Optimizing Phosphorus Fertilizer Use on the Loess Plateau: Impact on Soil Properties and Crop Production Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Sample Collection and Determination
2.4. Data Calculation and Analysis
3. Results and Discussions
3.1. P Surplus and PRE
3.2. Soil Properties
3.3. TP and Olsen-P
3.4. Soil P Fractions
3.5. Relationships between Olsen-P and P Fractions
3.6. Relationships between P Fractions and Soil Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, Z.; Chen, S.; Li, J.; Alva, A.; Chen, Q. Manure and Nitrogen Application Enhances Soil Phosphorus Mobility in Calcareous Soil in Greenhouses. J. Environ. Manag. 2016, 181, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Hallama, M.; Pekrun, C.; Lambers, H.; Kandeler, E. Hidden Miners—The Roles of Cover Crops and Soil Microorganisms in Phosphorus Cycling through Agroecosystems. Plant Soil 2019, 434, 7–45. [Google Scholar] [CrossRef]
- Elrys, A.S.; Desoky, E.-S.M.; Ali, A.; Zhang, J.; Cai, Z.; Cheng, Y. Sub-Saharan Africa’s Food Nitrogen and Phosphorus Footprints: A Scenario Analysis for 2050. Sci. Total Environ. 2021, 752, 141964. [Google Scholar] [CrossRef] [PubMed]
- Liliane, T.N.; Charles, M.S. Factors Affecting Yield of Crops. In Agronomy-Climate Change & Food Security; IntechOpen: London, UK, 2020; Volume 9. [Google Scholar]
- Umar, W.; Ayub, M.A.; Rehman, M.Z.u.; Ahmad, H.R.; Farooqi, Z.U.R.; Shahzad, A.; Rehman, U.; Mustafa, A.; Nadeem, M. Nitrogen and Phosphorus Use Efficiency in Agroecosystems. In Resources Use Efficiency in Agriculture; Springer: Cham, Switzerland, 2020; pp. 213–257. [Google Scholar]
- Yu, X.; Keitel, C.; Dijkstra, F.A. Global Analysis of Phosphorus Fertilizer Use Efficiency in Cereal Crops. Glob. Food Secur. 2021, 29, 100545. [Google Scholar] [CrossRef]
- Gustafsson, J.P.; Mwamila, L.B.; Kergoat, K. The pH Dependence of Phosphate Sorption and Desorption in Swedish Agricultural Soils. Geoderma 2012, 189–190, 304–311. [Google Scholar] [CrossRef]
- Roberts, T.L.; Johnston, A.E. Phosphorus Use Efficiency and Management in Agriculture. Resour. Conserv. Recycl. 2015, 105, 275–281. [Google Scholar] [CrossRef]
- Poulton, P.R.; Johnston, A.E.; White, R.P. Plant-available Soil Phosphorus. Part I: The Response of Winter Wheat and Spring Barley to Olsen P on a Silty Clay Loam. Soil Use Manag. 2013, 29, 4–11. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R.; White, R.P. Plant-available Soil Phosphorus. Part II: The Response of Arable Crops to Olsen P on a Sandy Clay Loam and a Silty Clay Loam. Soil Use Manag. 2013, 29, 12–21. [Google Scholar] [CrossRef]
- Ahmed, W.; Jing, H.; Kaillou, L.; Qaswar, M.; Khan, M.N.; Jin, C.; Geng, S.; Qinghai, H.; Yiren, L.; Guangrong, L.; et al. Changes in Phosphorus Fractions Associated with Soil Chemical Properties under Long-Term Organic and Inorganic Fertilization in Paddy Soils of Southern China. PLoS ONE 2019, 14, e0216881. [Google Scholar] [CrossRef]
- Shen, Y.; Duan, Y.; McLaughlin, N.; Huang, S.; Guo, D.; Xu, M. Phosphorus Desorption from Calcareous Soils with Different Initial Olsen-P Levels and Relation to Phosphate Fractions. J. Soils Sediments 2019, 19, 2997–3007. [Google Scholar] [CrossRef]
- González Jiménez, J.L.; Healy, M.G.; Daly, K. Effects of Fertiliser on Phosphorus Pools in Soils with Contrasting Organic Matter Content: A Fractionation and Path Analysis Study. Geoderma 2019, 338, 128–135. [Google Scholar] [CrossRef]
