The Effect of Alternative Dryland Crops on Soil Microbial Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling
2.3. Phospholipid Fatty Acid, Neutral Lipid Fatty Acid, and Soil Chemical Analyses
2.4. Statistical Data Analyses
3. Results
3.1. Precipitation
3.2. Biomarker Values and Soil Microbial Community Structure for CCs, Camelina, Carinata, and Fallow
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ball, B.C.; Bingham, I.; Rees, R.M.; Watson, C.A.; Litterick, A. The role of crop rotations in determining soil structure and crop growth conditions. Can. J. Soil Sci. 2005, 85, 557–577. [Google Scholar] [CrossRef]
- Feng, G.; Sharratt, B.; Young, F. Soil properties governing soil erosion affected by cropping systems in the us pacific northwest. Soil Tillage Res. 2011, 111, 168–174. [Google Scholar] [CrossRef]
- Gan, Y.T.; Miller, P.R.; McConkey, B.G.; Zentner, R.P.; Stevenson, F.C.; McDonald, C.L. Influence of diverse cropping sequences on durum wheat yield and protein in the semiarid northern great plains. Agron. J. 2003, 95, 245–252. [Google Scholar] [CrossRef]
- Miller, P.R.; Holmes, J.A. Cropping sequence effects of four broadleaf crops on four cereal crops in the northern great plains. Agron. J. 2005, 97, 189–200. [Google Scholar] [CrossRef]
- Gesch, R.; Isbell, T.; Oblath, E.; Allen, B.; Archer, D.; Brown, J.; Hatfield, J.; Jabro, J.; Kiniry, J.; Long, D. Comparison of several brassica species in the north central us for potential jet fuel feedstock. Ind. Crops Prod. 2015, 75, 2–7. [Google Scholar] [CrossRef]
- Guy, S.O.; Wysocki, D.J.; Schillinger, W.F.; Chastain, T.G.; Karow, R.S.; Garland-Campbell, K.; Burke, I.C. Camelina: Adaptation and performance of genotypes. Field Crops Res. 2014, 155, 224–232. [Google Scholar] [CrossRef]
- Taylor, D.C.; Falk, K.C.; Palmer, C.D.; Hammerlindl, J.; Babic, V.; Mietkiewska, E.; Jadhav, A.; Marillia, E.-F.; Francis, T.; Hoffman, T.; et al. Brassica carinata—A new molecular farming platform for delivering bio-industrial oil feedstocks: Case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels Bioprod. Biorefin. 2010, 4, 538–561. [Google Scholar] [CrossRef]
- Matthiessen, J.N.; Kirkegaard, J.A. Biofumigation and enhanced biodegradation: Opportunity and challenge in soilborne pest and disease management. Crit. Rev. Plant Sci. 2006, 25, 235–265. [Google Scholar] [CrossRef]
- Rumberger, A.; Marschner, P. 2-phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil Biol. Biochem. 2003, 35, 445–452. [Google Scholar] [CrossRef]
- Wienhold, B.J.; Pikul, J.; Liebig, M.; Mikha, M.; Varvel, G.; Doran, J.; Andrews, S. Cropping system effects on soil quality in the great plains: Synthesis from a regional project. Renew. Agric. Food Syst. 2006, 21, 49–59. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Mikha, M.M.; Presley, D.R.; Claassen, M.M. Addition of cover crops enhances no-till potential for improving soil physical properties. Soil Sci. Soc. Am. J. 2011, 75, 1471–1482. [Google Scholar] [CrossRef]
- Sainju, U.; Whitehead, W.; Singh, B. Cover crops and nitrogen fertilization effects on soil aggregation and carbon and nitrogen pools. Can. J. Soil Sci. 2003, 83, 155–165. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Lafond, G.P.; Ziadi, N.; Grant, C.A. Soil microbial response to nitrogen fertilizer and tillage in barley and corn. Soil Tillage Res. 2012, 118, 139–146. [Google Scholar] [CrossRef]
- Dangi, S.R.; Stahl, P.D.; Wick, A.F.; Ingram, L.J.; Buyer, J.S. Soil microbial community recovery in reclaimed soils on a surface coal mine site. Soil Sci. Soc. Am. J. 2012, 76, 915–924. [Google Scholar] [CrossRef]
