Combined Effects of Rice Husk Biochar and Organic Manures on Soil Chemical Properties and Greenhouse Gas Emissions from Two Different Paddy Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Soil Media Preparation and Fertilization
2.3. Measurement of Cumulative CH4 and N2O Emissions
2.4. Global Warming Potential
2.5. Statistical Analysis
3. Results
3.1. Effects of Biochar and Different Organic Matter Additives on Rice Dry Biomass and Grain Yield
3.2. Changes in Soil Chemical Properties following Rice Cultivation
3.3. CH4 and N2O Fluxes from Low- and Medium-Fertility Soils
3.4. Cumulative Emissions of Soil CH4 and N2O
3.5. Effects of Biochar, Organic Manures, and Soil Type on Grain Yield, Greenhouse Gas Emissions, and Global Warming Potential
4. Discussion
4.1. Effects of Biochar and Organic Manures on Grain Yield and the Chemical Properties of Paddy Soils
4.2. CH4 and N2O Fluxes and Cumulative Emissions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharif, M.K.; Butt, M.S.; Anjum, F.M.; Khan, S.H. Rice Bran: A Novel Functional Ingredient. Crit. Rev. Food Sci. Nutr. 2014, 54, 807–816. [Google Scholar] [CrossRef]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An Overview of Global Rice Production, Supply, Trade, and Consumption: Global Rice Production, Consumption, and Trade. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Xu, M.; Li, D.; Li, J.; Qin, D.; Hosen, Y.; Shen, H.; Cong, R.; He, X. Polyolefin-Coated Urea Decreases Ammonia Volatilization in a Double Rice System of Southern China. Agron. J. 2013, 105, 277–284. [Google Scholar] [CrossRef]
- Marzouk, S.H.; Tindwa, H.J.; Amuri, N.A.; Semoka, J.M. An Overview of Underutilized Benefits Derived from Azolla as a Promising Biofertilizer in Lowland Rice Production. Heliyon 2023, 9, e13040. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Bowles, T.M.; Atallah, S.S.; Campbell, E.E.; Gaudin, A.C.M.; Wieder, W.R.; Grandy, A.S. Addressing Agricultural Nitrogen Losses in a Changing Climate. Nat. Sustain. 2018, 1, 399–408. [Google Scholar] [CrossRef]
- Liang, H.; Xu, J.; Hou, H.; Qi, Z.; Yang, S.; Li, Y.; Hu, K. Modeling CH4 and N2O Emissions for Continuous and Noncontinuous Flooding Rice Systems. Agri. Syst. 2022, 203, 103528. [Google Scholar] [CrossRef]
- Wu, Q.; He, Y.; Qi, Z.; Jiang, Q. Drainage in Paddy Systems Maintains Rice Yield and Reduces Total Greenhouse Gas Emissions on the Global Scale. J. Clean. Prod. 2022, 370, 133515. [Google Scholar] [CrossRef]
- Huang, M.; Fan, L.; Chen, J.; Jiang, L.; Zou, Y. Continuous Applications of Biochar to Rice: Effects on Nitrogen Uptake and Utilization. Sci. Rep. 2018, 8, 11461. [Google Scholar] [CrossRef] [PubMed]
- Asadi, H.; Ghorbani, M.; Rezaei-Rashti, M.; Abrishamkesh, S.; Amirahmadi, E.; Chengrong, C.; Gorji, M. Application of Rice Husk Biochar for Achieving Sustainable Agriculture and Environment. Rice Sci. 2021, 28, 325–343. [Google Scholar] [CrossRef]
- Faried, A.S.; Mostafa, S.A.; Tayeh, B.A.; Tawfik, T.A. The Effect of Using Nano Rice Husk Ash of Different Burning Degrees on Ultra-High-Performance Concrete Properties. Cons. Build. Mat. 2021, 290, 123279. [Google Scholar] [CrossRef]
