Sediment Mercury, Geomorphology and Land Use in the Middle Araguaia River Floodplain (Savanna Biome, Brazil)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Mercury Determination
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jardim, W.F.; Bisinoti, M.C.; Fadini, P.S.; Silva, G.S. Mercury redox chemistry in the Negro Riverbasin, Amazon: The role of or ganic matter and solar light. Aquat. Geochem. 2010, 16, 267–278. [Google Scholar] [CrossRef]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant—Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Lintern, A.; Schneider, L.; Beck, K.; Mariani, M.; Fletcher, M.-S.; Gell, P.; Haberle, S. Background concentrations of mercury in Australian freshwater sediments: The effect of catchment characteristics on mercury deposition. Elem. Sci. Anthr. 2020, 8, 19. [Google Scholar] [CrossRef]
- King, J.K.; Harmon, S.M.; Fu, T.T.; Gladden, J.B. Mercuryremoval, methylmercury formation, and sulfate-reducing bacteria profiles in wetland mesocosms. Chemosphere 2002, 46, 859–870. [Google Scholar] [CrossRef]
- Hazen, R.M.; Golden, J.; Downs, R.T.; Hystad, G.; Grew, E.S.; Azzolini, D.; Sverjensky, D. Mercury (Hg) mineralevolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. Am. Mineral. 2012, 97, 1013–1042. [Google Scholar] [CrossRef]
- Outridge, P.M.; Mason, R.P.; Wang, F.; Guerrero, S.; Heimburger-Boavida, L.E. Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 2018, 52, 11466–11477. [Google Scholar] [CrossRef]
- Fisher, J.A.; Schneider, L.; Fostier, A.H.; Guerrero, S.; Guimarães, J.R.D.; Labuschagne, C.; Leaner, J.L.; Martin, L.G.; Mason, R.P.; Somerset, V.; et al. A synthesis of mercury research in the Southern Hemisphere, part 2: Anthropogenic perturbations. Ambio 2023, 52, 918–937. [Google Scholar] [CrossRef]
- MapBiomas. Relatório Anual do Desmatamento do Brasil—2022. 2023. Available online: https://alerta.mapbiomas.org/relatorio (accessed on 17 July 2023).
- Portela, J.F.; Souza, J.P.R.; Tonhá, S.; Bernbardi, J.V.E.; Garnier, J.; Souza, J.R. Evaluation of Total Mercury in Sediments of the Descoberto River Environmental Protection Area—Brazil. Int. J. Environ. Res. Public Health 2020, 17, 154. [Google Scholar] [CrossRef]
- Dórea, J.G.; Monteiro, L.C.; Bernardi, J.V.E.; Fernandes, I.O.; Oliveira, S.F.B.; Souza, J.P.R.; Rosrigues, Y.O.S.; Vieira, L.C.G.; Souza, J.R. Landuse impact on mercury in sediments and macrophytes from a natural lake in the Brazilian savanna. Environ. Pollut. 2023, 337, 15. [Google Scholar] [CrossRef]
- Monteiro, L.C.; Viera, L.C.G.; Bernardi, J.V.E.; Moraes, L.C.; Rodrigues, Y.O.S.; Souza, J.P.R.; Souza, J.R.; Bastos, W.R.; Passos, C.J.S.; Dorea, J.G. Ecological risk of mercury in bottom sediments and spatial correlation with landuse in Neotropical savanna floodplain lakes, Araguaia River, Central Brazil. Environ. Res. 2023, 238, 117231. [Google Scholar] [CrossRef] [PubMed]
- Oestreicher, J.S.; Lucotte, M.; Moingt, M.; Bélanger, E.; Rozon, C.; Davidson, R.; Mertens, F.; Romaña, C.A. Environmental and anthropogenic factors influencing mercury dynamics during the past century in floodplain lakes of the Tapajós River, Brazilian Amazon. Arch. Environ. Contam. Toxicol. 2017, 72, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.A.I.; Almeida, M.G.; Pestana, I.A.; Bastos, W.R.; Recktenvald, C.N.; Souza, C.M.M.; Pedrosa, P. Impact of Land Use on the Mobility of Hg Species in Different Compartments of a Tropical Watershed in Brazil. Arch. Environ. Contam. Toxicol. 2017, 73, 578–592. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.A.; Santilli, G.; Sano, E.E.; Laneve, G. Fire Occurrences and Greenhouse Gas Emissions from Deforestation in the Brazilian Amazon. Remote Sens. 2021, 13, 376. [Google Scholar] [CrossRef]