- Brockett, B.F.; Prescott, C.E.; Grayston, S.J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 2012, 44, 9–20. [Google Scholar] [CrossRef]
- Dangi, S.; Gao, S.; Duan, Y.; Wang, D. Soil microbial community structure affected by biochar and fertilizer sources. Appl. Soil Ecol. 2020, 150, 103452. [Google Scholar] [CrossRef]
- Muhammad, I.; Wang, J.; Sainju, U.M.; Zhang, S.; Zhao, F.; Khan, A. Cover cropping enhances soil microbial biomass and affects microbial community structure: A meta-analysis. Geoderma 2021, 381, 114696. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Ren, T.; Tian, Z.; Wang, G.; He, X.; Tian, C. Short-term effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. Biol. Fertil. Soils 2014, 50, 1077–1085. [Google Scholar] [CrossRef]
- Bennett, A.J.; Hilton, S.; Bending, G.D.; Chandler, D.; Mills, P. Impact of fresh root material and mature crop residues of oilseed rape (Brassica napus) on microbial communities associated with subsequent oilseed rape. Biol. Fertil. Soils 2014, 50, 1267–1279. [Google Scholar] [CrossRef]
- Haramoto, E.R.; Gallandt, E.R. Brassica cover cropping for weed management: A review. Renew. Agric. Food Syst. 2004, 19, 187–198. [Google Scholar] [CrossRef]
- Schmidt, R.; Mitchell, J.; Scow, K. Cover cropping and no-till increase diversity and symbiotroph: Saprotroph ratios of soil fungal communities. Soil Biol. Biochem. 2019, 129, 99–109. [Google Scholar] [CrossRef]
- Benitez, M.S.; Taheri, W.I.; Lehman, R.M. Selection of fungi by candidate cover crops. Appl. Soil Ecol. 2016, 103, 72–82. [Google Scholar] [CrossRef]
- Brennan, E.B.; Acosta-Martinez, V. Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biol. Biochem. 2017, 109, 188–204. [Google Scholar] [CrossRef]
- Hansen, J.C.; Schillinger, W.F.; Sullivan, T.S.; Paulitz, T.C. Rhizosphere microbial communities of canola and wheat at six paired field sites. Appl. Soil Ecol. 2018, 130, 185–193. [Google Scholar] [CrossRef]
- Hansen, J.C.; Schillinger, W.F.; Sullivan, T.S.; Paulitz, T.C. Soil microbial biomass and fungi reduced with canola introduced into long-term monoculture wheat rotations. Front. Microbiol. 2019, 10, 1488. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.C.; Schillinger, W.F.; Sullivan, T.S.; Paulitz, T.C. Decline in soil microbial abundance when camelina introduced into a monoculture wheat system. Front. Microbiol. 2020, 11, 2916. [Google Scholar] [CrossRef] [PubMed]
- Jabro, J.D.; Allen, B.L.; Rand, T.; Dangi, S.R.; Campbell, J.W. Effect of previous crop roots on soil compaction in 2 yr rotations under a no-tillage system. Land 2021, 10, 202. [Google Scholar] [CrossRef]
- Jabro, J.D.; Sainju, U.M.; Stevens, W.B.; Lenssen, A.W.; Evans, R.G. Long-term tillage influences on soil physical properties under dryland conditions in northeastern montana. Arch. Agron. Soil Sci. 2009, 55, 633–640. [Google Scholar] [CrossRef]
- Buyer, J.S.; Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 2012, 61, 127–130. [Google Scholar] [CrossRef]
- Zelles, L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 1997, 35, 275–294. [Google Scholar] [CrossRef]
- Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fertil. Soils 1999, 29, 111–129. [Google Scholar] [CrossRef]
- Frostegård, A.; Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 1996, 22, 59–65. [Google Scholar] [CrossRef]
- Van Diepen, L.T.; Lilleskov, E.A.; Pregitzer, K.S.; Miller, R.M. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytol. 2007, 176, 175–183. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. SAS/STAT User’s Guide, Version 9.4; SAS Institute: Cary, NC, USA, 2016.