- Bodie, A.R.; Micciche, A.C.; Atungulu, G.G.; Rothrock, M.J.; Ricke, S.C. Current Trends of Rice Milling Byproducts for Agricultural Applications and Alternative Food Production Systems. Front. Sustain. Food Syst. 2019, 3, 47. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK, 2015; ISBN 978-0-203-76226-4. [Google Scholar]
- Liu, L.; Tan, Z.; Ye, Z. Transformation and Transport Mechanism of Nitrogenous Compounds in a Biochar “Preparation–Returning to the Field” Process Studied by Employing an Isotope Tracer Method. ACS Sust. Chem. Eng. 2018, 6, 1780–1791. [Google Scholar] [CrossRef]
- Iqbal, A.; Tang, X.; Ali, I.; Yuan, P.; Khan, R.; Khan, Z.; Adnan, M.; Wei, S.; Jiang, L. Integrating Low Levels of Organic Fertilizer Improves Soil Fertility and Rice Yields in Paddy Fields by Influencing Microbial Communities without Increasing CH4 Emissions. Appl. Soil Ecol. 2023, 189, 104951. [Google Scholar] [CrossRef]
- Manogaran, M.D.; Shamsuddin, R.; Mohd Yusoff, M.H.; Lay, M.; Siyal, A.A. A Review on Treatment Processes of Chicken Manure. Clean. Circ. Bioecon. 2022, 2, 100013. [Google Scholar] [CrossRef]
- Schott, C.; Yan, L.; Gimbutyte, U.; Cunha, J.R.; van der Weijden, R.D.; Buisman, C. Enabling Efficient Phosphorus Recovery from Cow Manure: Liberation of Phosphorus through Acidification and Recovery of Phosphorus as Calcium Phosphate Granules. Chem. Eng. J. 2023, 460, 141695. [Google Scholar] [CrossRef]
- Maeda, K.; Hanajima, D.; Morioka, R.; Toyoda, S.; Yoshida, N.; Osada, T. Mitigation of Greenhouse Gas Emission from the Cattle Manure Composting Process by Use of a Bulking Agent. Soil Sci. Plant Nutr. 2013, 59, 96–106. [Google Scholar] [CrossRef]
- Mar, S.S.; Moe, N.N.; Ngwe, K.; Ando, K. Study of Farmers’ Use of Fertilizers and Methods of Application for Rice Cultivation in Central Myanmar. Int. J. Env. Rural Dev. 2020, 11, 100–105. [Google Scholar]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The Role of Biochar and Biochar-Compost in Improving Soil Quality and Crop Performance: A Review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Toma, Y.; Oomori, S.; Maruyama, A.; Ueno, H.; Nagata, O. Effect of the Number of Tillages in Fallow Season and Fertilizer Type on Greenhouse Gas Emission from a Rice (Oryza Sativa L.) Paddy Field in Ehime, Southwestern Japan. Soil Sci. Plant Nutr. 2016, 62, 69–79. [Google Scholar] [CrossRef]
- Toma, Y.; Nufita Sari, N.; Akamatsu, K.; Oomori, S.; Nagata, O.; Nishimura, S.; Purwanto, B.; Ueno, H. Effects of Green Manure Application and Prolonging Mid-Season Drainage on Greenhouse Gas Emission from Paddy Fields in Ehime, Southwestern Japan. Agriculture 2019, 9, 29. [Google Scholar] [CrossRef]
- Dong, L.; Yang, X.; Shi, L.; Shen, Y.; Wang, L.; Wang, J.; Li, C.; Zhang, H. Biochar and Nitrogen Fertilizer Co-Application Changed SOC Content and Fraction Composition in Huang-Huai-Hai Plain, China. Chemosphere 2022, 291, 132925. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Yang, L.; Qin, H.; Jiang, L.; Zou, Y. Quantifying the Effect of Biochar Amendment on Soil Quality and Crop Productivity in Chinese Rice Paddies. Field Crops Res. 2013, 154, 172–177. [Google Scholar] [CrossRef]
