMed]
- Appazov, N.O.; Bazarbayev, B.M.; Assylbekkyzy, T.; Diyarova, B.M.; Kanzhar, S.A.; Magauiya, S.; Zhapparbergenov, R.U.; Akylbekov, N.I.; Duisembekov, B.A. Obtaining Biochar from Rice Husk and Straw. Ser. Chem. Technol. 2021, 1, 66–74. [Google Scholar] [CrossRef]
- Rogers, P.M.; Fridahl, M.; Yanda, P.; Hansson, A.; Pauline, N.; Haikola, S. Socio-Economic Determinants for Biochar Deployment in the Southern Highlands of Tanzania. Energies 2021, 15, 144. [Google Scholar] [CrossRef]
- Fru, B.S.; Angwafo, T.E.; Martin, T.N.; Francis, N.A.; Ngome, T.P. Environmental and Socio-Economic Feasibility of Biochar Application for Cassava Production in the Bimodal Rainforest Zone of Cameroon. Int. J. Rural. Dev. Environ. Health Res. 2018, 2, 1–9. [Google Scholar] [CrossRef]
- Hansson, A.; Haikola, S.; Fridahl, M.; Yanda, P.; Mabhuye, E.; Pauline, N. Biochar as Multi-Purpose Sustainable Technology: Experiences from Projects in Tanzania. Environ. Dev. Sustain. 2021, 23, 5182–5214. [Google Scholar] [CrossRef]
- Uaiene, R.N. Determinants of Agricultural Technology Adoption in Mozambique. In Proceedings of the 10th African Crop Science Conference Proceedings, Maputo, Mozambique, 10–13 October 2011. [Google Scholar]
Soil Fertility Factors | Improvement Mechanism | Reference |
---|---|---|
Nutrient supply | Supplies the soil with nutrients from the feedstocks and enhances nutrient use efficiency | [104] |
Soil pH | Provides liming effect | [105] |
Soil CEC | High surface functional group | [36] |
Nitrogen use efficiency | Decreases N leaching | [106] |
Soil C storage | More stable and recalcitrant in soil | [107] |
Soil microbial activity | The presence of pore spaces in biochar offers a conducive environment for microorganisms | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubairu, A.M.; Michéli, E.; Ocansey, C.M.; Boros, N.; Rétháti, G.; Lehoczky, É.; Gulyás, M. Biochar Improves Soil Fertility and Crop Performance: A Case Study of Nigeria. Soil Syst. 2023, 7, 105. https://doi.org/10.3390/soilsystems7040105
Zubairu AM, Michéli E, Ocansey CM, Boros N, Rétháti G, Lehoczky É, Gulyás M. Biochar Improves Soil Fertility and Crop Performance: A Case Study of Nigeria. Soil Systems. 2023; 7(4):105. https://doi.org/10.3390/soilsystems7040105
Chicago/Turabian StyleZubairu, Abdulrahman Maina, Erika Michéli, Caleb Melenya Ocansey, Norbert Boros, Gabriella Rétháti, Éva Lehoczky, and Miklós Gulyás. 2023. "Biochar Improves Soil Fertility and Crop Performance: A Case Study of Nigeria" Soil Systems 7, no. 4: 105. https://doi.org/10.3390/soilsystems7040105
APA StyleZubairu, A. M., Michéli, E., Ocansey, C. M., Boros, N., Rétháti, G., Lehoczky, É., & Gulyás, M. (2023). Biochar Improves Soil Fertility and Crop Performance: A Case Study of Nigeria. Soil Systems, 7(4), 105. https://doi.org/10.3390/soilsystems7040105