- Buyer, J.S.; Roberts, D.P.; Russek-Cohen, E. Microbial community structure and function in the spermosphere as affected by soil and seed type. Can. J. Microb. 1999, 45, 138–144. [Google Scholar] [CrossRef]
- Ojeda, G.; Patrício, J.; Navajas, H.; Comellas, L.; Alcañiz, J.; Ortiz, O.; Marks, E.; Natal-da-Luz, T.; Sousa, J. Effects of nonylphenols on soil microbial activity and water retention. Appl. Soil Ecol. 2013, 64, 77–83. [Google Scholar] [CrossRef]
- Landesman, W.J.; Dighton, J. Response of soil microbial communities and the production of plant-available nitrogen to a two-year rainfall manipulation in the new jersey pinelands. Soil Biol. Biochem. 2010, 42, 1751–1758. [Google Scholar] [CrossRef]
- Allen, B.L.; Lenssen, A.W.; Sainju, U.M.; Caesar-TonThat, T.; Evans, R.G. Nitrogen use in durum and selected brassicaceae oilseeds in two-year rotations. Agron. J. 2014, 106, 821–830. [Google Scholar] [CrossRef]
- Lenssen, A.W.; Iversen, W.M.; Sainju, U.M.; Caesar-TonThat, T.C.; Blodgett, S.L.; Allen, B.L.; Evans, R.G. Yield, pests, and water use of durum and selected crucifer oilseeds in two-year rotations. Agron. J. 2012, 104, 1295–1304. [Google Scholar] [CrossRef]
- Lenssen, A.W.; Sainju, U.M.; Allen, B.L.; Stevens, W.B.; Jabro, J.B. Diversified crop rotation and management system influence durum yield and quality. Agron. J. 2020, 112, 4407. [Google Scholar] [CrossRef]
- Schimel, J.; Balser, T.C.; Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 2007, 88, 1386–1394. [Google Scholar] [CrossRef]
- Ai, C.; Zhang, S.; Zhang, X.; Guo, D.; Zhou, W.; Huang, S. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 2018, 319, 156–166. [Google Scholar] [CrossRef]
- Bunemann, E.K.; Marschner, P.; Smernik, R.; Conyers, M.; McNeill, A. Soil organic phosphorus and microbial community composition as affected by 26 years of different management strategies. Biol. Fertil. Soils 2008, 44, 717–726. [Google Scholar] [CrossRef]
- Kim, N.; Zabuloy, M.C.; Guan, K.; Villamil, M.B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 2020, 142, 107710. [Google Scholar] [CrossRef]
- Nevins, C.J.; Lacey, C.; Armstrong, S. The synchrony of cover crop decomposition, enzyme activity, and nitrogen availability in a corn agroecosystem in the Midwest United States. Soil Tillage Res. 2020, 197, 104518. [Google Scholar] [CrossRef]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Hicks, L.C.; Lajtha, K.; Rousk, J. Nutrient limitation may induce microbial mining for resources from persistent soil organic matter. Ecology 2021, 102, e03328. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Schimel, J.P.; Holden, P.A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 2003, 35, 167–176. [Google Scholar] [CrossRef]