- Cui, Y.; Meng, J.; Wang, Q.; Zhang, W.; Cheng, X.; Chen, W. Effects of Straw and Biochar Addition on Soil Nitrogen, Carbon, and Super Rice Yield in Cold Waterlogged Paddy Soils of North China. J. Int. Agri. 2017, 16, 1064–1074. [Google Scholar] [CrossRef]
- Partey, S.T.; Preziosi, R.F.; Robson, G.D. Short-Term Interactive Effects of Biochar, Green Manure, and Inorganic Fertilizer on Soil Properties and Agronomic Characteristics of Maize. Agric. Res. 2014, 3, 128–136. [Google Scholar] [CrossRef]
- Anyika, C.; Abdul Majid, Z.; Ibrahim, Z.; Zakaria, M.P.; Yahya, A. The Impact of Biochars on Sorption and Biodegradation of Polycyclic Aromatic Hydrocarbons in Soils—A Review. Environ. Sci. Pollut. Res. 2015, 22, 3314–3341. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Effects of Biochar and Poultry Manure on Soil Characteristics and the Yield of Radish. Sci. Hort. 2019, 243, 457–463. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Hu, T.; Mahmoud, A.; Li, J.; Zhu, R.; Jiao, X.; Jing, P. A Quantitative Review of the Effects of Biochar Application on Rice Yield and Nitrogen Use Efficiency in Paddy Fields: A Meta-Analysis. Sci. Total Env. 2022, 830, 154792. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.; Li, H.; Zhang, A.; Rengel, Z. Long-term Biochar Application Promotes Rice Productivity by Regulating Root Dynamic Development and Reducing Nitrogen Leaching. GCB Bioenergy 2021, 13, 257–268. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.; Wang, H.; Liu, C.; Li, J.; Wan, Y.; Gao, Q.; Fan, F.; Liao, Y. Long-Term Effect of Biochar Application on Yield-Scaled Greenhouse Gas Emissions in a Rice Paddy Cropping System: A Four-Year Case Study in South China. Sci. Total Environ. 2016, 569–570, 1390–1401. [Google Scholar] [CrossRef]
- Lawlor, D.W. Carbon and Nitrogen Assimilation in Relation to Yield: Mechanisms Are the Key to Understanding Production Systems. J. Exp. Bot. 2002, 53, 773–787. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and Remedial Benefits and Risks of Applying Biochar to Soil: Current Knowledge and Future Research Directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; An, W.; Wu, C.; Li, W.; Fu, A.; Xiao, R.; Chen, H.; Xue, S. Red Mud-Modified Biochar Reduces Soil Arsenic Availability and Changes Bacterial Composition. Environ. Chem. Lett. 2018, 16, 615–622. [Google Scholar] [CrossRef]
- Islam, S.F.; Sander, B.O.; Quilty, J.R.; de Neergaard, A.; van Groenigen, J.W.; Jensen, L.S. Mitigation of Greenhouse Gas Emissions and Reduced Irrigation Water Use in Rice Production through Water-Saving Irrigation Scheduling, Reduced Tillage and Fertiliser Application Strategies. Sci. Total Environ. 2020, 739, 140215. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.; Sudo, S.; Mori, S.; Saito, H.; Yoshida, T.; Shiratori, Y.; Suga, S.; Yoshikawa, N.; Suzue, Y.; Mizukami, H.; et al. Mitigation of Methane Emissions from Paddy Fields by Prolonging Midseason Drainage. Agri. Ecosys. Environ. 2011, 141, 359–372. [Google Scholar] [CrossRef]
- Ma, L.; Liu, B.; Cui, Y.; Shi, Y. Variations and Drivers of Methane Fluxes from Double-Cropping Paddy Fields in Southern China at Diurnal, Seasonal and Inter-Seasonal Timescales. Water 2021, 13, 2171. [Google Scholar] [CrossRef]