- Chen, X.; Yan, X.; Wang, M.; Cai, Y.; Weng, X.; Su, D.; Guo, J.; Wang, W.; Hou, Y.; Ye, D.; et al. Long-Term Excessive Phosphorus Fertilization Alters Soil Phosphorus Fractions in the Acidic Soil of Pomelo Orchards. Soil Tillage Res. 2022, 215, 105214. [Google Scholar] [CrossRef]
- Mahmood, M.; Tian, Y.; Ma, Q.; Ahmed, W.; Mehmood, S.; Hui, X.; Wang, Z. Changes in Phosphorus Fractions and Its Availability Status in Relation to Long Term P Fertilization in Loess Plateau of China. Agronomy 2020, 10, 1818. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, H.; Wan, C.; Peng, J.; Xu, F.; Shi, F. Lateral and Longitudinal Variation in Phosphorus Fractions in Surface Sediment and Adjacent Riparian Soil in the Three Gorges Reservoir, China. Environ. Sci. Pollut. Res. 2018, 25, 31262–31271. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Shi, Y.; Liu, Y.; Wang, L.; Yan, N. Comparison of Phosphorus Fractions and Phosphatase Activities in Coastal Wetland Soils along Vegetation Zones of Yancheng National Nature Reserve, China. Estuar. Coast. Shelf Sci. 2015, 157, 93–98. [Google Scholar] [CrossRef]
- Li, F.-R.; Liu, L.-L.; Liu, J.-L.; Yang, K. Abiotic and Biotic Controls on Dynamics of Labile Phosphorus Fractions in Calcareous Soils under Agricultural Cultivation. Sci. Total Environ. 2019, 681, 163–174. [Google Scholar] [CrossRef]
- Meena, M.D.; Narjary, B.; Sheoran, P.; Jat, H.S.; Joshi, P.K.; Chinchmalatpure, A.R.; Yadav, G.; Yadav, R.K.; Meena, M.K. Changes of Phosphorus Fractions in Saline Soil Amended with Municipal Solid Waste Compost and Mineral Fertilizers in a Mustard-Pearl Millet Cropping System. CATENA 2018, 160, 32–40. [Google Scholar] [CrossRef]
- Liao, D.; Zhang, C.; Li, H.; Lambers, H.; Zhang, F. Changes in Soil Phosphorus Fractions Following Sole Cropped and Intercropped Maize and Faba Bean Grown on Calcareous Soil. Plant Soil 2020, 448, 587–601. [Google Scholar] [CrossRef]
- Jilani, G.; Akram, A.; Ali, R.M.; Hafeez, F.Y.; Shamsi, I.H.; Chaudhry, A.N.; Chaudhry, A.G. Enhancing Crop Growth, Nutrients Availability, Economics and Beneficial Rhizosphere Microflora through Organic and Biofertilizers. Ann. Microbiol. 2007, 57, 177–184. [Google Scholar] [CrossRef]
- Kalayu, G. Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. Int. J. Agron. 2019, 2019, 4917256. [Google Scholar] [CrossRef]
- Mihoub, A.; Naeem, A.; Amin, A.E.-E.A.Z.; Jamal, A.; Saeed, M.F. Pigeon Manure Tea Improves Phosphorus Availability and Wheat Growth through Decreasing P Adsorption in a Calcareous Sandy Soil. Commun. Soil Sci. Plant Anal. 2022, 53, 2596–2607. [Google Scholar] [CrossRef]
- Mihoub, A.; Amin, A.E.-E.A.Z.; Motaghian, H.R.; Saeed, M.F.; Naeem, A. Citric Acid (CA)–Modified Biochar Improved Available Phosphorus Concentration and Its Half-Life in a P-Fertilized Calcareous Sandy Soil. J. Soil Sci. Plant Nutr. 2022, 22, 465–474. [Google Scholar] [CrossRef]
- Ullah, J.; Shah, S.; Mihoub, A.; Jamal, A.; Saeed, M.F.; Székely, Á.; Radicetti, E.; Salman, M.; Caballero-Calvo, A. Assessing the Effect of Combining Phosphorus Fertilizers with Crop Residues on Maize (Zea Mays L.) Productivity and Financial Benefits. Gesunde Pflanz. 2023, 75, 1995–2008. [Google Scholar] [CrossRef]
- Jamal, A.; Saeed, M.F.; Mihoub, A.; Hopkins, B.G.; Ahmad, I.; Naeem, A. Integrated Use of Phosphorus Fertilizer and Farmyard Manure Improves Wheat Productivity by Improving Soil Quality and P Availability in Calcareous Soil under Subhumid Conditions. Front. Plant Sci. 2023, 14, 1034421. [Google Scholar] [CrossRef] [PubMed]
- Li, S. Chinese Dryland Agriculture, Chinese Press of Agriculture, Beijing (in Chinese) 2004.
