Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management
Abstract
:1. Introduction
2. Methodology of the Review
3. Soil Salinity and Global Issues
4. Salt-Affected Soil Classification
5. Soil Salinity from the Perspective of Different Soil Subdisciplines
5.1. Soil Biogeochemistry
5.2. Soil Microbiology
5.3. Soil Fertility and Plant Nutrition
6. GIS, Remote and Proximal Sensing, and Salinity Mapping
7. Salt-Affected Soil Management
- Physical approaches (e.g., deep tillage, leaching, subsurface drainage, etc.)
- The application of inorganic nutrients (e.g., K, Ca, Mg, Se, Si, etc.)
- Microbial mitigation such as plant growth promoting microbes (PGPM), arbuscular mycorrhizal fungi (AMF), etc.
- Organic amendments (biochar, compost, vermicompost, humic substances, etc.)
- Nano-management (nano-Se, nano-Si, nano-TiO2, nano-ZnO, nano-CuO, nano-C dots, etc.)
- Remediation approaches (phytoremediation, phyto-desalination, bioremediation, biological reclamation, etc.)
- The growth of salt-tolerant crops, which mainly depends on plant species.
7.1. Reclamation of Salt-Affected Soils
7.2. Nutrients for Salt-Affected Soil Mitigation
7.3. Microbial Mitigation of Salt-Affected Soil
7.4. Organic Amendments
7.5. Nano-Management of Salt-Affected Soils
8. Crop Response to Soil Salinity and Mechanisms
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahab, S.; Suhani, I.; Srivastava, V.; Chauhan, P.S.; Singh, R.P.; Prasad, V. Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Sci. Total. Environ. 2021, 764, 144164. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Front. Environ. Sci. 2021, 9, 712931. [Google Scholar] [CrossRef]
- Guo, J.; Shan, C.; Zhang, Y.; Wang, X.; Tian, H.; Han, G.; Zhang, Y.; Wang, B. Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants. Front. Plant Sci. 2022, 13, 854116. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Raihan, R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef]
- Wang, C.-F.; Han, G.-L.; Yang, Z.-R.; Li, Y.-X.; Wang, B.-S. Plant Salinity Sensors: Current Understanding and Future Directions. Front. Plant Sci. 2022, 13, 859224. [Google Scholar] [CrossRef]
- Haj-Amor, Z.; Araya, T.; Kim, D.-G.; Bouri, S.; Lee, J.; Ghiloufi, W.; Yang, Y.; Kang, H.; Jhariya, M.K.; Banerjee, A.; et al. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Sci. Total. Environ. 2022, 843, 156946. [Google Scholar] [CrossRef]
- Liu, Y.; Xun, W.; Chen, L.; Xu, Z.; Zhang, N.; Feng, H.; Zhang, Q.; Zhang, R. Rhizosphere microbes enhance plant salt tolerance: Toward crop production in saline soil. Comput. Struct. Biotechnol. J. 2022, 20, 6543–6551. [Google Scholar] [CrossRef]
- Zhang, W.-W.; Wang, C.; Xue, R.; Wang, L.-J. Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 2019, 18, 1360–1368. [Google Scholar] [CrossRef]
- Chandra, P.; Singh, A.; Prajapat, K.; Rai, A.K.; Yadav, R.Y. Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi–arid region. Environ. Exp. Bot. 2022, 201, 104982. [Google Scholar] [CrossRef]
- Du, Y.; Liu, X.; Zhang, L.; Zhou, W. Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta-analysis. Sci. Total. Environ. 2023, 880, 163226. [Google Scholar] [CrossRef]
- El-Mageed, T.A.A.; Mekdad, A.A.A.; Rady, M.O.A.; Abdelbaky, A.S.; Saudy, H.S.; Shaaban, A. Physio-biochemical and Agronomic Changes of Two Sugar Beet Cultivars Grown in Saline Soil as Influenced by Potassium Fertilizer. J. Soil Sci. Plant Nutr. 2022, 22, 3636–3654. [Google Scholar] [CrossRef]
- El-Sherpiny, M.A.; Kany, M.A. Maximizing Faba Bean Tolerance to Soil Salinity Stress Using Gypsum, Compost and Selenium. Egypt. J. Soil Sci. 2023, 63, 243–253. [Google Scholar]
- Ghazi, D.A.; El-Ghamry, A.M.; El-Sherpiny, M.A.; Soliman, M.A.E.; Nemeata Alla, A.A.; Helmy, A.A. Titanium: An Element of Non-Biological Atmospheric Nitrogen Fixation and A Regulator of Sugar Beet Plant Tolerance to Salinity. Egypt. J. Soil Sci. 2022, 62, 373–381. [Google Scholar] [CrossRef]
- Abd-Elzaher, M.A.; El-Desoky, M.A.; Khalil, F.A.; Eissa, M.A.; Amin, A.E.-E.A. Interactive Effects of K-Humate, Proline and Si and Zn Nanoparticles in Improving Salt Tolerance of Wheat in Arid Degraded Soils. Egypt. J. Soil Sci. 2022, 62, 237–251. [Google Scholar] [CrossRef]
- Muthuraja, R.; Muthukumar, T. Co-inoculation of halotolerant potassium solubilizing Bacillus licheniformis and Aspergillus vio-laceofuscus improves tomato growth and potassium uptake in different soil types under salinity. Chemosphere 2022, 294, 133718. [Google Scholar] [CrossRef]
- Tiwari, S.; Sharma, B.; Bisht, N.; Tewari, L. Role of beneficial microbial gene pool in mitigating salt/nutrient stress of plants in saline soils through underground phytostimulating signalling molecules. Pedosphere 2023, 33, 153–171. [Google Scholar] [CrossRef]
- Liu, T.; Wang, S.; Chen, Y.; Luo, J.; Hao, B.; Zhang, Z.; Yang, B.; Guo, W. Bio-organic fertilizer promoted phytoremediation using native plant leymus chinensis in heavy Metal(loid)s contaminated saline soil. Environ. Pollut. 2023, 327, 121599. [Google Scholar] [CrossRef]
- Wang, R.; Liu, T.; Lu, C.; Zhang, Z.; Guo, P.; Jia, B.; Hao, B.; Wang, Y.; Guo, W. Bioorganic fertilizers improve the adaptability and remediation efficiency of Puccinellia distans in multiple heavy metals-contaminated saline soil by regulating the soil microbial community. J. Hazard. Mater. 2023, 448, 130982. [Google Scholar] [CrossRef]
- Qian, S.; Zhou, X.; Fu, Y.; Song, B.; Yan, H.; Chen, Z.; Sun, Q.; Ye, H.; Qin, L.; Lai, C. Biochar-compost as a new option for soil improvement: Application in various problem soils. Sci. Total. Environ. 2023, 870, 162024. [Google Scholar] [CrossRef]
- Awad, E.A.; Mohamed, I.R.; Abd El-Hameed, A.M.; Zaghloul, E.A.M. The Co-Addition of Soil Organic Amendments and Natural BioStimulants Improves the Production and Defenses of the Wheat Plant Grown under the Dual Stress of Salinity and Alkalinity. Egypt. J. Soil Sci. 2022, 62, 137–153. [Google Scholar] [CrossRef]
- Abdelrahman, H.M.; Zaghloul, R.A.; Hassan, E.A.; El-Zehery, H.R.A.; Salem, A.A. New strains of plant growth-promoting rhizobacteria in combinations with humic acid to enhance squash growth under saline stress. Egypt. J. Soil Sci. 2021, 61, 81–90. [Google Scholar] [CrossRef]
- Hassan, A.; Amjad, S.F.; Saleem, M.H.; Yasmin, H.; Imran, M.; Riaz, M.; Ali, Q.; Joyia, F.A.; Mobeen; Ahmed, S.; et al. Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J. Biol. Sci. 2021, 28, 4276–4290. [Google Scholar] [CrossRef]
- Shalaby, T.A.; Abd-Alkarim, E.; El-Aidy, F.; Hamed, E.-S.; Sharaf-Eldin, M.; Taha, N.; El-Ramady, H.; Bayoumi, Y.; dos Reis, A.R. Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicol. Environ. Saf. 2021, 212, 111962. [Google Scholar] [CrossRef]
- Huang, X.; Tang, Q.; Chen, C.; Li, Q.; Lin, H.; Bai, S.; Zhao, J.; Li, J.; Wang, K.; Zhu, M. Combined analysis of transcriptome and metabolome provides insights into nano-selenium foliar applications to improve summer tea quality (Camellia sinensis). LWT 2023, 175, 114496. [Google Scholar] [CrossRef]