- Nouchi, I.; Mariko, S.; Aoki, K. Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants. Plant Physiol. 1990, 94, 59–66. [Google Scholar] [CrossRef]
- Khosa, M.K.; Sidhu, B.S.; Benbi, D.K. Effect of Organic Materials and Rice Cultivars on Methane Emission from Rice Field. J Environ. Biol. 2010, 31, 281–285. [Google Scholar]
- Singla, A.; Inubushi, K. Effect of Biochar on CH4 and N2O Emission from Soils Vegetated with Paddy. Paddy Water Environ. 2014, 12, 239–243. [Google Scholar] [CrossRef]
- Sander, B.O.; Samson, M.; Buresh, R.J. Methane and Nitrous Oxide Emissions from Flooded Rice Fields as Affected by Water and Straw Management between Rice Crops. Geoderma 2014, 235–236, 355–362. [Google Scholar] [CrossRef]
- Cai, Z.; Gao, S.; Hendratna, A.; Duan, Y.; Xu, M.; Hanson, B.D. Key Factors, Soil Nitrogen Processes, and Nitrite Accumulation Affecting Nitrous Oxide Emissions. Soil Sci. Soc. Am. J. 2016, 80, 1560–1571. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Velthof, G.L.; de Vries, W.; Kros, J. Differentiation of Nitrous Oxide Emission Factors for Agricultural Soils. Environ. Pollut. 2011, 159, 3215–3222. [Google Scholar] [CrossRef] [PubMed]
Measurements | Unit | MF | LF |
---|---|---|---|
pH | 6.17 | 7.86 | |
Electrical conductivity | µS cm−1 | 274.0 | 21.0 |
Exchangeable K content | cmol(c) kg−1 | 0.15 | 0.06 |
Exchangeable Mg content | cmol(c) kg−1 | 1.08 | 0.88 |
Exchangeable Ca content | cmol(c) kg−1 | 10.3 | 9.84 |
Total N content | % | 0.18 | 0.02 |
Total C content | % | 0.53 | 0.03 |
C/N | 2.90 | 1.68 | |
NH4+-N content | mg kg−1 | 26.7 | 11.7 |
NO3−-N content | mg kg−1 | 0.46 | 0.23 |
Available P content | mg kg−1 | 54.6 | 43.0 |
Treatments | Carbon (g C pot−1) | Nitrogen (g N pot−1) | Phosphorus (g P2O5 pot −1) | Potassium (g K2O pot−1) |
---|---|---|---|---|
C | - | 0.38 | 0.20 | 0.20 |
B5 | - | 0.38 | 0.20 | 0.20 |
B10 | - | 0.38 | 0.20 | 0.20 |
B5:CHM | 25.0 | 0.78 | 0.21 | 0.56 |
B5:COM | 34.1 | 0.57 | 0.22 | 0.30 |
B10:CHM | 25.0 | 0.78 | 0.21 | 0.56 |
B10:COM | 34.1 | 0.57 | 0.22 | 0.30 |
Treatments | Aboveground Dry Biomass (g pot−1) | Root Dry Biomass (g pot−1) | Grain Yield (g pot−1) | |||
---|---|---|---|---|---|---|
MF | LF | MF | LF | MF | LF | |
C | 38.9 ± 3.5 b | 10.9 ± 0.4 c | 4.74 ± 0.2 b | 2.72 ± 0.3 b | 18.9 ± 1.0 c | 9.9 ± 0.9 d |
B5 | 53.6 ± 1.8 a | 22.3 ± 1.4 a | 5.14 ± 0.2 a | 3.10 ± 0.3 a | 25.2 ± 0.8 b | 22.1 ± 1.0 b |
B10 | 52.4 ± 4.5 a | 21.5 ± 2.1 b | 5.80 ± 0.4 a | 3.68 ± 0.2 a | 25.2 ± 0.7 b | 19.5 ± 1.4 c |
B5:CHM | 58.1 ± 4.1 a | 28.5 ± 0.6 a | 7.12 ± 0.9 a | 4.28 ± 0.3 a | 32.5 ± 1.9 a | 27.5 ± 0.7 a |
B5:COM | 47.9 ± 1.8 a | 22.2 ± 1.0 a | 5.20 ± 0.3 a | 3.62 ± 0.2 a | 22.9 ± 0.8 b | 19.4 ± 0.5 bc |
B10:CHM | 56.4 ± 1.7 a | 30.2 ± 3.9 a | 7.16 ± 0.7 a | 3.88 ± 0.5 a | 25.3 ± 2.7 b | 24.8 ± 0.3 a |
B10:COM | 45.9 ± 2.0 a | 21.0 ± 2.0 ab | 4.68 ± 0.2 c | 3.94 ± 0.5 a | 25.1 ± 0.6 b | 18.8 ± 2.1 bc |
Between two soils | <0.001 | <0.001 | <0.001 | |||
Within treatments | <0.001 | <0.001 | <0.001 | |||
Soils × Treatments | 0.79 | 0.09 | 0.06 |
Treatments | Soil pH | Soil EC (μS cm−1) | Total N Content (%) | |||
---|---|---|---|---|---|---|
MF | LF | MF | LF | MF | LF | |