- Ding, D.; Feng, H.; Zhao, Y.; Hill, R.L.; Yan, H.; Chen, H.; Hou, H.; Chu, X.; Liu, J.; Wang, N.; et al. Effects of Continuous Plastic Mulching on Crop Growth in a Winter Wheat-Summer Maize Rotation System on the Loess Plateau of China. Agric. For. Meteorol. 2019, 271, 385–397. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Zhang, A.; Chen, J.; Cheng, G.; Sun, B.; Pi, X.; Dyck, M.; Si, B.; Zhao, Y.; et al. Effects of Straw and Plastic Film Mulching on Greenhouse Gas Emissions in Loess Plateau, China: A Field Study of 2 Consecutive Wheat-Maize Rotation Cycles. Sci. Total Environ. 2017, 579, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.; Ellsworth, J. Phosphorus Availability with Alkaline/Calcareous Soil. In Proceedings of the Western Nutrient Management Conference, Idaho Falls, ID, USA, 5 March 2005; Volume 6, pp. 83–93. [Google Scholar]
- Syers, J.; Johnston, A.; Curtin, D. Efficiency of Soil and Fertilizer Phosphorus Use. FAO Fertil. Plant Nutr. Bull. 2008, 18, 5–50. [Google Scholar]
- Rong, M. The Development of Fertilizer Industry in China. In Proceedings of the International Workshop on Economic Policy Reforms and Agricultural Input Markets: Experiences, Lessons, and Challenges, Cape Town, South Africa, 16–20 October 2000. [Google Scholar]
- Simpson, R.J.; Oberson, A.; Culvenor, R.A.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.; et al. Strategies and Agronomic Interventions to Improve the Phosphorus-Use Efficiency of Farming Systems. Plant Soil 2011, 349, 89–120. [Google Scholar] [CrossRef]
- Wang, X.; Tong, Y.; Gao, Y.; Gao, P.; Liu, F.; Zhao, Z.; Pang, Y. Spatial and Temporal Variations of Crop Fertilization and Soil Fertility in the Loess Plateau in China from the 1970s to the 2000s. PLoS ONE 2014, 9, e112273. [Google Scholar] [CrossRef]
- Wu, T.; Schoenau, J.J.; Li, F.; Qian, P.; Malhi, S.S.; Shi, Y.; Xu, F. Influence of Cultivation and Fertilization on Total Organic Carbon and Carbon Fractions in Soils from the Loess Plateau of China. Soil Tillage Res. 2004, 77, 59–68. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Kirk, P.L. Kjeldahl Method for Total Nitrogen. Anal. Chem. 1950, 22, 354–358. [Google Scholar] [CrossRef]
- Schollenberger, C. Determination of Soil Organic Matter. Soil Sci. 1931, 31, 483–486. [Google Scholar] [CrossRef]
- Li, Y. Analytical Methods of Soil and Agricultural Chemistry; Science Press: Beijing, China, 1983. [Google Scholar]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Sui, Y.; Thompson, M.L.; Shang, C. Fractionation of Phosphorus in a Mollisol Amended with Biosolids. Soil Sci. Soc. Am. J. 1999, 63, 1174–1180. [Google Scholar] [CrossRef]
- Tiessen, H.; Abekoe, M.K.; Salcedo, I.H.; Owusu-Bennoah, E. Reversibility of Phosphorus Sorption by Ferruginous Nodules. Plant Soil 1993, 153, 113–124. [Google Scholar] [CrossRef]
- Devkota, M.; Martius, C.; Lamers, J.P.A.; Sayre, K.D.; Devkota, K.P.; Gupta, R.K.; Egamberdiev, O.; Vlek, P.L.G. Combining Permanent Beds and Residue Retention with Nitrogen Fertilization Improves Crop Yields and Water Productivity in Irrigated Arid Lands under Cotton, Wheat and Maize. Field Crops Res. 2013, 149, 105–114. [Google Scholar] [CrossRef]
- Lu, D.; Song, H.; Jiang, S.; Chen, X.; Wang, H.; Zhou, J. Integrated Phosphorus Placement and Form for Improving Wheat Grain Yield. Agron. J. 2019, 111, 1998–2004. [Google Scholar] [CrossRef]
- Hooda, P.S.; Truesdale, V.W.; Edwards, A.C.; Withers, P.J.A.; Aitken, M.N.; Miller, A.; Rendell, A.R. Manuring and Fertilization Effects on Phosphorus Accumulation in Soils and Potential Environmental Implications. Adv. Environ. Res. 2001, 5, 13–21. [Google Scholar] [CrossRef]
- Tang, X.; Li, J.; Ma, Y.; Hao, X.; Li, X. Phosphorus Efficiency in Long-Term (15 Years) Wheat–Maize Cropping Systems with Various Soil and Climate Conditions. Field Crops Res. 2008, 108, 231–237. [Google Scholar] [CrossRef]
