Effects of Seed Priming on Mitigating the Negative Effects of Increased Salinity in Two Varieties of Sweet Pepper (Capsicum annuum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Seed Priming, and Experimental Design
2.2. Growing Condition and Stress Treatment
2.3. Determination of Germination Percentage and Seedling Growth Parameters
2.4. Measurements of Photosynthetic Pigment Content
2.5. Measurements of Osmolyte Adjustment Potential
2.6. Statistical Analysis
3. Results and Discussion
3.1. Seed Priming Effects on Germination and Seedling Growth Performance under Salt Stress
3.2. Seed Priming Effects on Photosynthetic Pigments
3.3. Seed Priming Effects on Osmolyte Adjasment and Total Protein Content
3.4. Comparative Analysis of Priming Effects on Salt Stress Tolerance in Two Pepper Varieties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamidov, A.; Daedlow, K.; Webber, H.; Hussein, H.; Abdurahmanov, I.; Dolidudko, A.; Seerat, A.Y.; Solieva, U.; Woldeyohanes, T.; Helming, K. Operationalizing Water-Energy-Food Nexus Research for Sustainable Development in Social-Ecological Systems: An Interdisciplinary Learning Case in Central Asia. Ecol. Soc. 2022, 27, art12. [Google Scholar] [CrossRef]
- Shumaila, S.; Ullah, S. Mitigation of Salinity-Induced Damages in Capsicum annum L. (Sweet Pepper) Seedlings Using Priming Techniques: A Future Perspective of Climate Change in the Region. Commun. Soil Sci. Plant Anal. 2020, 51, 1602–1625. [Google Scholar] [CrossRef]
- Šamec, D.; Linić, I.; Salopek-Sondi, B. Salinity Stress as an Elicitor for Phytochemicals and Minerals Accumulation in Selected Leafy Vegetables of Brassicaceae. Agronomy 2021, 11, 361. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate Change Impacts on Soil Salinity in Agricultural Areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Tu, K.; Cheng, Y.; Pan, T.; Wang, J.; Sun, Q. Effects of seed priming on vitality and preservation of pepper seeds. Agriculture 2022, 12, 603. [Google Scholar] [CrossRef]
- T Song, T.; Xu, H.; Sun, N.; Jiang, L.; Tian, P.; Yong, Y.; Yang, W.; Cai, H.; Cui, G. Metabolomic Analysis of Alfalfa (Medicago sativa L.) Root-Symbiotic Rhizobia Responses under Alkali Stress. Front. Plant Sci. 2017, 8, 260874. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, R.; Xing, Y.; Jiang, B.; Li, B.; Xu, X.; Zhou, Y. The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PLoS ONE 2021, 16, e0245505. [Google Scholar] [CrossRef]
- Yadav, P.V.; Maya, K.; Zakwan, A. Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res. J. Seed Sci. 2011, 4, 125–136. [Google Scholar] [CrossRef]
- Guo, X.; Zhi, W.; Feng, Y.; Zhou, G.; Zhu, G. Seed priming improved salt-stressed sorghum growth by enhancing antioxidative defense. PLoS ONE 2022, 17, e0263036. [Google Scholar] [CrossRef]
- Karalija, E.; Selović, A.; Dahija, S.; Demir, A.; Samardžić, J.; Vrobel, O.; Ćavar Zeljković, S.; Parić, A. Use of Seed Priming to Improve Cd Accumulation and Tolerance in Silene Sendtneri, Novel Cd Hyper-Accumulator. Ecotoxicol. Environ. Saf. 2021, 210, 111882. [Google Scholar] [CrossRef] [PubMed]