- Rizwan, A.; Zia-Ur-Rehman, M.; Rizwan, M.; Usman, M.; Anayatullah, S.; Areej; Alharby, H.F.; Bamagoos, A.A.; Alharbi, B.M.; Ali, S. Effects of silicon nanoparticles and conventional Si amendments on growth and nutrient accumulation by maize (Zea mays L.) grown in saline-sodic soil. Environ. Res. 2023, 227, 115740. [Google Scholar] [CrossRef]
- Ahmed, R.; Zia-Ur-Rehman, M.; Sabir, M.; Usman, M.; Rizwan, M.; Ahmad, Z.; Alharby, H.F.; Al-Zahrani, H.S.; Alsamadany, H.; Aldhebiani, A.Y.; et al. Differential response of nano zinc sulphate with other conventional sources of Zn in mitigating salinity stress in rice grown on saline-sodic soil. Chemosphere 2023, 327, 138479. [Google Scholar] [CrossRef]
- Saffan, M.M.; Koriem, M.A.; El-Henawy, A.; El-Mahdy, S.; El-Ramady, H.; Elbehiry, F.; Omara, A.E.-D.; Bayoumi, Y.; Badgar, K.; Prokisch, J. Sustainable Production of Tomato Plants (Solanum lycopersicum L.) under Low-Quality Irrigation Water as Affected by Bio-Nanofertilizers of Selenium and Copper. Sustainability 2022, 14, 3236. [Google Scholar] [CrossRef]
- Patle, T.; Sharma, S.K. Synthesis of nano-gypsum: A computational approach to encounter soil salinity and land degradation. Comput. Theor. Chem. 2022, 1217, 113909. [Google Scholar] [CrossRef]
- Chen, Q.; Cao, X.; Li, Y.; Sun, Q.; Dai, L.; Li, J.; Guo, Z.; Zhang, L.; Ci, L. Functional carbon nanodots improve soil quality and tomato tolerance in saline-alkali soils. Sci. Total. Environ. 2022, 830, 154817. [Google Scholar] [CrossRef] [PubMed]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.K.; Upadhyay, S.K.; Tripathi, M.; Singh, R.; Krishna, D.; Singh, S.K.; Dwivedi, P. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnol. Genet. Eng. Rev. 2022, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.; Waheed, A.; Wahab, A.; Majeed, M.; Nazim, M.; Liu, Y.-H.; Li, L.; Li, W.-J. Soil salinity and drought tolerance: An evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress 2023, 11, 100319. [Google Scholar] [CrossRef]
- Pandey, P.; Tripathi, A.; Dwivedi, S.; Lal, K.; Jhang, T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. Front. Plant Sci. 2023, 14, 1250020. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, H.; Song, C.; Zhu, J.-K.; Shabala, S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation 2020, 1, 100017. [Google Scholar] [CrossRef] [PubMed]
- FAO. Agricultural Drainage Water Management in Arid and Semi-Arid Areas; FAO Irrigation and Drainage Paper 61; Food and Agriculture Organization Of The United Nations: Rome, Italy, 2002. [Google Scholar]
- Ma, L.; Han, R.; Yang, Y.; Liu, X.; Li, H.; Zhao, X.; Li, J.; Fu, H.; Huo, Y.; Sun, L.; et al. Phytochromes enhance SOS2-mediated PIF1 and PIF3 phosphorylation and degradation to promote Arabidopsis salt tolerance. Plant Cell 2023, 35, 2997–3020. [Google Scholar] [CrossRef]
- Liu, C.; Lin, J.-Z.; Wang, Y.; Tian, Y.; Zheng, H.-P.; Zhou, Z.-K.; Zhou, Y.-B.; Tang, X.-D.; Zhao, X.-H.; Wu, T.; et al. The protein phosphatase PC1 dephosphorylates and deactivates CatC to negatively regulate H2O2 homeostasis and salt tolerance in rice. Plant Cell 2023, 35, 3604–3625. [Google Scholar] [CrossRef]
- Fu, H.; Yang, Y. How Plants Tolerate Salt Stress. Curr. Issues Mol. Biol. 2023, 45, 5914–5934. [Google Scholar] [CrossRef]
- Dabravolski, S.A.; Isayenkov, S.V. The regulation of plant cell wall organisation under salt stress. Front. Plant Sci. 2023, 14, 1118313. [Google Scholar] [CrossRef]
- Goswami, S.K.; Kashyap, A.S.; Kumar, R.; Gujjar, R.S.; Singh, A.; Manzar, N. Harnessing Rhizospheric Microbes for Eco-friendly and Sustainable Crop Production in Saline Environments. Curr. Microbiol. 2023, 81, 14. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Fujita, M. Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions. Int. J. Mol. Sci. 2022, 23, 4810. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Abrol, I.P.; Finkl, C.W.; Kirkham, M.B.; Arbestain, M.C. Soil salinity and salinization. In Encyclopedia of Soil Science; Encyclopedia of Earth Sciences Series; Chesworth, W., Ed.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Talukder, B.; Salim, R.; Islam, S.T.; Mondal, K.P.; Hipel, K.W.; Vanloon, G.W.; Orbinski, J. Collective intelligence for addressing community planetary health resulting from salinity prompted by sea level rise. J. Clim. Chang. Health 2023, 10, 100203. [Google Scholar] [CrossRef]
- Bannari, A.; Al-Ali, Z.A. Assessing climate change impact on soil salinity dynamics between 1987–2017 in arid landscape using Landsat TM, ETM+ and OLI data. Remote Sens. 2020, 12, 2794. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Eswar, D.; Karuppusamy, R.; Chellamuthu, S. Drivers of soil salinity and their correlation with climate change. Curr. Opin. Environ. Sustain. 2021, 50, 310–318. [Google Scholar] [CrossRef]
- Li, S.; Zhao, L.; Wang, C.; Huang, H.; Zhuang, M. Synergistic improvement of carbon sequestration and crop yield by organic material addition in saline soil: A global meta-analysis. Sci. Total. Environ. 2023, 891, 164530. [Google Scholar] [CrossRef]
- Navarro-Torre, S.; Garcia-Caparrós, P.; Nogales, A.; Abreu, M.M.; Santos, E.; Cortinhas, A.L.; Caperta, A.D. Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies. Environ. Exp. Bot. 2023, 212, 105397. [Google Scholar] [CrossRef]
- Khamidov, M.; Ishchanov, J.; Hamidov, A.; Donmez, C.; Djumaboev, K. Assessment of Soil Salinity Changes under the Climate Change in the Khorezm Region, Uzbekistan. Int. J. Environ. Res. Public Health 2022, 19, 8794. [Google Scholar] [CrossRef]
- Sundha, P.; Basak, N.; Rai, A.K.; Yadav, R.K.; Sharma, P.C. Irrigation water quality, gypsum, and city waste compost addition affect P dynamics in saline-sodic soils. Environ. Res. 2023, 216, 114559. [Google Scholar] [CrossRef]
- Singh, A. Poor-drainage-induced salinization of agricultural lands: Management through structural measures. Land Use Policy 2018, 82, 457–463. [Google Scholar] [CrossRef]
- Ullah, A.; Bano, A.; Khan, N. Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. Front. Sustain. Food Syst. 2021, 5, 618092. [Google Scholar] [CrossRef]
- Bhowmik, B.C.; Rima, N.N.; Gosh, K.; Hossain, A.; Murray, F.J.; Little, D.C.; Mamun, A.-A. Salinity extrusion and resilience of coastal aquaculture to the climatic changes in the southwest region of Bangladesh. Heliyon 2023, 9, e13935. [Google Scholar] [CrossRef]
- Schaetzl, R.; Thompson, M.L. Soils: Genesis and Geomorphology, 2nd ed.; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Indorante, S.J.; Follmer, L.R.; Konen, M.E.; Bathgate, J.A.; D’Avello, T.P.; Rhanor, T.M. Sodium-Affected Soils in South-Central Illinois, USA: A Summary of Settings, Distribution, and Genesis Pathways. Soil Horiz. 2011, 52, 118–125. [Google Scholar] [CrossRef]
- Richards, L. Diagnosis and Improvement of Saline and Alkali Soils; U.S. Department Agriculture Handbook 60; U.S. Government Printing Office: Washington, DC, USA, 1954.