- López, A.F.; Barrón, E.G.H.; Bugallo, P.M.B. Contribution to understanding the influence of fires on the mercury cycle: Systematic review, dynamic modeling and application to sustainable hypothetical scenarios. Environ. Monit. Assess. 2022, 194, 707. [Google Scholar] [CrossRef]
- Vieira, M.; Bernardi, J.V.E.; Dorea, J.G.; Rocha, B.C.P.; Ribeiro, R.; Zara, L.F. Distribution and availability of Mercury and methylmercury indifferent waters from the Rio Madeira Basin, Amazon. Environ. Pollut. 2018, 235, 771–779. [Google Scholar] [CrossRef]
- Gabriel, M.C.; Williamson, D.G. Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environ. Geochem. Health 2004, 26, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Pelcová, P.; Margetínová, J.; Vaculovic, T.; Komarek, J.; Kuban, V. Adsorption of mercury species on riversediments—Effects of selected abiotic parameters. Cent. Eur. J. Chem. 2010, 8, 116–125. [Google Scholar] [CrossRef]
- Cardoso-Silva, S.; Ferreira, P.A.L.; Moschini-Carlos, V.; Figueira, R.C.L.; Pompêo, M. Temporal and spatial accumulation ofheavy metals in the sediments at Paiva Castro Reservoir (São Paulo, Brazil). Environ. Earth Sci. 2016, 75, 9. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, S.; Zhao, L.; Lu, X.; Pierce, E.M.; Gu, B. Mercury sorption and desorption on organo-mineral particulates as a source for microbial methylation. Environ. Sci. Technol. 2019, 53, 2426–2433. [Google Scholar] [CrossRef]
- Gustin, M.S.; Evers, D.C.; Bank, M.S.; Hammerschimidt, C.R.; Pierce, A.; Basu, N.; Blum, J.; Bustamante, P.; Chen, C.; Driscoll, C.T.; et al. Importance of integration and implementation of emerging and future mercury research in to the Minamata Convention. Environ. Sci. Technol. 2016, 50, 2767–2770. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, R.A.; Jardine, T.D.; Chumchal, M.M.; Kidd, K.A.; Campbell, L.M. Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis. Environ. Sci. Technol. 2013, 47, 13385–13394. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.C.M.; Dorea, J.G.; Bernardi, J.V.E.; Gomes, L.F. Mapping the Evolution of Mercury (Hg) Research in the Amazon (1991–2017): A Scientometric Analysis. Int. J. Environ. Res. Public Health 2019, 16, 1111. [Google Scholar] [CrossRef] [PubMed]
- Tejerina-Garro, F.L.; Fortin, R.; Rodríguez, M.A. Caracterização da ictiofauna e das interações peixe-ambiente no médio Araguaia, baciaAmazônica. Estudos 2002, 29, 87–101. [Google Scholar]
- Latrubesse, E.M.; Arima, E.; Ferreira, M.E.; Nogueira, S.H.; Wittmann, F.; Dias, M.S.; Dagosta, F.C.P.; Bayer, M. Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conserv. Sci. Pract. 2019, 1, e77. [Google Scholar] [CrossRef]
- Suizu, T.M.; Latrubesse, E.M.; Stevaux, J.C.; Bayer, M. Resposta da morfologia do médio-curso superior do Rio Araguaia às mudanças no regime hidrossedimentar no período 2001–2018. Rev. Bras. Geomorfol. 2022, 23, 1420–1434. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Amsler, M.L.; de Morais, R.P.; Aquino, S. The geomorphologic response of a large pristine alluvial river to tremendous deforestation in the South American tropics: The case of the Araguaia River. Geomorphology 2009, 113, 239–252. [Google Scholar] [CrossRef]
- Coe, M.T.; Latrubesse, E.M.; Ferreira, M.E.; Amsler, M.L. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 2011, 105, 119–131. [Google Scholar] [CrossRef]
- Bizzi, L.A.; Schobbenhaus, C.; Vidotti, R.M.; Gonçalves, J.H. Geologia, Tectônica e Recursos Minerais do Brasil: Texto, Mapas & SIG; CPRM—Serviço Geológico do Brasil: Brasília, Brazil, 2003. [Google Scholar]
- Ferreira, R.V.; Shinzato, E.; Dantas, M.E.; Teixeira, W.G. Origem das paisagens do estado do Pará. In Geodiversidade do Estado do Pará; Teixeira, S.G., João, X.J., Eds.; CPRM—Serviço Geológico do Brasil: Brasília, Brazil, 2011; pp. 23–52. [Google Scholar]