- Brezeanu, C.; Brezeanu, P.M.; Stoleru, V.; Irimia, L.M.; Lipșa, F.D.; Teliban, G.-C.; Ciobanu, M.M.; Murariu, F.; Puiu, I.; Branca, F.; et al. Nutritional Value of New Sweet Pepper Genotypes Grown in Organic System. Agriculture 2022, 12, 1863. [Google Scholar] [CrossRef]
- Zamljen, T.; Medic, A.; Hudina, M.; Veberic, R.; Slatnar, A. Salt Stress Differentially Affects the Primary and Secondary Metabolism of Peppers (Capsicum annuum L.) According to the Genotype, Fruit Part, and Salinity Level. Plants 2022, 11, 853. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, K.A.; EL-Maghraby, L.M.; Elansary, H.; Hafez, Y.M.; Ibrahim, E.I.; El-Banna, M.; El-Esawi, M.; Elkelish, A. Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems. Agronomy 2019, 10, 26. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Ahmad, I.; Basit, A.; Shehata, W.F.; Hassan, U.; Shah, S.T.; Haleema, B.; Jalal, A.; Amin, R.; Khalid, M.A.; et al. Ascorbic Acid Enhances Growth and Yield of Sweet Peppers (Capsicum annum) by Mitigating Salinity Stress. Gesunde Pflanz. 2022, 74, 423–433. [Google Scholar] [CrossRef]
- Abdelaal, K.A.A.; Mazrou, Y.S.A.; Hafez, Y.M. Silicon Foliar Application Mitigates Salt Stress in Sweet Pepper Plants by Enhancing Water Status, Photosynthesis, Antioxidant Enzyme Activity and Fruit Yield. Plants 2020, 9, 733. [Google Scholar] [CrossRef] [PubMed]
- El-Afifi, S.; Zaghloul, M.; Fathy, E.-S.; Wahba, M. Using Some Compounds to Alleviate Salinity Stress on Sweet Pepper Plants. J. Plant Prod. 2017, 8, 961–967. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. [34] Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; pp. 350–382. [Google Scholar]
- Carillo, P.; Mastrolonardo, G.; Nacca, F.; Parisi, D.; Verlotta, A.; Fuggi, A. Nitrogen Metabolism in Durum Wheat under Salinity: Accumulation of Proline and Glycine Betaine. Funct. Plant Biol. 2008, 35, 412. [Google Scholar] [CrossRef]
- Teslova, P.; Kalina, J.I.Ř.Í.; Urban, O. Simultaneous determination of non-structural saccharides and starch in leaves of higher plants using anthrone reagent. Chem. Listy 2010, 104, 867–870. [Google Scholar]
- Johnson, R.; Puthur, J.T. Seed Priming as a Cost Effective Technique for Developing Plants with Cross Tolerance to Salinity Stress. Plant Physiol. Biochem. 2021, 162, 247–257. [Google Scholar] [CrossRef] [PubMed]
- López-Serrano, L.; Calatayud, Á.; López-Galarza, S.; Serrano, R.; Bueso, E. Uncovering Salt Tolerance Mechanisms in Pepper Plants: A Physiological and Transcriptomic Approach. BMC Plant Biol. 2021, 21, 169. [Google Scholar] [CrossRef]
- Gammoudi, N.; Karmous, I.; Zerria, K.; Loumerem, M.; Ferchichi, A.; Nagaz, K. Efficiency of Pepper Seed Invigoration through Hydrogen Peroxide Priming to Improve in Vitro Salt and Drought Stress Tolerance. Hortic. Environ. Biotechnol. 2020, 61, 703–714. [Google Scholar] [CrossRef]