- Shahid, S.A.; Rahman, K. Soil salinity development, classification, assessment and management in irrigated agriculture. In Handbook of Plant and Crop Stress; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 23–39. [Google Scholar]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; U.S. Department of Agriculture Handbook 436; Natural Resources Conservation Service: Washington, DC, USA, 1999.
- Soil Classification Working Group. The Canadian System of Soil Classification, 3rd ed.; Agriculture and Agri-Food Canada Publication: Ottawa, ON, Canada, 1998. [Google Scholar]
- Isbell, R.F. National Committee on Soil and Terrain. In The Australian Soil Classification., 3rd ed.; CSIRO Publishing: Clayton, Australia, 2021. [Google Scholar]
- Katerji, N.; van Hoorn, J.; Hamdy, A.; Mastrorilli, M. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agric. Water Manag. 2000, 43, 99–109. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, A.N.; Tiwari, R.K.; Sahu, P.K.; Yadav, J.; Srivastava, A.K.; Kumar, S. Salinity Alleviation and Reduction in Oxidative Stress by Endophytic and Rhizospheric Microbes in Two Rice Cultivars. Plants 2023, 12, 976. [Google Scholar] [CrossRef] [PubMed]
- Ricks, K.D.; Ricks, N.J.; Yannarell, A.C. Patterns of Plant Salinity Adaptation Depend on Interactions with Soil Microbes. Am. Nat. 2023, 202, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Bouras, H.; Mamassi, A.; Devkota, K.P.; Choukr-Allah, R.; Bouazzama, B. Integrated effect of saline water irrigation and phosphorus fertilization practices on wheat (Triticum aestivum) growth, productivity, nutrient content and soil proprieties under dryland farming. Plant Stress 2023, 10, 100295. [Google Scholar] [CrossRef]
- Huang, K.; Li, M.; Li, R.; Rasul, F.; Shahzad, S.; Wu, C.; Shao, J.; Huang, G.; Li, R.; Almari, S.; et al. Soil acidification and salinity: The importance of biochar application to agricultural soils. Front. Plant Sci. 2023, 14, 1206820. [Google Scholar] [CrossRef]
- Islam, S.M.; Gaihre, Y.K.; Islam, M.N.; Jahan, A.; Sarkar, A.R.; Singh, U.; Islam, A.; Al Mahmud, A.; Akter, M.; Islam, R. Effects of integrated nutrient management and urea deep placement on rice yield, nitrogen use efficiency, farm profits and greenhouse gas emissions in saline soils of Bangladesh. Sci. Total. Environ. 2024, 909, 168660. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, J.; Zhai, Y.; Jia, J.; Zhao, Q.; Wang, W.; Hu, X. Microbial diversity and functions in saline soils: A review from a biogeochemical perspective. J. Adv. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Cao, X.; Zhou, Y.; Li, Z.; Yang, Y.; Zhao, D.; Li, Y.; Xu, Z.; Zhang, C.-S. Effect of planting salt-tolerant legumes on coastal saline soil nutrient availability and microbial communities. J. Environ. Manag. 2023, 345, 118574. [Google Scholar] [CrossRef]
- Sihi, D.; Dari, B. Soil Biogeochemistry. In The Soils of India; Mishra, B., Ed.; World Soils Book Series; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Zhen, Z.; Li, G.; Chen, Y.; Wei, T.; Li, H.; Huang, F.; Huang, Y.; Ren, L.; Liang, Y.; Zhang, D.; et al. Accelerated nitrification and altered community structure of ammonia-oxidizing microorganisms in the saline-alkali tolerant rice rhizosphere of coastal solonchaks. Appl. Soil Ecol. 2023, 189, 104978. [Google Scholar] [CrossRef]
- Song, M.; Li, J.; Gao, L.; Tian, Y. Comprehensive evaluation of effects of various carbon-rich amendments on overall soil quality and crop productivity in degraded soils. Geoderma 2023, 436, 116529. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Fagodiya, R.K.; Narjary, B.; Barman, A.; Prajapat, K.; Kumar, S.; Bundela, D.S.; Sharma, P.C. Restoring soil quality and carbon sequestration potential of waterlogged saline land using subsurface drainage technology to achieve land degradation neutrality in India. Sci. Total. Environ. 2023, 885, 163959. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Yang, Y.; Guan, P.; Geng, L.; Ma, L.; Di, H.; Liu, W.; Li, B. Remediation of organic amendments on soil salinization: Focusing on the relationship between soil salts and microbial communities. Ecotoxicol. Environ. Saf. 2022, 239, 113616. [Google Scholar] [CrossRef]
- Shaaban, M.; Wu, Y.; Núñez-Delgado, A.; Kuzyakov, Y.; Peng, Q.A.; Lin, S.; Hu, R. Enzyme activities and organic matter mineralization in response to application of gypsum, manure and rice straw in saline and sodic soils. Environ. Res. 2023, 224, 115393. [Google Scholar] [CrossRef]
- Cui, C.; Shen, J.; Zhu, Y.; Chen, X.; Liu, S.; Yang, J. Bioremediation of phenanthrene in saline-alkali soil by biochar- immobilized moderately halophilic bacteria combined with Suaeda salsa L. Sci. Total. Environ. 2023, 880, 163279. [Google Scholar] [CrossRef]
- Alharbi, K.; Hafez, E.M.; Omara, A.E.-D.; Osman, H.S. Mitigating Osmotic Stress and Enhancing Developmental Productivity Processes in Cotton through Integrative Use of Vermicompost and Cyanobacteria. Plants 2023, 12, 1872. [Google Scholar] [CrossRef]
- Song, X.; Li, H.; Song, J.; Chen, W.; Shi, L. Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiol. Biochem. 2022, 183, 96–110. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Tang, Y.; Cui, X.; Hou, D.; Jia, H.; Wang, S.; Guo, L.; Wang, J.; Lin, A. Mitigating soil salinity stress with titanium gypsum and biochar composite materials: Improvement effects and mechanism. Chemosphere 2023, 321, 138127. [Google Scholar] [CrossRef] [PubMed]
- Ran, C.; Gao, D.; Bai, T.; Geng, Y.; Shao, X.; Guo, L. Straw return alleviates the negative effects of saline sodic stress on rice by improving soil chemistry and reducing the accumulation of sodium ions in rice leaves. Agric. Ecosyst. Environ. 2023, 342, 108253. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Liu, Z.; Han, F.; Chen, S.; Zhou, W. Integrated application of phosphorus-accumulating bacteria and phosphorus-solubilizing bacteria to achieve sustainable phosphorus management in saline soils. Sci. Total Environ. 2023, 885, 163971. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Y.; Ryder, M.; Li, H.; Zhao, Z.; Toh, R.; Yang, P.; Li, J.; Yang, H.; Denton, M.D. Soil salinity determines the assembly of endophytic bacterial communities in the roots but not leaves of halophytes in a river delta ecosystem. Geoderma 2023, 433, 116447. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Hu, M.; Xiong, Y.; Huang, Q.; Jin, S.; Huang, G. Lignite bioorganic fertilizer enhanced microbial co-occurrence network stability and plant–microbe interactions in saline-sodic soil. Sci. Total. Environ. 2023, 879, 163113. [Google Scholar] [CrossRef]
- Somenahally, A.C.; McLawrence, J.; Chaganti, V.N.; Ganjegunte, G.K.; Obayomi, O.; Brady, J.A. Response of soil microbial Communities, inorganic and organic soil carbon pools in arid saline soils to alternative land use practices. Ecol. Indic. 2023, 150, 110227. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, J.; Jia, J.; Wang, W.; Wang, D.; Zhao, Q.; Wang, C.; Chen, G. Soil microbial communities regulate the threshold effect of salinity stress on SOM decomposition in coastal salt marshes. Fundam. Res. 2023, 3, 868–879. [Google Scholar] [CrossRef]