- Valente, C.R.; Latrubesse, E.M.; Ferreira, L.G. Relationships among vegetation, geomorphology and hydrology in the Bananal Island tropical wetlands, Araguaia River basin, Central Brazil. J. S. Am. Earth Sci. 2013, 46, 150–160. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Stevaux, J.C. Geomorphology and environmental aspects of the Araguaia fluvial basin, Brazil. Z. Geomorphol. 2002, 129, 109–127. [Google Scholar]
- Jarduli, L.R.; Claro-García, A.; Shibatta, O.A. Ichthyofauna of the rio Araguaia basin, states of Mato Grosso and Goiás, Brazil. Check List 2014, 10, 483–515. [Google Scholar] [CrossRef]
- Costa, M.H.; Botta, A.; Cardille, J.A. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 2003, 283, 206–217. [Google Scholar] [CrossRef]
- Morais, R.P.; Oliveira, L.G.; Latrubesse, E.M.; Pinheiro, R.C.D. Morfometria de sistemas lacustres da planície aluvial do médio rio Araguaia. Acta Sci. 2005, 27, 203–213. [Google Scholar] [CrossRef]
- Rodrigues, Y.O.S.; Dorea, J.G.; Landim, P.M.B.; Bernardi, J.V.E.; Monteiro, L.C.; Souza, J.P.R.; Pinto, L.C.M.; Fernandes, I.O.; Souza, J.V.V.; Sousa, A.R. Mercury spatiality and mobilization in roadside soils adjacent to a savannah ecological reserve. Environ. Res. 2022, 205, 112513. [Google Scholar] [CrossRef] [PubMed]
- Sholupov, S.; Pogarev, S.; Ryzhov, V.; Mashyanov, N.; Stroganov, A. Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Process. Technol. 2004, 85, 473–485. [Google Scholar] [CrossRef]
- Hasui, Y.; Abreu, F.D.A.M.; Silva, J.M.R. Estratigrafia da faixa de dobramentos Paraguai-Araguaia no centro-norte do Brasil. Bol. IG 1977, 8. [Google Scholar] [CrossRef]
- Moura, C.A.V.; Pinheiro, B.L.S.; Nogueira, A.C.R.; Gorayeb, P.S.S.; Galarza, M.A. Sedimentary provenance and palaeoenvironment of the Baixo Araguaia Supergroup: Constraints on the palaeogeographical evolution of the Araguaia Belt and assembly of West Gondwana. Geol. Soc. Spec. Publ. 2008, 294, 173–196. [Google Scholar] [CrossRef]
- Araujo, S.M.; Fawcett, J.J.; Scott, S.D. Metamorphism of hydrothermally altered rocks in a volcanogenic massive sulfide deposit: The Palmeirópolis, Brazil. Rev. Bras. Geociências 1995, 25, 173–184. [Google Scholar] [CrossRef]
- Corrêa, L.W.C.; Macambira, M.J.B. Evolução da região de Santana do Araguaia (PA) com base na geologia e geocronologia Pb-Pb em zircão de granitoides. Geol. USP-Ser. Cient. 2014, 14, 45–66. [Google Scholar] [CrossRef]
- LeaoNeto, R.; Oliviatti, O. Projeto Palmeirópolis-Etapa Preliminar: Goiania; CPRM—Companhia de Pesquisa e Recursos Minerais: Brasília, Brazil, 1983. [Google Scholar]
- Morais, R.P.; Aquino, S.; Latrubesse, E.M. Controles hidrogeomorfológicos nas unidades vegetacionais da planície aluvial do rio Araguaia, Brasil. Acta Sci.-Biol. Sci. 2008, 30, 411–421. [Google Scholar] [CrossRef]
- Peng, G.; Luhr, J.F.; McGee, J.J. Factors controlling sulfur concentrations in volcanic apatite. Am. Mineral. 1997, 82, 1210–1224. [Google Scholar] [CrossRef]
- Khan, I.; Zhong, N.; Luo, Q.; Ai, J.; Yao, L.; Luo, P. Maceral composition and origin of organic matter input in Neoproterozoic—Lower Cambrian organic-rich shales of Salt Range Formation, upper Indus Basin, Pakistan. Int. J. Coal Geol. 2020, 217, 103319. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, W.; Hu, D.; Ou, L.; Hu, X.; Yang, T.; Wei, W.; Ju, L.; Wang, X. Behavior of mercury in an urban river and its accumulation in aquatic plants. Environ. Earth Sci. 2013, 68, 1089–1097. [Google Scholar] [CrossRef]
- Ioele, G.; Luca, M.; Grande, F.; Durante, G.; Trozzo, R.; Crupi, C.; Ragno, G. Assessment of Surface Water Quality Using Multivariate Analysis: Case Study of the Crati River, Italy. Water 2020, 12, 2214. [Google Scholar] [CrossRef]
- Estimativas de População Enviadas ao TCU. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html (accessed on 10 December 2021).