C | 6.15 ± 0.05 d | 6.28 ± 0.03 d | 530.0 ± 20.0 d | 103.5 ± 7.5 d | 0.12 ± 0.005 b | 0.029 ± 0.002 b |
B5 | 6.41 ± 0.04 b | 6.73 ± 0.07 c | 682.5 ± 7.5 b | 122.5 ± 7.5 c | 0.12 ± 0.001 b | 0.022 ± 0.001 c |
B10 | 6.35 ± 0.05 c | 6.89 ± 0.09 b | 653.5 ± 13.5 c | 162.5 ± 7.5 b | 0.17 ± 0.001 b | 0.034 ± 0.002 b |
B5:CHM | 6.77 ± 0.14 a | 7.25 ± 0.15 a | 715.0 ± 5.0 a | 285.0 ± 5.0 a | 0.22 ± 0.015 a | 0.036 ± 0.003 b |
B5:COM | 6.55 ± 0.06 a | 7.01 ± 0.10 a | 705.0 ± 7.0 a | 170.5 ± 19.5 a | 0.16 ± 0.001 b | 0.030 ± 0.002 b |
B10:CHM | 7.00 ± 0.10 a | 6.92 ± 0.09 a | 765.0 ± 15.0 a | 275.0 ± 25.0 a | 0.15 ± 0.015 b | 0.045 ± 0.003 a |
B10:COM | 7.08 ± 0.22 a | 7.27 ± 0.04 a | 730.0 ± 20.0 a | 228.5 ± 11.5 a | 0.14 ± 0.015 b | 0.033 ± 0.002 b |
Between two soils | <0.001 | <0.001 | <0.001 | |||
Within treatments | <0.001 | <0.001 | <0.001 | |||
Soils × Treatments | 2.22 | 0.002 | <0.001 |
Treatments | Cumulative CH4 Emission (mg C m−2 96 days−1) | Cumulative N2O Emission (mg N m−2 96 days−1) | ||
---|---|---|---|---|
MF | LF | MF | LF | |
C | −2.6 ± 6.4 de | 20.9 ± 6.3 e | 28.1 ± 8.8 a | −4.0 ± 8.0 a |
B5 | 67.4 ± 7.9 d | 148.2 ± 14.3 bc | 101.4 ± 23.9 a | 37.0 ± 31.9 a |
B10 | 197.2 ± 7.0 b | 271.36 ± 21.8 b | 146.9 ± 29.4 a | 104.5 ± 9.5 a |
B5:CHM | 36.3 ± 21.7 e | 53.76 ± 6.7 d | 7.3 ± 2.1 b | −36.5 ± 27.2 b |
B5:COM | 674.7 ± 24.9 a | 633.1 ± 0.3 a | 113.9 ± 39.9 a | 20.0 ± 15.0 a |
B10:CHM | 186.0 ± 11.3 c | 245.2 ± 38.8 c | 39.1 ± 33.9 a | 15.4 ± 3.3 a |
B10:COM | 701.8 ± 6.4 a | 742.1 ± 34.0 a | 141.6 ± 5.6 a | 108.4 ± 47.0 a |
Between two soils | <0.05 | <0.05 | ||
Within treatments | <0.001 | <0.001 | ||
Soils × Treatments | 0.09 | 0.8 |
Response Valuables | Explanatory Valuables | |||||
---|---|---|---|---|---|---|
Grain Yield | Cumulative CH4 Emission | Cumulative N2O Emission | GWPCH4 | GWPN2O | GWPtotal | |
Biochar | 0.24 * | 0.30 *** | 0.62 *** | 0.42 *** | 0.62 *** | 0.17 |
Chicken Manure | 0.51 *** | −0.07 * | −0.66 *** | −0.43 * | −0.66 *** | −0.09 |
Cow Manure | 0.04 | 0.86 *** | 0.13 | 0.25 *** | −0.002 | 0.16 |
Soil Types | 0.41 *** | −0.07 * | 0.39 *** | 0.51 * | 0.39 *** | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mon, W.W.; Toma, Y.; Ueno, H. Combined Effects of Rice Husk Biochar and Organic Manures on Soil Chemical Properties and Greenhouse Gas Emissions from Two Different Paddy Soils. Soil Syst. 2024, 8, 32. https://doi.org/10.3390/soilsystems8010032
Mon WW, Toma Y, Ueno H. Combined Effects of Rice Husk Biochar and Organic Manures on Soil Chemical Properties and Greenhouse Gas Emissions from Two Different Paddy Soils. Soil Systems. 2024; 8(1):32. https://doi.org/10.3390/soilsystems8010032
Chicago/Turabian StyleMon, War War, Yo Toma, and Hideto Ueno. 2024. "Combined Effects of Rice Husk Biochar and Organic Manures on Soil Chemical Properties and Greenhouse Gas Emissions from Two Different Paddy Soils" Soil Systems 8, no. 1: 32. https://doi.org/10.3390/soilsystems8010032
APA StyleMon, W. W., Toma, Y., & Ueno, H. (2024). Combined Effects of Rice Husk Biochar and Organic Manures on Soil Chemical Properties and Greenhouse Gas Emissions from Two Different Paddy Soils. Soil Systems, 8(1), 32. https://doi.org/10.3390/soilsystems8010032