- Potthoff, M.; Dyckmans, J.; Flessa, H.; Muhs, A.; Beese, F.; Joergensen, R.G. Dynamics of maize (Zea mays L.) leaf straw mineralization as affected by the presence of soil and the availability of nitrogen. Soil Biol. Biochem. 2005, 37, 1259–1266. [Google Scholar] [CrossRef]
- Seepaul, R.; Bliss, C.M.; Wright, D.L.; Marois, J.J.; Leon, R.; Dufault, N.; George, S.; Olson, S.M. Carinata, the Jet Fuel Cover Crop: 2016 Production Recommendations for the Southeastern United States. Agronomy Department, IFAS Extension and U. O. Florida, University of Florida. SS-AGR 2015, 384, 1–8. [Google Scholar]
- Malik, A.A.; Chowdhury, S.; Schlager, V.; Oliver, A.; Puissant, J.; Vazquez, P.G.M.; Jehmlich, N.; von Bergen, M.; Griffiths, R.I.; Gleixner, G. Soil fungal:Bacterial ratios are linked to altered carbon cycling. Front. Microbiol. 2016, 7, 1247. [Google Scholar] [CrossRef]
- Rodgers, H.R.; Norton, J.B.; van Diepen, L.T.A. Effects of semiarid wheat agriculture management practices on soil microbial properties: A review. Agronomy 2021, 11, 852. [Google Scholar] [CrossRef]
Soil Factor | CC | Camelina | Carinata | Fallow |
---|---|---|---|---|
EC (ds m−1) * | 0.37 | 0.44 | 0.43 | 0.31 |
SOM (g kg−1) | 2.13 | 1.93 | 2.03 | 1.96 |
NO3− (mg kg−1) | 37.20 ab † | 48.70 a | 47.06 ab | 34.60 b |
K (mg kg−1) | 270.66 | 305.00 | 298.00 | 280.66 |
S (mg kg−1) | 10.23 | 15.00 | 13.40 | 12.16 |
Zn (mg kg−1) | 0.89 | 0.91 | 0.80 | 0.95 |
Fe (mg kg−1) | 52.10 ab | 53.71 ab | 46.86 b | 63.60 a |
Mn (mg kg−1) | 66.66 | 69.93 | 63.76 | 81.33 |
Cu (mg kg−1) | 1.29 | 1.45 | 1.22 | 1.68 |
Ca (mg kg−1) | 867.33 | 1040.00 | 1140.00 | 757.33 |
Mg (mg kg−1) | 269.66 | 287.00 | 325.00 | 272.00 |
Na (mg kg−1) | 11.33 | 12.66 | 12.66 | 12.00 |
CEC (Cmolckg−1) | 11.40 b | 12.76 a | 12.73 a | 12.46 a |
H BS % | 35.66 | 34.33 | 27.33 | 45.33 |
K BS % | 6.00 | 6.33 | 5.66 | 6.00 |
Ca BS % | 37.66 | 40.00 | 44.66 | 30.33 |
Mg BS % | 20.00 | 18.66 | 21.33 | 18.33 |
M-3 P (mg/kg) | 54.00 | 52.66 | 46.00 | 49.66 |
Month | Precipitation, mm | ||||||
---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 30-yr † | |
April | 5.5 | 42.2 | 2.75 | 31.5 | 27.5 | 3.25 | 24.1 |
May | 40.5 | 83.5 | 19.5 | 46.2 | 29.5 | 52 | 56.7 |
June | 81.0 | 50.5 | 22.7 | 67.7 | 83.5 | 33.7 | 72.1 |
July | 35.5 | 69.0 | 24.7 | 84.7 | 30.7 | 70.2 | 67.5 |
August | 54.0 | 10.2 | 26.5 | 20.2 | 68.2 | 4.75 | 35.5 |
September | 38.2 | 95.5 | 84.5 | 45.0 | 156.7 | 2.5 | 33.2 |
Season total | 254.7 | 351.0 | 180.7 | 295.5 | 396.2 | 166.5 | 289.1 |
Yearly total | 329.5 | 443.7 | 247.5 | 383.2 | 464.2 | 213.2 | 356.8 |
Crop (C) | AMF PLFA | Gram − Bacteria | Eukary | Fungal | Gram + Bacteria | Actino | Total Fungal | Total Bacterial | F/B | Gm +/Gm− | AMF NLFA |
---|---|---|---|---|---|---|---|---|---|---|---|
CC | 0.041 | 0.249 | 0.246 | 0.070 a† | 0.450 b | 0.155 b | 0.111 a | 0.863 b | 0.130 a | 1.836 | 0.044 |