- Guangming, L.; Xuechen, Z.; Xiuping, W.; Hongbo, S.; Jingsong, Y.; Xiangping, W. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric. Ecosyst. Environ. 2017, 237, 274–279. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.; Miao, F.; Li, Z.; Tang, W.; Sun, J. Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Appl. Soil Ecol. 2020, 155, 103671. [Google Scholar] [CrossRef]
- Heng, T.; Hermansen, C.; de Jonge, L.W.; Chen, J.; Yang, L.; Zhao, L.; He, X. Differential responses of soil nutrients to edaphic properties and microbial attributes following reclamation of abandoned salinized farmland. Agric. Ecosyst. Environ. 2023, 347, 108373. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Guo, P.; Zhang, Z.; Cui, X.; Hao, B.; Guo, W. Arbuscular mycorrhizal fungi facilitate Astragalus adsurgens growth and stress tolerance in cadmium and lead contaminated saline soil by regulating rhizosphere bacterial community. Appl. Soil Ecol. 2023, 187, 104842. [Google Scholar] [CrossRef]
- Hu, M.; Sardans, J.; Le, Y.; Yan, R.; Zhong, Y.; Huang, J.; Peñuelas, J.; Tong, C. Biogeochemical behavior of P in the soil and porewater of a low-salinity estuarine wetland: Availability, diffusion kinetics, and mobilization mechanism. Water Res. 2022, 219, 118617. [Google Scholar] [CrossRef]
- Wang, B.; Kuang, S.; Shao, H.; Cheng, F.; Wang, H. Improving soil fertility by driving microbial community changes in saline soils of Yellow River Delta under petroleum pollution. J. Environ. Manag. 2021, 304, 114265. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yue, W.; Zheng, N.; Guo, M.; Teng, Y. Assessing the impact of different salinities on the desorption of Cd, Cu and Zn in soils with combined pollution. Sci. Total. Environ. 2022, 836, 155725. [Google Scholar] [CrossRef] [PubMed]
- Atai, E.; Jumbo, R.B.; Cowley, T.; Azuazu, I.; Coulon, F.; Pawlett, M. Efficacy of bioadmendments in reducing the influence of salinity on the bioremediation of oil-contaminated soil. Sci. Total. Environ. 2023, 892, 164720. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Sarmah, A.K.; Bordoloi, S.; Bolan, S.; Padhye, L.P.; Van Zwieten, L.; Sooriyakumar, P.; Khan, B.A.; Ahmad, M.; Solaiman, Z.M.; et al. Soil acidification and the liming potential of biochar. Environ. Pollut. 2023, 317, 120632. [Google Scholar] [CrossRef] [PubMed]
- Manzano, R.; Diquattro, S.; Roggero, P.P.; Pinna, M.V.; Garau, G.; Castaldi, P. Addition of softwood biochar to contaminated soils decreases the mobility, leachability and bioaccesibility of potentially toxic elements. Sci. Total. Environ. 2020, 739, 139946. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Singh, B.P.; Cowie, A.L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci. Rep. 2014, 4, 3687. [Google Scholar] [CrossRef]
- Mudare, S.; Li, M.; Kanomanyanga, J.; Lamichhane, J.R.; Lakshmanan, P.; Cong, W. Ecosystem services of organic versus inorganic ground cover in peach orchards: A meta-analysis. Food Energy Secur. 2023, 12, e463. [Google Scholar] [CrossRef]
- Wang, Y.; Long, Q.; Li, Y.; Kang, F.; Fan, Z.; Xiong, H.; Zhao, H.; Luo, Y.; Guo, R.; He, X.; et al. Mitigating magnesium deficiency for sustainable citrus production: A case study in Southwest China. Sci. Hortic. 2022, 295, 110832. [Google Scholar] [CrossRef]
- Lobell, D.B.; Lesch, S.M.; Corwin, D.L.; Ulmer, M.G.; Anderson, K.A.; Potts, D.J.; Doolittle, J.A.; Matos, M.R.; Baltes, M.J. Regional-scale Assessment of Soil Salinity in the Red River Valley Using Multi-year MODIS EVI and NDVI. J. Environ. Qual. 2010, 39, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Heilig, J.; Kempenich, J.; Doolittle, J.; Brevik, E.C.; Ulmer, M. Evaluation of Electromagnetic Induction to Characterize and Map Sodium-Affected Soils in the Northern Great Plains. Soil Horiz. 2011, 52, 77–88. [Google Scholar] [CrossRef]
- Brevik, E.C.; Calzolari, C.; Miller, B.A.; Pereira, P.; Kabala, C.; Baumgarten, A.; Jordán, A. Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma 2016, 264, 256–274. [Google Scholar] [CrossRef]
- Sahbeni, G.; Ngabire, M.; Musyimi, P.K.; Székely, B. Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review. Remote. Sens. 2023, 15, 2540. [Google Scholar] [CrossRef]
- Srinivasan, R.; Lalitha, M.; Chandrakala, M.; Dharumarajan, S.; Hegde, R. Application of Remote Sensing and GIS Techniques in Assessment of Salt Affected Soils for Management in Large Scale Soil Survey. In Soil Health and Environmental Sustainability; Shit, P.K., Adhikary, P.P., Bhunia, G.S., Sengupta, D., Eds.; Environmental Science and Engineering; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014, 223–225, 33–45. [Google Scholar] [CrossRef]
- Visconti, F.; de Paz, J.M. Field Comparison of Electrical Resistance, Electromagnetic Induction, and Frequency Domain Reflectometry for Soil Salinity Appraisal. Soil Syst. 2020, 4, 61. [Google Scholar] [CrossRef]
- Wu, W. A brief review on soil salinity mapping by optical and radar remote sensing. In Research Developments in Saline Agriculture; Dagar, J.C., Yadav, R.K., Sharma, P.C., Eds.; Springer: Cham, Switzerland, 2019; pp. 53–65. [Google Scholar]
- Naimi, S.; Ayoubi, S.; Zeraatpisheh, M.; Dematte, J.A.M. Ground Observations and Environmental Covariates Integration for Mapping of Soil Salinity: A Machine Learning-Based Approach. Remote. Sens. 2021, 13, 4825. [Google Scholar] [CrossRef]
- Scudiero, E.; Corwin, D.L.; Anderson, R.G.; Skaggs, T.H. Moving Forward on Remote Sensing of Soil Salinity at Regional Scale. Front. Environ. Sci. 2016, 4, 65. [Google Scholar] [CrossRef]
- Aydoğdu, M.H.; Sevinç, M.R.; Cançelik, M.; Doğan, H.P.; Şahin, Z. Determination of Farmers’ Willingness to Pay for Sustainable Agricultural Land Use in the GAP-Harran Plain of Turkey. Land 2020, 9, 261. [Google Scholar] [CrossRef]
- Wicke, B.; Smeets, E.; Dornburg, V.; Vashev, B.; Gaiser, T.; Turkenburg, W.; Faaij, A. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci. 2011, 4, 2669–2681. [Google Scholar] [CrossRef]
- Leng, P.; Zhang, Q.; Li, F.; Kulmatov, R.; Wang, G.; Qiao, Y.; Wang, J.; Peng, Y.; Tian, C.; Zhu, N.; et al. Agricultural impacts drive longitudinal variations of riverine water quality of the Aral Sea basin (Amu Darya and Syr Darya Rivers), Central Asia. Environ. Pollut. 2021, 284, 117405. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. Nature and Properties of Soils, 15th ed.; Pearson: Hoboken, NJ, USA, 2016. [Google Scholar]
- Amezketa, E.; Aragüés, R.; Gazol, R. Efficiency of Sulfuric Acid, Mined Gypsum, and Two Gypsum By-Products in Soil Crusting Prevention and Sodic Soil Reclamation. Agron. J. 2005, 97, 983–989. [Google Scholar] [CrossRef]
- Green, A.; DeSutter, T.; Meehan, M.; Daigh, A.; O’Brien, P. Produced water’s impact on soil properties: Remediation challenges and opportunities. Agrosyst. Geosci. Environ. 2020, 3, e20042. [Google Scholar] [CrossRef]
- Alsamadany, H.; Alharby, H.F.; Al-Zahrani, H.S.; Kuşvuran, A.; Kuşvuran, S.; Rady, M.M. Selenium fortification stimulates antioxidant- and enzyme gene expression-related defense mechanisms in response to saline stress in Cucurbita pepo. Sci. Hortic. 2023, 312, 111886. [Google Scholar] [CrossRef]