- Hossinifarahi, M.; Moazen, H.A.; Amiri, A.; Jowkar, M.M.; Mottaghipisheh, J. Evaluation of Seed Priming and Culture Media to Improve the Germination Performance and Quality of Sweet Pepper and Eggplant Seedlings. Int. J. Hortic. Sci. Technol. 2022, 9, 415–428. [Google Scholar] [CrossRef]
- Al-Ansari, F.; Ksiksi, T. A Quantitative Assessment of Germination Parameters: The Case of And. Open Ecol. J. 2016, 9, 13–21. [Google Scholar] [CrossRef]
- Yadav, P.V.; Kumari, M.; Ahmed, Z. Chemical Seed Priming as a Simple Technique to Impart Cold and Salt Stress Tolerance in Capsicum. J. Crop Improv. 2011, 25, 497–503. [Google Scholar] [CrossRef]
- Ahmed, W.; Imran, M.; Yaseen, M.; ul Haq, T.; Jamshaid, M.U.; Rukh, S.; Ikram, R.M.; Ali, M.; Ali, A.; Maqbool, M.; et al. Role of Salicylic Acid in Regulating Ethylene and Physiological Characteristics for Alleviating Salinity Stress on Germination, Growth and Yield of Sweet Pepper. PeerJ 2020, 8, e8475. [Google Scholar] [CrossRef]
- Linić, I.; Šamec, D.; Grúz, J.; Vujčić Bok, V.; Strnad, M.; Salopek-Sondi, B. Involvement of Phenolic Acids in Short-Term Adaptation to Salinity Stress Is Species-Specific among Brassicaceae. Plants 2019, 8, 155. [Google Scholar] [CrossRef]
- ALKahtani, M.D.F.; Attia, K.A.; Hafez, Y.M.; Khan, N.; Eid, A.M.; Ali, M.A.M.; Abdelaal, K.A.A. Chlorophyll Fluorescence Parameters and Antioxidant Defense System Can Display Salt Tolerance of Salt Acclimated Sweet Pepper Plants Treated with Chitosan and Plant Growth Promoting Rhizobacteria. Agronomy 2020, 10, 1180. [Google Scholar] [CrossRef]
- Nounjan, N.; Chansongkrow, P.; Charoensawan, V.; Siangliw, J.L.; Toojinda, T.; Chadchawan, S.; Theerakulpisut, P. High Performance of Photosynthesis and Osmotic Adjustment Are Associated with Salt Tolerance Ability in Rice Carrying Drought Tolerance QTL: Physiological and Co-Expression Network Analysis. Front. Plant Sci. 2018, 9, 286135. [Google Scholar] [CrossRef]
- Soliman, W.S.; Sugiyama, S.; Abbas, A.M. Contribution of Avoidance and Tolerance Strategies towards Salinity Stress Resistance in Eight C3 Turfgrass Species. Hortic. Environ. Biotechnol. 2018, 59, 29–36. [Google Scholar] [CrossRef]
NaCl Concentration (mM) | ||||
---|---|---|---|---|
Variety | 0 | 25 | 50 | |
Non-primed | Kurtovska kapija | |||
Herkules | ||||
Hydroprymed | Kurtovska kapija | |||
Herkules | ||||
1 mM proline-primed | Kurtovska kapija | |||
Herkules | ||||
1 mM salycilic acid-primed | Kurtovska kapija | |||
Herkules |
Kurtovska kapija | Herkules | ||||||||
---|---|---|---|---|---|---|---|---|---|
NP | HP | PP | SAP | NP | HP | PP | SAP | ||
Control | G (%) | 45.00 e ± 2.00 | 15.00 g ± 1.00 | 66.00 b ± 1.00 | 50.00 d ± 1.00 | 22.00 f ± 1.00 | 22.00 f ± 2.00 | 100 a ± 0.00 | 61.00 c ± 1.00 |
FW (mg/plant) | 77.06 c ± 0.21 | 16.33 e ± 0.35 | 47.33 d ± 0.19 | 42.86 d ± 0.43 | 77.07 c ± 2.3 | 90.37 b ± 2.4 | 147.53 a ± 9.81 | 77.60 c ± 1.12 | |
DW (mg/plant) | 3.03 e ± 0.01 | 1.33 f ± 0.03 | 4.53 d ± 0.09 | 4.03 d ± 0.02 | 11.67 a ± 0.02 | 8.60 b ± 0.13 | 8.70 b ± 0.06 | 6.40 c ± 0.14 | |