- Martins, P.R.; Sano, E.E.; Martins, E.S.; Vieira, L.C.G.; Salemi, L.F.; Vasconcelos, V.; Couto Junior, A.F. Terrain units, land use and land cover, and gross primary productivity of the largest fluvial basin in the Brazilian Amazonia/Cerrado ecotone: The Araguaia River basin. Appl. Geogr. 2021, 127, 102379. [Google Scholar] [CrossRef]
- Valente, C.R.; Latrubesse, E.M. Fluvial archive of peculiar avulsive fluvial patterns in the largest Quaternary intracratonic basin of tropical South America: The Bananal Basin, Central-Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 356–357, 62–74. [Google Scholar] [CrossRef]
- Irion, G.; Nunes, G.M.; da Cunha, C.N.; Arruda, E.C.; Tambelini, M.S.; Dias, A.P.; Morais, J.O.; Junk, W.J. Araguaia River Floodplain: Size, Age, and Mineral Composition of a Large Tropical Savanna Wetland. Wetlands 2016, 36, 945–956. [Google Scholar] [CrossRef]
- Lacerda, L.D.; Paula, F.C.F.; Ovalle, A.R.C.; Pfeiffer, W.C.; Malm, O. Trace metals in fluvial sediments of the Madeira River watershed, Amazon, Brazil. Sci. Total Environ. 1990, 97–98, 525–530. [Google Scholar] [CrossRef]
- Berzas Nevado, J.J.; Martín-Doimeadios, R.C.R.; Bernardo, F.J.G.; Moreno, M.J.; Herculano, A.M.; Nascimento, J.L.M.; Crespo-López, M.E. Mercury in the Tapajós River basin, Brazilian Amazon: A review. Environ. Int. 2010, 36, 593–608. [Google Scholar] [CrossRef]
- Campos, M.L.; Toledo, C.L.B.; Silva, A.M.; Ducart, D.F.; dos Santos, B.A.; Campos, M.P.; Borges, C.C.A. The hydrothermal footprint of the Crixás deposit: New vectors for orogenic gold exploration in central Brazil. Ore Geol. Rev. 2022, 146, 104925. [Google Scholar] [CrossRef]
- Winfrey, R.; Rudd, W.M. Formation of methylmercury in low pH lakes. Environ. Toxicol. Chem. 1990, 9, 853–869. [Google Scholar] [CrossRef]
- Rusydi, A.F. Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 118, 012019. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Smith, D.G. Turbidity, suspended sediment, and waterclarity: A review. J. Am. Water Resour. Assoc. 2001, 37, 1085–1101. [Google Scholar] [CrossRef]
THg 1 | DO | pH | Temp | Ec | TDS | Turb | ORP | |
---|---|---|---|---|---|---|---|---|
Intercept | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
Geo-nested land use | 0.00111 | 0.00502 | 0.00667 | 0.24639 | 0.00000 | 0.00000 | 0.08403 | 0.52510 |
Land use | 0.00501 | 0.00406 | 0.00208 | 0.66064 | 0.64745 | 0.64717 | 0.30527 | 0.78711 |
Geology | Group 1 | Group 2 | Group 3 | ||||
---|---|---|---|---|---|---|---|
Nested Land Use | Urban | Non-Urban | Urban | Non-Urban | Urban | Non-Urban | |
n | 50 | 7 | 7 | 3 | 12 | 6 | 15 |