- Borj, M.A.; Etesami, H.; Alikhani, H.A. Silicon improves the effect of phosphate-solubilizing bacterium and arbuscular my-corrhizal fungus on phosphorus concentration of salinity-stressed alfalfa (Medicago sativa L.). Rhizosphere 2022, 24, 100619. [Google Scholar] [CrossRef]
- Venâncio, J.B.; Dias, N.d.S.; de Medeiros, J.F.; de Morais, P.L.D.; Nascimento, C.W.A.D.; Neto, O.N.d.S.; Sá, F.V.d.S. Yield and Morphophysiology of Onion Grown under Salinity and Fertilization with Silicon. Sci. Hortic. 2022, 301, 111095. [Google Scholar] [CrossRef]
- Admasie, M.A.; Kurunc, A.; Cengiz, M.F. Effects of exogenous selenium application for enhancing salinity stress tolerance in dry bean. Sci. Hortic. 2023, 320, 112238. [Google Scholar] [CrossRef]
- Gurmani, A.R.; Wang, X.; Rafique, M.; Jawad, M.; Khan, A.R.; Khan, Q.U.; Ahmed, R.; Fiaz, S. Exogenous application of gibberellic acid and silicon to promote salinity tolerance in pea (Pisum sativum L.) through Na+ exclusion. Saudi J. Biol. Sci. 2022, 29, 103305. [Google Scholar] [CrossRef]
- Kaloterakis, N.; van Delden, S.H.; Hartley, S.; De Deyn, G.B. Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L). Sci. Hortic. 2021, 288, 110383. [Google Scholar] [CrossRef]
- Bijalwan, P.; Jeddi, K.; Saini, I.; Sharma, M.; Kaushik, P.; Hessini, K. Mitigation of saline conditions in watermelon with mycorrhiza and silicon application. Saudi J. Biol. Sci. 2021, 28, 3678–3684. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.; Elhindi, K.M.; Alotaibi, M.A. Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol. Environ. Saf. 2020, 206, 111396. [Google Scholar] [CrossRef] [PubMed]
- Pourebrahimi, M.; Eshghi, S.; Ramezanian, A.; Faghih, S. Effect of combined application of selenium and hydrogen sulfide under salinity stress on yield, physiological traits and biofortification of strawberries in hydroponic cultivation. Sci. Hortic. 2023, 315, 111982. [Google Scholar] [CrossRef]
- Rasool, A.; Shah, W.H.; Padder, S.A.; Tahir, I.; Alharby, H.F.; Hakeem, K.R.; Rehman, R.U. Exogenous selenium treatment alleviates salinity stress in Proso Millet (Panicum miliaceum L.) by enhancing the antioxidant defence system and regulation of ionic channels. Plant Growth Regul. 2022, 100, 479–494. [Google Scholar] [CrossRef]
- Sharma, B.; Kumawat, K.C.; Tiwari, S.; Kumar, A.; Dar, R.A.; Singh, U.; Cardinale, M. Silicon and plant nutrition—Dynamics, mechanisms of transport and role of silicon solubilizer microbiomes in sustainable agriculture: A review. Pedosphere 2023, 33, 534–555. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.L.; Muneer, S.; Kim, Y.-H.; Al-Rawahi, A.; Al-Harrasi, A. Silicon and Salinity: Crosstalk in Crop-Mediated Stress Tolerance Mechanisms. Front. Plant Sci. 2019, 10, 1429. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, P.; Rajora, N.; Bhardwaj, S.; Sudhakaran, S.S.; Kumar, A.; Raturi, G.; Chakraborty, K.; Gupta, O.P.; Devanna, B.; Tripathi, D.K.; et al. Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiol. Biochem. 2021, 162, 110–123. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Feizi, M.; Kumari, A.; Khan, M.; Mandzhieva, S.; Sushkova, S.; El-Ramady, H.; Verma, K.K.; Singh, A.; et al. Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. Biology 2021, 10, 791. [Google Scholar] [CrossRef]
- Etesami, H.; Li, Z.; Maathuis, F.J.; Cooke, J. The combined use of silicon and arbuscular mycorrhizas to mitigate salinity and drought stress in rice. Environ. Exp. Bot. 2022, 201, 104955. [Google Scholar] [CrossRef]
- Kumari, S.; Chhillar, H.; Chopra, P.; Khanna, R.R.; Khan, M.I.R. Potassium: A track to develop salinity tolerant plants. Plant Physiol. Biochem. 2021, 167, 1011–1023. [Google Scholar] [CrossRef]
- Rasool, A.; Shah, W.H.; Mushtaq, N.U.; Saleem, S.; Hakeem, K.R.; Rehman, R.U. Amelioration of salinity induced damage in plants by selenium application: A review. S. Afr. J. Bot. 2022, 147, 98–105. [Google Scholar] [CrossRef]
- Lipiec, J.; Gliński, J. Rhizosphere. In Encyclopedia of Agrophysics; Encyclopedia of Earth Sciences Series; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Sagar, A.; Rai, S.; Ilyas, N.; Sayyed, R.Z.; Al-Turki, A.I.; El Enshasy, H.A.; Simarmata, T. Halotolerant Rhizobacteria for Salinity-Stress Mitigation: Diversity, Mechanisms and Molecular Approaches. Sustainability 2022, 14, 490. [Google Scholar] [CrossRef]
- Zhu, L.; Jia, X.; Li, M.; Wang, Y.; Zhang, J.; Hou, J.; Wang, X. Associative effectiveness of bio-organic fertilizer and soil conditioners derived from the fermentation of food waste applied to greenhouse saline soil in Shan Dong Province, China. Appl. Soil Ecol. 2021, 167, 104006. [Google Scholar] [CrossRef]
- del Carmen Orozco-Mosqueda, M.; Glick, B.R.; Santoyo, G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol. Res. 2020, 235, 126439. [Google Scholar] [CrossRef]
- Bhat, M.A.; Kumar, V.; Bhat, M.A.; Wani, I.A.; Dar, F.L.; Farooq, I.; Bhatti, F.; Koser, R.; Rahman, S.; Jan, A.T. Mechanistic Insights of the Interaction of Plant Growth-Promoting Rhizobacteria (PGPR) With Plant Roots Toward Enhancing Plant Productivity by Alleviating Salinity Stress. Front. Microbiol. 2020, 11, 1952. [Google Scholar] [CrossRef]
- Giannelli, G.; Potestio, S.; Visioli, G. The Contribution of PGPR in Salt Stress Tolerance in Crops: Unravelling the Molecular Mechanisms of Cross-Talk between Plant and Bacteria. Plants 2023, 12, 2197. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Gaurav, A.K.; Srivastava, S.; Verma, J.P. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Front. Microbiol. 2020, 11, 1216. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H.; Chen, L.; Koorem, K.; Hu, Y.; Hu, L.-J. Natural restoration alters soil microbial community structure, but has contrasting effects on the diversity of bacterial and fungal assemblages in salinized grasslands. Sci. Total. Environ. 2023, 891, 164726. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, J.; Tebbe, C.C.; Zhao, Q.; Jia, J.; Wang, W.; Wang, X.; Yu, L. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ. Microbiol. 2020, 23, 1020–1037. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, C.; Yang, J.; Yao, R.; Wang, X.; Xie, W.; Ge, A.-H. Salinity-dependent potential soil fungal decomposers under straw amendment. Sci. Total. Environ. 2023, 891, 164569. [Google Scholar] [CrossRef]
- Yao, R.; Gao, Q.; Liu, Y.; Li, H.; Yang, J.; Bai, Y.; Zhu, H.; Wang, X.; Xie, W.; Zhang, X. Deep vertical rotary tillage mitigates salinization hazards and shifts microbial community structure in salt-affected anthropogenic-alluvial soil. Soil Tillage Res. 2023, 227, 105627. [Google Scholar] [CrossRef]
- Yuan, Y.; Zu, M.; Li, R.; Zuo, J.; Tao, J. Soil properties, microbial diversity, and changes in the functionality of saline-alkali soil are driven by microplastics. J. Hazard. Mater. 2023, 446, 130712. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yao, X.; Li, X.; Wang, Q.; Wang, J.; Zhu, L.; Wang, J. Effects of dibutyl phthalate on microbial community and the carbon cycle in salinized soil. J. Clean. Prod. 2023, 404, 136928. [Google Scholar] [CrossRef]