Camelina | 0.038 | 0.232 | 0.017 | 0.051 ab | 0.480 a | 0.177 a | 0.090 b | 0.893 a | 0.101 ab | 2.100 | 0.044 |
Carinata | 0.038 | 0.228 | 0.022 | 0.060 ab | 0.472 ab | 0.168 ab | 0.099 ab | 0.878 b | 0.113 a | 2.083 | 0.033 |
Fallow | 0.036 | 0.232 | 0.022 | 0.043 b | 0.486 a | 0.174 a | 0.079 b | 0.898 a | 0.088 b | 2.151 | 0.039 |
Year | |||||||||||
2017 | 0.035 b | 0.231 | 0.020 b | 0.042 b | 0.486 a | 0.172 | 0.077 b | 0.902 a | 0.086 b | 2.116 | 0.038 |
2019 | 0.035 b | 0.233 | 0.014 b | 0.076 a | 0.469 ab | 0.165 | 0.112 a | 0.873 b | 0.129 a | 2.061 | 0.043 |
2020 | 0.045 a | 0.240 | 0.029 a | 0.050 b | 0.462 b | 0.170 | 0.095 b | 0.874 b | 0.109 a | 1.950 | 0.040 |
Significance | p value | ||||||||||
C | ns ‡ | ns | ns | * | * | * | * | * | * | ns | ns |
Y | * | ns | * | * | * | ns | * | * | * | ns | ns |
C × Y | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | * |
Crop | 2017 | 2019 | 2020 |
---|---|---|---|
AMF NLFA | |||
CC | 0.053 a† | 0.029 b | 0.054 |
Camelina | 0.033 ab | 0.064 a | 0.035 |
Carinata | 0.028 b | 0.023 b | 0.047 |
Fallow | 0.036 ab | 0.054 a | 0.028 |
Parameter | 2017 | 2019 | 2020 | |||
---|---|---|---|---|---|---|
CV1 | CV2 | CV1 | CV2 | CV1 | CV2 | |
Structure loadings | ||||||
AMF | 0.209 | 0.849 | 0.131 | 0.088 | 0.473 | −0.429 |
Gram—bacteria | 0.281 | 0.823 | 0.102 | 0.069 | 0.439 | −0.312 |
Eukaryotes | 0.016 | 0.661 | 0.036 | 0.084 | 0.382 | −0.118 |
Fungi | 0.133 | 0.576 | 0.249 | −0.292 | 0.397 | −0.217 |
Gram + bacteria | 0.322 | 0.682 | 0.180 | 0.093 | 0.371 | −0.258 |
Actinomycetes | 0.272 | 0.746 | 0.211 | 0.149 | 0.344 | −0.269 |
Group centroids | ||||||
CC | −1.615 | 0.844 | −1.788 | −1.378 | 2.751 | −0.314 |
Camelina | 1.307 | −0.300 | −0.506 | 0.634 | −0.998 | −0.187 |
Carinata | −1.433 | −0.851 | 3.415 | −0.289 | −1.375 | −0.868 |
Fallow | 1.740 | 0.308 | −1.120 | 1.032 | −0.376 | 1.371 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dangi, S.R.; Allen, B.L.; Jabro, J.D.; Rand, T.A.; Campbell, J.W.; Calderon, R.B. The Effect of Alternative Dryland Crops on Soil Microbial Communities. Soil Syst. 2024, 8, 4. https://doi.org/10.3390/soilsystems8010004
Dangi SR, Allen BL, Jabro JD, Rand TA, Campbell JW, Calderon RB. The Effect of Alternative Dryland Crops on Soil Microbial Communities. Soil Systems. 2024; 8(1):4. https://doi.org/10.3390/soilsystems8010004
Chicago/Turabian StyleDangi, Sadikshya R., Brett L. Allen, Jay D. Jabro, Tatyana A. Rand, Joshua W. Campbell, and Rosalie B. Calderon. 2024. "The Effect of Alternative Dryland Crops on Soil Microbial Communities" Soil Systems 8, no. 1: 4. https://doi.org/10.3390/soilsystems8010004
APA StyleDangi, S. R., Allen, B. L., Jabro, J. D., Rand, T. A., Campbell, J. W., & Calderon, R. B. (2024). The Effect of Alternative Dryland Crops on Soil Microbial Communities. Soil Systems, 8(1), 4. https://doi.org/10.3390/soilsystems8010004