TWC (%) | 96.06 a ± 1.09 | 91.83 b ± 2.1 | 90.42 b ± 3.10 | 90.59 b ± 2.2 | 84.86 c ± 1.23 | 90.48 b ± 1.14 | 94.10 ab ± 1.19 | 91.75 b ± 4.1 | |
BP (%) | - | −56.04 a ± 2.2 | 49.45 b ± 0.98 | 32.96 d ± 1.09 | - | −26.29 e ± 0.24 | −25.43 e ± 0.98 | −45.14 c ± 1.1 | |
25 mM NaCl | G (%) | 15.00 h ± 1.00 | 17.25 g ± 1.45 | 52.50 b ± 1.25 | 47.50 c ± 1.25 | 30.00 e ± 1.00 | 25.00 f ± 2.00 | 100 a ± 0.00 | 40.00 d ± 1.00 |
FW (mg/plant) | 35.10 b ± 0.19 | 31.43 d ± 0.13 | 51.43 a ± 1.01 | 50.00 a ± 1.10 | NM | 34.47 bc ± 1.02 | 34.37 bc ± 0.27 | 33.25 cd ± 0.23 | |
DW (mg/plant) | 4.30 b ± 0.09 | 3.03 c ± 0.02 | 4.60 b ± 0.21 | 4.50 b ± 0.20 | NM | 6.97 a ± 0.03 | 6.87 a ± 0.77 | 3.60 c ± 0.04 | |
TWC (%) | 87.74 b ± 2.1 | 90.34 ab ± 2.1 | 91.05 a ± 1.95 | 91.00 a ± 2.0 | NM | 77.69 c ± 2.23 | 79.79 c ± 2.34 | 89.17 b ± 2.14 | |
BP (%) | - | −26.29 a ± 1.22 | 6.97 b ± 0.11 | 4.65 b ± 1.13 | - | * | * | * | |
50 mM NaCl | G (%) | LD | LD | 25.00 c ± 1.00 | 32.50 b ± 1.50 | 21.00 d ± 1.00 | LD | 81.00 a ± 2.00 | 22.00 d ± 2.00 |
FW (mg/plant) | LD | LD | 30.35 d ± 0.99 | 35.45 c ± 0.02 | NM | LD | 69.55 a ± 2.13 | 54.60 b ± 1.3 | |
DW (mg/plant) | LD | LD | 3.85 c ± 0.09 | 3.25 c ± 1.72 | NM | LD | 9.45 a ± 0.15 | 4.57 c ± 0.04 | |
TWC (%) | LD | LD | 87.31 b ± 3.1 | 90.83 a ± 0.08 | NM | LD | 86.41 b ± 3.12 | 91.64 a ± 4.1 | |
BP (%) | - | LD | * | * | NM | LD | * | * |
NaCl (mM) | Kurtovska kapija | Herkules | |||||||
---|---|---|---|---|---|---|---|---|---|
Chl a (mg/gFW) | Chl b (mg/gFW) | Total Chls (mg/gFW) | Car (mg/gFW) | Chl a (mg/gFW) | Chl b (mg/gFW) | Total Chls (mg/gFW) | Car (mg/gFW) | ||
NP | 0 | 0.69 b ± 0.01 | 0.34 a ± 0.01 | 1.04 b ± 0.03 | 0.38 a ± 0.01 | 0.14 bcd ± 0.01 | 0.06 bc ± 0.00 | 0.19 d ± 0.01 | 0.06 c ± 0.00 |
25 | 0.84 a ± 0.01 | 0.35 a ± 0.00 | 1.19 a ± 0.01 | 0.40 a ± 0.00 | NM | NM | NM | NM | |
50 | LD | LD | LD | LD | NM | NM | NM | NM | |
HP | 0 | 0.59 c ± 0.01 | 0.26 b ± 0.00 | 0.85 c ± 0.01 | 0.28 b ± 0.00 | 0.16 bc ± 0.01 | 0.07 ab ± 0.01 | 0.23 b ± 0.02 | 0.07 bc ± 0.00 |
25 | 0.54 e ± 0.01 | 0.22 cd ± 0.01 | 0.76 d ± 0.02 | 0.24 cd ± 0.00 | 0.20 ac ± 0.01 | 0.08 a ± 0.00 | 0.28 a ± 0.01 | 0.08 ab ± 0.00 | |
50 | LD | LD | LD | LD | LD | LD | LD | LD | |
PP | 0 | 0.34 i ± 0.01 | 0.17 ef ± 0.00 | 0.51 fg ± 0.01 | 0.22 de ± 0.00 | 0.14 bcd ± 0.06 | 0.06 bc ± 0.01 | 0.20 cd ± 0.02 | 0.06 cd ± 0.01 |
25 | 0.38 g ± 0.01 | 0.19 de ± 0.00 | 0.56 f ± 0.01 | 0.20 e ± 0.00 | 0.12 bd ± 0.01 | 0.05 cd ± 0.00 | 0.18 d ± 0.02 | 0.05 de ± 0.01 | |
50 | 0.36 h ± 0.00 | 0.15 fg ± 0.00 | 0.51 fg ± 0.01 | 0.16 f ± 0.00 | 0.10 d ± 0.01 | 0.04 d ± 0.01 | 0.14 e ± 0.01 | 0.04 e ± 0.01 | |
SAP | 0 | 0.56 d ± 0.05 | 0.24 bc ± 0.02 | 0.80 cd ± 0.08 | 0.26 bc ± 0.02 | 0.15 cd ± 0.01 | 0.06 bc ± 0.00 | 0.20 cd ± 0.01 | 0.06 cd ± 0.00 |
25 | 0.45 f ± 0.00 | 0.19 de ± 0.00 | 0.64 e ± 0.01 | 0.20 e ± 0.00 | 0.21 a ± 0.01 | 0.08 a ± 0.01 | 0.29 a ± 0.02 | 0.08 ab ± 0.01 | |
50 | 0.33 j ± 0.00 | 0.14 g ± 0.00 | 0.47 g ± 0.01 | 0.15 f ± 0.00 | 0.12 bd ± 0.02 | 0.05 cd ± 0.01 | 0.17 de ± 0.03 | 0.05 de ± 0.01 |