- Zhou, Y.; Shao, T.; Men, G.; Chen, J.; Li, N.; Gao, X.; Long, X.; Rengel, Z.; Zhu, M. Application of malrstone-based conditioner and plantation of Jerusalem artichoke improved properties of saline-alkaline soil in Inner Mongolia. J. Environ. Manag. 2023, 329, 117083. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Yu, Y.; Li, Y.; Ge, C.; Chapman, S.J.; Yao, H. Can aged biochar offset soil greenhouse gas emissions from crop residue amendments in saline and non-saline soils under laboratory conditions? Sci. Total Environ. 2022, 806, 151256. [Google Scholar] [CrossRef]
- He, K.; Xu, Y.; He, G.; Zhao, X.; Wang, C.; Li, S.; Zhou, G.; Hu, R. Combined application of acidic biochar and fertilizer synergistically enhances Miscanthus productivity in coastal saline-alkaline soil. Sci. Total Environ. 2023, 893, 164811. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Zhang, L.; Zheng, Y.; Liu, X.; Zhang, Y. The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. Front. Plant Sci. 2023, 14, 1163451. [Google Scholar] [CrossRef]
- Duan, M.; Yan, R.; Wang, Q.; Zhou, B.; Zhu, H.; Liu, G.; Guo, X.; Zhang, Z. Integrated microbiological and metabolomics analyses to understand the mechanism that allows modified biochar to affect the alkalinity of saline soil and winter wheat growth. Sci. Total. Environ. 2023, 866, 161330. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, S.; Chen, M.; Fei, C.; Zhang, W.; Li, Y.; Ding, X. Fe-modified biochar combined with mineral fertilization promotes soil organic phosphorus mineralization by shifting the diversity of phoD-harboring bacteria within soil aggregates in saline-alkaline paddy soil. J. Soils Sediments 2023, 23, 619–633. [Google Scholar] [CrossRef]
- Taheri, M.A.-R.; Astaraei, A.R.; Lakzian, A.; Emami, H. The role of biochar and sulfur-modified biochar on soil water content, biochemical properties and millet crop under saline-sodic and calcareous soil. Plant Soil 2023, 1–16. [Google Scholar] [CrossRef]
- Li, H.; Wang, B.; Siri, M.; Liu, C.; Feng, C.; Shao, X.; Liu, K. Calcium-modified biochar rather than original biochar decreases salinization indexes of saline-alkaline soil. Environ. Sci. Pollut. Res. 2023, 30, 74966–74976. [Google Scholar] [CrossRef] [PubMed]
- Abulaiti, A.; She, D.; Liu, Z.; Sun, X.; Wang, H. Application of biochar and polyacrylamide to revitalize coastal saline soil quality to improve rice growth. Environ. Sci. Pollut. Res. 2023, 30, 18731–18747. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rafique, M.I.; Akanji, M.A.; Al-Wabel, M.I.; Al-Swadi, H.A.; Al-Farraj, A.S.F. Silica modified biochar mitigates the adverse effects of salt and drought stress and improves safflower (Carthamus tinctorius L.) growth. J. Soils Sediments 2023, 23, 172–192. [Google Scholar] [CrossRef]
- Malik, Z.; Malik, N.; Noor, I.; Kamran, M.; Parveen, A.; Ali, M.; Sabir, F.; Elansary, H.O.; El-Abedin, T.K.Z.; Mahmoud, E.A.; et al. Combined Effect of Rice-Straw Biochar and Humic Acid on Growth, Antioxidative Capacity, and Ion Uptake in Maize (Zea mays L.) Grown Under Saline Soil Conditions. J. Plant Growth Regul. 2023, 42, 3211–3228. [Google Scholar] [CrossRef]
- Rahimzadeh, S.; Ghassemi-Golezani, K. The biochar-based nanocomposites improve seedling emergence and growth of dill by changing phytohormones and sugar signaling under salinity. Environ. Sci. Pollut. Res. 2023, 30, 67458–67471. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhu, L.; Zhao, F.; Li, J.; Zhang, X.; Kong, X.; Wu, H.; Zhang, Z. Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. Front. Plant Sci. 2022, 13, 843994. [Google Scholar] [CrossRef] [PubMed]
- Shiri, F.; Aazami, M.A.; Hassanpouraghdam, M.B.; Rasouli, F.; Kakaei, K.; Asadi, M. Cerium oxide- salicylic acid nanocomposite foliar use impacts physiological responses and essential oil composition of spearmint (Mentha spicata L.) under salt stress. Sci. Hortic. 2023, 317, 112050. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Chen, F.; Sun, Y.; Zhu, Y.; Wang, L. Bacillus mycoides PM35 in combination with titanium dioxide (TiO2)—nanoparticles enhanced morpho-physio-biochemical attributes in Barley (Hordeum vulgare L.) under cadmium stress. Chemosphere 2023, 323, 138224. [Google Scholar] [CrossRef]
- Zuo, Y.; Zeng, W.; Ao, C.; Chen, H.; Huang, J. Effects of multiwalled carbon nanotube and Bacillus atrophaeus application on crop root zone thermal characteristics of saline farmland. Heliyon 2023, 9, e13510. [Google Scholar] [CrossRef]
- Sári, D.; Ferroudj, A.; Abdalla, N.; El-Ramady, H.; Dobránszki, J.; Prokisch, J. Nano-Management Approaches for Salt Tolerance in Plants under Field and In Vitro Conditions. Agronomy 2023, 13, 2695. [Google Scholar] [CrossRef]
- Sári, D.; Ferroudj, A.; Dávid, S.; El-Ramady, H.; Faizy, S.; Ibrahim, S.; Mansour, H.; Brevik, E.; Solberg, S.; Prokisch, J. Drought Stress under a Nano-Farming Approach: A Review. Egypt. J. Soil Sci. 2024, 64, 135–151. [Google Scholar] [CrossRef]
- El-Ramady, H.; Brevik, E.; Abowaly, M.; Ali, R.; Saad Moghanm, F.; Gharib, M.; Mansour, H.; Fawzy, Z.; Prokisch, J. Soil Deg-radation under a Changing Climate: Management from Traditional to Nano-Approaches. Egypt. J. Soil Sci. 2024, 64. in press. [Google Scholar] [CrossRef]
- Sári, D.; Ferroudj, A.; Dávid, S.; El-Ramady, H.; Abowaly, M.; Abdalla, Z.; Mansour, H.; Eid, Y.; Prokisch, J. Is Nano-Management a Sustainable Solution for Mitigation of Climate Change under the Water-Energy-Food Nexus? Egypt. J. Soil Sci. 2024, 64, 1–17. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Ghassemi-Golezani, K. Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. Ecotoxicol. Environ. Saf. 2021, 211, 111904. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, U.; Ahmed, T.; Rizwan, M.; Noman, M.; Shah, A.A.; Azeem, F.; Alharby, H.F.; Bamagoos, A.A.; Alharbi, B.M.; Ali, S. Rice straw based silicon nanoparticles improve morphological and nutrient profile of rice plants under salinity stress by triggering physiological and genetic repair mechanisms. Plant Physiol. Biochem. 2023, 201, 107788. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Desoky, E.-S.M.; Saad, A.M.; Eid, R.S.; Selem, E.; Elrys, A.S. Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. J. Environ. Sci. 2021, 106, 1–14. [Google Scholar] [CrossRef] [PubMed]
- El-Badri, A.M.; Batool, M.; Mohamed, I.A.; Khatab, A.; Sherif, A.; Wang, Z.K.; Salah, A.; Nishawy, E.; Ayaad, M.; Kuai, J.; et al. Modulation of salinity impact on early seedling stage via nano-priming application of Zinc oxide on rapeseed (Brassica napus L.). Plant Physiol. Biochem. 2021, 166, 376–392. [Google Scholar] [CrossRef] [PubMed]
- El-Badri, A.M.; Batool, M.; Mohamed, I.A.A.; Wang, Z.; Wang, C.; Tabl, K.M.; Khatab, A.; Kuai, J.; Wang, J.; Wang, B.; et al. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage. Environ. Pollut. 2022, 310, 119815. [Google Scholar] [CrossRef]
- Yasmeen, T.; Arif, M.S.; Shahzad, S.M.; Riaz, M.; Tufail, M.A.; Mubarik, M.S.; Ahmad, A.; Ali, S.; Albasher, G.; Shakoor, A. Abandoned agriculture soil can be recultivated by promoting biological phosphorus fertility when amended with nano-rock phosphate and suitable bacterial inoculant. Ecotoxicol. Environ. Saf. 2022, 234, 113385. [Google Scholar] [CrossRef]
- Madani, A.; Hassanzadehdelouei, M.; Zrig, A.; Ul-Allah, S. Comparison of different priming methods of pumpkin (Cucurbita pepo) seeds in the early stages of growth in saline and sodic soils under irrigation with different water qualities. Sci. Hortic. 2023, 320, 112165. [Google Scholar] [CrossRef]