THg 1 (ng/g) | 76.14 ± 39.03 | † 119.71 ± 05.44 a | * 79.74 ± 14.53 b | * 105.40 ± 17.29 abc | * 81.36 ± 17.89 bcd | * 46.27 ± 21.37 e | 56.05 ± 38.62 be |
DO (mg/L) | 5.57 ± 2.10 | * 2.86 ± 1.81 a | 6.00 ± 1.95 b | 7.00 ± 0.61 b | 6.45 ± 2.00 b | 6.07 ± 1.92 b | 5.43 ± 1.69 b |
pH | 6.28 ± 0.49 | * 6.34 ± 0.45 a | * 6.31 ± 0.40 a | † 6.44 ± 0.20 a | * 6.37 ± 0.41 a | * 6.55 ± 0.25 a | 6.01 ± 0.62 b |
Turb (NTU) | 6.92 ± 5.64 | 7.32 ± 3.92 a | 6.58 ± 1.28 a | 6.96 ± 1.76 a | 10.65 ± 9.46 ab | 3.01 ± 0.91 ac | 5.46 ± 3.46 ac |
Temp (°C) | 30.61 ± 1.74 | 29.46 ± 1.09 a | 30.32 ± 1.34 ab | 31.58 ± 1.90 ab | 31.38 ± 2.37 b | 30.46 ± 0.95 ab | 30.53 ± 1.63 ab |
Ec (mS/cm) | 0.035 ± 0.013 | † 0.043 ± 0.008 a | * 0.036 ± 0.005 a | * 0.045 ± 0.007 a | † 0.046 ± 0.008 a | 0.024 ± 0.008 b | 0.026 ± 0.013 b |
ORP | 241.42 ± 54.06 | 244.57 ± 82.91 | 262.42 ± 24.79 | 256.00 ± 58.02 | 225.33 ± 54.09 | 221.00 ± 30.79 | 248.26 ± 56.38 |
TDS (g/L) | 0.023 ± 0.008 | † 0.028 ± 0.005 a | * 0.023 ± 0.003 a | * 0.029 ± 0.005 a | † 0.029 ± 0.005 a | 0.015 ± 0.005 b | 0.016 ± 0.008 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes, L.; Bernardi, J.V.E.; de Souza, J.P.R.; Portela, J.F.; Vieira, L.C.G.; Sousa Passos, C.J.; de Souza, J.R.; Bastos, W.R.; Monteiro, L.C.; Rodrigues, Y.O.S.; et al. Sediment Mercury, Geomorphology and Land Use in the Middle Araguaia River Floodplain (Savanna Biome, Brazil). Soil Syst. 2023, 7, 97. https://doi.org/10.3390/soilsystems7040097
Moraes L, Bernardi JVE, de Souza JPR, Portela JF, Vieira LCG, Sousa Passos CJ, de Souza JR, Bastos WR, Monteiro LC, Rodrigues YOS, et al. Sediment Mercury, Geomorphology and Land Use in the Middle Araguaia River Floodplain (Savanna Biome, Brazil). Soil Systems. 2023; 7(4):97. https://doi.org/10.3390/soilsystems7040097
Chicago/Turabian StyleMoraes, Lilian, José Vicente Elias Bernardi, João Pedro Rudrigues de Souza, Joelma Ferreira Portela, Ludgero Cardoso Galli Vieira, Carlos José Sousa Passos, Jurandir Rodrigues de Souza, Wanderley Rodrigues Bastos, Lucas Cabrera Monteiro, Ygor Oliveira Sarmento Rodrigues, and et al. 2023. "Sediment Mercury, Geomorphology and Land Use in the Middle Araguaia River Floodplain (Savanna Biome, Brazil)" Soil Systems 7, no. 4: 97. https://doi.org/10.3390/soilsystems7040097
APA StyleMoraes, L., Bernardi, J. V. E., de Souza, J. P. R., Portela, J. F., Vieira, L. C. G., Sousa Passos, C. J., de Souza, J. R., Bastos, W. R., Monteiro, L. C., Rodrigues, Y. O. S., & Dorea, J. G. (2023). Sediment Mercury, Geomorphology and Land Use in the Middle Araguaia River Floodplain (Savanna Biome, Brazil). Soil Systems, 7(4), 97. https://doi.org/10.3390/soilsystems7040097