NaCl mM | Kurtovska kapija | Herkules | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
NP | HP | PP | SAP | NP | HP | PP | SAP | |||
Soluble sugars (mg/gDW) | Shoot | 0 | 8.89 b ± 5.39 | ND | 33.43 a ± 5.55 | 5.01 b ± 4.53 | 1.42 c ± 0.09 | 0.76 c ± 0.15 | 1.55 c ± 0.94 | 0.78 c ± 0.41 |
25 | ND | 4.29 b ± 0.89 | 3.58 bc ± 0.59 | 7.49 a ± 1.55 | NM | ND | 2.00 c ± 0.05 | ND | ||
50 | LD | LD | ND | ND | LD | LD | ND | ND | ||
Root | 0 | ND | ND | 13.77 a ± 0.55 | 1.09 b ± 0.75 | NM | ND | 1.41 b ± 0.15 | ND | |
25 | ND | ND | 7.11 b ± 0.35 | ND | NM | ND | 11.68 a ± 5.86 | ND | ||
50 | LD | LD | ND | ND | NM | LD | ND | ND | ||
Starch (mg/gDW) | Shoot | 0 | 19.97 d ± 1.52 | ND | 30.36 b ± 3.99 | 27.38 c ± 4.32 | 6.51 e ± 1.81 | 9.20 e ± 2.50 | 21.56 d ± 3.92 | 49.44 a ± 3.94 |
25 | 23.23 b ± 1.67 | 11.15 d ± 0.95 | 33.78 a ± 2.14 | 25.79 b ± 3.22 | NM | ND | 14.37 cd ± 5.99 | 20.22 bc ± 2.60 | ||
50 | LD | LD | 11.18 c ± 5.05 | 21.03 a ± 0.89 | NM | LD | 11.67 c ± 2.58 | 17.31 b ± 1.76 | ||
Root | 0 | ND | ND | 14.57 bc ± 4.87 | 13.10 c ± 5.04 | 20.62 b ± 3.96 | 9.04 c ± 0.73 | 20.59 b ± 3.52 | 32.16 a ± 7.04 | |
25 | ND | ND | 24.46 a ± 1.13 | 11.93 c ± 1.29 | NM | ND | 17.77 b ± 3.68 | 22.61 a ± 2.48 | ||
50 | LD | LD | 14.11 b ± 4.55 | 10.22 b ± 0.99 | NM | LD | 22.56 a ± 1.81 | 16.81 b ± 2.16 | ||
Proline (mg/gDW) | Shoot | 0 | 8.89 e ± 0.39 | ND | 33.43 a ± 0.59 | 5.00 f ± 0.05 | 19.97 d ± 0.51 | ND | 30.36 b ± 0.99 | 27.38 c ± 0.32 |
25 | LD | 4.29 e ± 0.09 | 3.58 e ± 0.54 | 7.49 d ± 0.07 | 23.23 b ± 1.67 | 11.15 c ± 0.98 | 33.77 a ± 1.14 | 25.79 b ± 0.22 | ||
50 | LD | LD | ND | ND | NM | LD | 11.18 b ± 0.57 | 21.04 a ± 0.89 | ||
Root | 0 | ND | ND | 13.77 a ± 0.54 | ND | NM | ND | 14.57 a ± 0.87 | 13.11 a ± 0.41 | |
25 | ND | ND | ND | ND | NM | ND | 24.46 a ± 1.13 | 11.93 b ± 0.29 | ||
50 | LD | LD | ND | ND | NM | LD | 14.12 a ± 0.52 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karalija, E.; Lošić, A.; Demir, A.; Šamec, D. Effects of Seed Priming on Mitigating the Negative Effects of Increased Salinity in Two Varieties of Sweet Pepper (Capsicum annuum L.). Soil Syst. 2024, 8, 35. https://doi.org/10.3390/soilsystems8010035
Karalija E, Lošić A, Demir A, Šamec D. Effects of Seed Priming on Mitigating the Negative Effects of Increased Salinity in Two Varieties of Sweet Pepper (Capsicum annuum L.). Soil Systems. 2024; 8(1):35. https://doi.org/10.3390/soilsystems8010035
Chicago/Turabian StyleKaralija, Erna, Ajna Lošić, Arnela Demir, and Dunja Šamec. 2024. "Effects of Seed Priming on Mitigating the Negative Effects of Increased Salinity in Two Varieties of Sweet Pepper (Capsicum annuum L.)" Soil Systems 8, no. 1: 35. https://doi.org/10.3390/soilsystems8010035
APA StyleKaralija, E., Lošić, A., Demir, A., & Šamec, D. (2024). Effects of Seed Priming on Mitigating the Negative Effects of Increased Salinity in Two Varieties of Sweet Pepper (Capsicum annuum L.). Soil Systems, 8(1), 35. https://doi.org/10.3390/soilsystems8010035