- Shah, T.; Latif, S.; Saeed, F.; Ali, I.; Ullah, S.; Alsahli, A.A.; Jan, S.; Ahmad, P. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J. King Saud Univ.-Sci. 2021, 33, 101207. [Google Scholar] [CrossRef]
- Abu Zeid, I.M.; Mohamed, F.H.; Metwali, E.M.R. Responses of two strawberry cultivars to NaCl-induced salt stress under the influence of ZnO nanoparticles. Saudi J. Biol. Sci. 2023, 30, 103623. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.L.N. Microbiology of salt-affected soils. In Managing Salt-Affected Soils for Sustainable Agriculture; Minhas, P.S., Yadav, R.K., Sharma, P.C., Eds.; Indian Council of Agricultural Research: New Dehli, India, 2021; pp. 160–178. [Google Scholar]
- Kibria, M.G.; Hoque, A. A Review on Plant Responses to Soil Salinity and Amelioration Strategies. Open J. Soil Sci. 2019, 9, 219–231. [Google Scholar] [CrossRef]
- Seesamut, T.; Ng, B.; Sutcharit, C.; Chanabun, R.; Panha, S. Responses to salinity in the littoral earthworm genus Pontodrilus. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Klouche, F.; Bendani, K.; Benamar, A.; Missoum, H.; Maliki, M.; Laredj, N. Electrokinetic restoration of local saline soil. Mater. Today Proc. 2019, 22, 64–68. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C. Effect of natural and artificial afforestation reclamation on soil properties and vegetation in coastal saline silt soils. CATENA 2020, 198, 105066. [Google Scholar] [CrossRef]
- Mansour, M.M.F. Anthocyanins: Biotechnological targets for enhancing crop tolerance to salinity stress. Sci. Hortic. 2023, 319, 112182. [Google Scholar] [CrossRef]
- Mishra, A.K.; Das, R.; Kerry, R.G.; Biswal, B.; Sinha, T.; Sharma, S.; Arora, P.; Kumar, M. Promising management strategies to improve crop sustainability and to amend soil salinity. Front. Environ. Sci. 2023, 10, 962581. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ Response Mechanisms to Salinity Stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of Plant Responses to Salt Stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef]
- Ahmad, R.; Anjum, M.A. Physiological and molecular basis of salinity tolerance in fruit crops. In Fruit Crops, Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 445–464. [Google Scholar] [CrossRef]
Soil Salinity Class | Electrical Conductivity (dS m−1) | Crop Response | Example Crop Tolerance Level (dS m−1) * |
---|---|---|---|
Non-Saline | 0–2 | No yield loss | Maize (1.7) |
Slightly Saline | 2–4 | Yield is reduced in sensitive crops | Peanut (3.2) |
Moderately Saline | 4–8 | Most crops experience reduced yields | Sorghum (6.8) |
Strongly Saline | 8–16 | Only tolerant crops produce viable yields | Rye (11.4) |
Very Strongly Saline | >16 | Only halophytes perform well | Halophytes |
Plant Species | Applied Nutrient Dose | Salinity Level | Effects | Refs. |
---|---|---|---|---|
Squash (Cucurbita pepo L.) | Foliar Se (24 mg per plot = 16.5 m2) | EC = 9.45 dS m−1 | Minimized ROS; reduced Na+ uptake; improved photosynthetic capacity, leaf integrity, nutrient homeostasis; enhanced antioxidant enzymes (CAT, SOD) and enzymatic gene expressions; and regulated Na+ homeostasis | [117] |
Dry bean (Phaseolus vulgaris L.) | Foliar Se at 5 and 20 ppm | Irrigation water at EC = 0.6, 1.6, 3.0, and 4.8 dS m−1 | Se foliar application can reduce negative impacts of salinity during dry bean production which may differ in case of seed coating or direct application to soil. The applied foliar Se at 5 ppm was better than 20 ppm in improving plant growth under salinity stress | [120] |
Pea (Pisum sativum L.) | Calcium silicate (14% Si) | Exogenous salt at 5 dS m−1 NaCl | Si promoted high soluble protein content, plant biomass, and yield because it reduced Na+ transport | [121] |
Cucumber (Cucumis sativus L.) | 1.5 mM Si as K2SiO3 | Exogenous salt at 75 mM NaCl | Si inhibited salt stress by reducing shoot Cl− and Ca2+ contents in cucumber shoot seedlings grown in deep water culture | [122] |
Watermelon (Citrullus lanatus L.) | Silicon (4 mM) | Saline water at 3 dS m−1 | Combined arbuscular mycorrhizal fungi and Si promoted growth, antioxidant enzyme activities, yield parameters, and pigment and mineral content | [123] |
Cucumber (Cucumis sativus L.) | Silicon at 200 mg L−1 | EC = 4.49 dS m−1 | Si mitigated salinity under heat stress by increasing Si content in leaves; regulating water losses via transpiration, and increasing the uptake of N, P, K, Mg, and Se | [24] |
Sweet basil (Ocimum basilicum L.) | Foliar and soil Si applied at 100 ppm | Salt applied at 1.5, 3.0, 6.0, and 9.0 g NaCl kg−1 soil | Applied Si maintained photosynthetic pigment, water status, ion homeostasis, redox status; alleviated oxidative injury; and upregulated antioxidant enzymes | [124] |
Strawberry (Fragaria × ananassa Duch.) | Se applied at 1 mg L−1 (Na2SeO4) | Salt applied at 40 mM NaCl | The combined application of H2S + Se inhibited free radicals by 84%, promoted vitamin C, anthocyanin, and antioxidants (CAT, SOD, POX) content, reduced MDA content, and protected the photosynthetic system | [125] |
Millet (Panicum miliaceum L.) | Se at 1, 5 and 10 µM as Na2SeO3 | 150 mM NaCl | Se enhanced antioxidant enzymes (SOD, CAT, APX, and GR), decreased H2O2 content, and regulated Na+ transporters | [126] |
Faba bean (Vicia faba L.) | Foliar Se at 2.5, 5.0, 7.5, and 10.0 mg L−1 | EC = 6.26 dS m−1 | Se at 5 mg L−1 alleviated plant oxidative stresses, produced the highest yield and related components and had the greatest nitrogenase activity and lowest MDA values | [13] |
Main Microbes | Environmental Conditions | Main Findings | Refs. |
---|---|---|---|
Bacterial and fungal communities | Salinized grassland soils (pH 9.31 and EC 3.93 dS·m−1) | Natural restoration decreased the salinity of grassland soils (pH to 8.32 and soil EC 1.36 dS·m−1), improved soil fertility and the abundance of bacterial and fungal phyla Acidobacteria increased, whereas Ascomycota decreased, respectively. | [141] |
Bacteria and fungi | Coastal salt marsh ecosystem in a microcosm experiment | Bacilli had high salt tolerance, while Bacteroidota was more sensitive. SOM can regulate salt stress by controlling microbial activities, metabolism, and C-sequestration in coastal salt marshes. | [142] |
Fungal decomposers | Soil microcosm study incorporating wheat and maize straws under salinity stress | Straw increased soil DOC, SOC, NH4+-N and MBC contents but reduced NO3−-N, and fungal diversity. It strengthened the fungal decomposers Cephalotrichum and Coprinus and Schizothecium under light and severe salinity | [143] |
Soil microbial community | Abandoned salinized farmland | The reclamation of abandoned salinized farmland can be promoted by the activity of soil microbes by improving soil’s physical properties (FC, Ks, BD), nutrient status, and microbial metabolic activity (CAT and UR) | [89] |
Prokaryotic dominated community | Climate-smart land use in arid saline soils | Treated wastewater irrigation amended with gypsum promoted the cropping system (switchgrass and sorghum) due to a copiotroph-dominated prokaryotic community and the buildup of SIC and SOC stocks for C-sequestration | [85] |
Halophilic micro-organisms | Saline soils in semi-arid and arid Mediterranean regions | Sustainability in marginal reclaimed soils under Mediterranean climate can be achieve with plant-based technologies and soil halophytes (bacteria and AMF) | [50] |
Soil bacterial and fungal community | Salt-affected anthropogenic alluvial soil (field experiment) | Vertical rotary tillage mitigated soil salinity by increasing salt leaching, macro-aggregates, and organic carbon. Soil microbial communities shifted through the evolution of microbes better adapted to the altered micro-habitats. | [144] |
Soil microbial community | Coastal saline–sodic soil polluted with microplastics | Microplastic type, dose, and size decreased soil microbial diversity (fungi are more sensitive than bacteria). Polyethylene had a stronger negative impact than polypropylene on the saline–sodic soil ecosystem. | [145] |
Soil bacterial community | Salinized soil polluted with dibutyl phthalate | Pollution and salinity stress changed the structure/composition of the bacterial community, soil invertase and β-glucosidase enzyme activity, and soil C cycle. | [146] |
Soil bacterial (B) and fungal (F) community | Saline–sodic soil | Lignite bioorganic fertilizer promoted soil microbial communities (B+F), stability, functions, Ks, and sunflower–microbe interactions by altering core rhizo-microbiomes under saline–sodic conditions | [84] |
Actinomycetes and fungal community | Salinized oil-polluted coastal soils | Bio-amendments (biochar, SMS) enhanced the degradation of crude oil pollution by enhancing bio-stimulation, bio-augmentation, mitigating microbial community abundance, and promoting physical/chemical properties of the soil | [94] |
Soil bacterial community | Salinized soil in a microcosm experiment | Integrated microbial approach for sustainable P and soil salinity management through integrated utilization of P-accumulating bacteria and P-solubilizing bacteria via P-leaching by promoting soil aggregation and alkaline phosphatase levels | [82] |
Halophilic bacteria | Saline–sodic soil | Applying marlstone and cultivating Jerusalem artichoke reduced salinity stress by increasing halophilic bacteria (e.g., Thioalkalivibrio and Thiohalobacter), DOC, N-fixation capacity, and soil aggregates | [147] |
Plant Species | Nanomaterial Dose | Soil Conditions | Suggested Effects | Refs. |
---|---|---|---|---|
Safflower (Carthamus tinctorius L.) | BNC-MgO + BNC-MnO at 25 g kg−1 soil | EC = 6 and 12 dS m−1 | Nanocomposites improved the growth of roots and shoots by enhancing nutrient uptake by plants, lowering soil SAR, ESP, and osmotic stress, and decreasing salt toxicity | [167] |
Rice (Oryza sativa L.) | Foliar-applied Si-NPs (20 mg L−1) | Salts at 100 mM | Exogenous Si-NPs alleviated salt stress toxicity and promoted carotenoids, chlorophyll content, total soluble protein content, and antioxidants (CAT, SOD, POX); Si-NPs protected plants from oxidative stress by triggering the expression of HKT genes | [168] |
Common bean (Phaseolus vulgaris L.) | Bio-Si-NPs (2.5 and 5.0 mmol L−1) | EC = 7.8 dS m−1 | Bio-Si-NPs at 5 mmol L−1 decreased malondialdehyde, electrolyte leakage, and heavy metals (Pb, Cd, and Ni) in leaves and pods of beans compared to the control grown on polluted saline soils | [169] |
Cucumber (Cucumis sativus L.) | Bio nano-Se at 25 mg L−1 | EC = 4.49 dS m−1 | Bio nano-Se increased K+ content in leaves, regulated osmotic balance, and controlled stomatal opening under both soil salinity and heat stresses | [24] |
Rapeseed (Brassica napus L.) | ZnO-NPs at 25, 50, and 100 mg L−1 | Salts at 150 mM | ZnO-nano-priming enhanced the development of seedlings via reducing ROS accumulation, the biosynthesis of pigments, osmotic protection, increasing antioxidant enzymes, and enhancing economic yield under saline conditions | [170] |
Rapeseed (Brassica napus L.) | Se (IV) or bio-Se-NPs at 50, 100 and 150 µmol L−1 | Salts at 150 and 200 mM | Biological Se-NPs were preferable in improving phenotypic attributes, germination rate, photosynthetic efficiency and osmolyte accumulation versus Se (IV) for seedlings without any toxicity under salt stress | [171] |
Rice (Oryza sativa L.) | Zinc sulphate NPs (5 and 10 mg kg−1 soil) | Saline–sodic soil | ZnSO4-NPs (10 mg kg−1) were recommended to promote rice growth and yield under salinity stress due to improved soil chemical properties (SAR and pH), uptake of nutrients, and enhanced physiological attributes | [27] |
Maize (Zea mays L.) | Nano-rock phosphate at 1140 P kg ha−1 | Reclaimed soil (pH 8.39, ECe 3.84 dS m−1) | Suitable P-solubilizing bacteria increased the efficiency of nano-rock phosphate by promoting P-mobilization and/or solubilization and increasing root carboxylate secretions and P-biochemical fertility due to decreased rhizosphere pH | [172] |
Tomato (Solanum lycopersicum L.) | Functional carbon nanodots at 8 and 16 mg kg−1 (FCNs) | Saline–sodic stress (EC = 4.9 dS m−1) | The nano form alleviated stress on tomato growth and productivity due to the up-regulating of photosynthesis, increasing antioxidants, enhancing osmotic adjustment, promoting uptake of nutrients, increasing soil enzyme activities, and decreasing soil pH and salinity | [30] |
Pumpkin (Cucurbita pepo L.) | Nano-priming with TiO2 (60 ppm) | Irrigated with saline–sodic water (5.2 dS m−1) | Nano-priming resulted in the highest values of proline, SOD, TAC, and K+/Na+, respiration, and the lowest values of Na+ and MDA under saline soil (4.8 dS m−1) | [173] |
Maize (Zea mays L.) | Nano-soaking (40, 60 and 80 ppm) of TiO2-NPs | 200 mM NaCl in a culture system | Nano-priming at 60 ppm was the most effective dose to mitigate salt stress on seedlings by increasing K+ uptake, the relative water content, total phenolic and proline contents, and SOD, CAT, and PAL activities | [174] |
Strawberry (Fragaria × ananassa Duch.) | ZnO-NPs (15 and 30 mg L−l) | Salts at 35 and 70 mM | 15 mg L−l alleviated stress by decreasing accumulated toxic ions and increasing CAT, POX, K+ uptake, proline content, and leaf anatomical features | [175] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Ramady, H.; Prokisch, J.; Mansour, H.; Bayoumi, Y.A.; Shalaby, T.A.; Veres, S.; Brevik, E.C. Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management. Soil Syst. 2024, 8, 11. https://doi.org/10.3390/soilsystems8010011
El-Ramady H, Prokisch J, Mansour H, Bayoumi YA, Shalaby TA, Veres S, Brevik EC. Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management. Soil Systems. 2024; 8(1):11. https://doi.org/10.3390/soilsystems8010011
Chicago/Turabian StyleEl-Ramady, Hassan, József Prokisch, Hani Mansour, Yousry A. Bayoumi, Tarek A. Shalaby, Szilvia Veres, and Eric C. Brevik. 2024. "Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management" Soil Systems 8, no. 1: 11. https://doi.org/10.3390/soilsystems8010011
APA StyleEl-Ramady, H., Prokisch, J., Mansour, H., Bayoumi, Y. A., Shalaby, T. A., Veres, S., & Brevik, E. C. (2024). Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management. Soil Systems, 8(1), 11. https://doi.org/10.3390/soilsystems8010011