- Khan, A.; Lu, G.; Ayaz, M.; Zhang, H.; Wang, R.; Lv, F.; Yang, X.; Sun, B.; Zhang, S. Phosphorus Efficiency, Soil Phosphorus Dynamics and Critical Phosphorus Level under Long-Term Fertilization for Single and Double Cropping Systems. Agric. Ecosyst. Environ. 2018, 256, 1–11. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; McBeath, T.M.; Smernik, R.; Stacey, S.P.; Ajiboye, B.; Guppy, C. The Chemical Nature of P Accumulation in Agricultural Soils—Implications for Fertiliser Management and Design: An Australian Perspective. Plant Soil 2011, 349, 69–87. [Google Scholar] [CrossRef]
- Marschner, P.; Solaiman, Z.; Rengel, Z. Growth, Phosphorus Uptake, and Rhizosphere Microbial-community Composition of a Phosphorus-efficient Wheat Cultivar in Soils Differing in pH. J. Plant Nutr. Soil Sci. 2005, 168, 343–351. [Google Scholar] [CrossRef]
- Kekane, S.; Chavan, R.; Shinde, D.; Patil, C.; Sagar, S. A Review on Physico-Chemical Properties of Soil. Int. J. Chem. Stud. 2015, 3, 29–32. [Google Scholar]
- Hati, K.M.; Swarup, A.; Dwivedi, A.K.; Misra, A.K.; Bandyopadhyay, K.K. Changes in Soil Physical Properties and Organic Carbon Status at the Topsoil Horizon of a Vertisol of Central India after 28 Years of Continuous Cropping, Fertilization and Manuring. Agric. Ecosyst. Environ. 2007, 119, 127–134. [Google Scholar] [CrossRef]
- Royer, I.; Simard, R.R.; Barnett, G.M.; Cluis, D.; Angers, D.A. Long-Term Effects of Liquid Hog Manure on the Phosphorus Status of a Silt Loam Cropped to Corn. Can. J. Soil Sci. 2003, 83, 589–600. [Google Scholar] [CrossRef]
- Cadot, S.; Bélanger, G.; Ziadi, N.; Morel, C.; Sinaj, S. Critical Plant and Soil Phosphorus for Wheat, Maize, and Rapeseed after 44 Years of P Fertilization. Nutr. Cycl. Agroecosyst. 2018, 112, 417–433. [Google Scholar] [CrossRef]
- Mudge, P.L.; Schipper, L.A.; Ghani, A.; Upsdell, M.; Baisden, W.T. Changes in Natural 15 N Abundance in Pastoral Soils Receiving Differing Amounts of Superphosphate Fertilizer and Irrigation for 50 Years. Soil Sci. Soc. Am. J. 2013, 77, 830–841. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, S.U.; Jung, K.Y.; Lee, S.; Choi, Y.D.; Owens, V.N.; Kumar, S.; Yun, S.W.; Hong, C.O. Cadmium Phytoavailability from 1976 through 2016: Changes in Soil Amended with Phosphate Fertilizer and Compost. Sci. Total Environ. 2021, 762, 143132. [Google Scholar] [CrossRef]
- Blake, L.; Mercik, S.; Koerschens, M.; Moskal, S.; Poulton, P.R.; Goulding, K.W.T.; Weigel, A.; Powlson, D.S. Phosphorus Content in Soil, Uptake by Plants and Balance in Three European Long-Term Field Experiments. Nutr. Cycl. Agroecosyst. 2000, 56, 263–275. [Google Scholar] [CrossRef]
- Redel, Y.; Staunton, S.; Durán, P.; Gianfreda, L.; Rumpel, C.; De La Luz Mora, M. Fertilizer P Uptake Determined by Soil P Fractionation and Phosphatase Activity. J. Soil Sci. Plant Nutr. 2019, 19, 166–174. [Google Scholar] [CrossRef]
- Yin, Y.; Liang, C.H. Transformation of Phosphorus Fractions in Paddy Soil Amended with Pig Manure. J. Soil Sci. Plant Nutr. 2013, 13. [Google Scholar] [CrossRef]
- Mazumdar, S.; Kundu, D.; Ghosh, D.; Saha, A.; Majumdar, B.; Ghorai, A. Others Effect of Long-Term Application of Inorganic Fertilizers and Organic Manure on Yield, Potassium Uptake and Distribution of Potassium Fractions in the New Gangetic Alluvial Soil under Jute-Rice-Wheat Cropping System. Int. J. Agric. Food Sci. Technol. 2014, 2249–3050, 297–306. [Google Scholar]
- Toppo, M.; Sinha, A.K.; Upadhay, A.K.; Mahapatra, P. Effect of Long-Term Application of Inorganic Fertilizers, Organic Manure, and Lime on Different Forms of Potassium in Soil under Maize-Wheat Cropping System. IJPSS 2023, 35, 469–480. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Glanville, H.C.; Harris, M.; Emmett, B.A.; Pingree, M.R.A.; De Sosa, L.L.; Cerdá-Moreno, C.; Jones, D.L. A Novel Biologically-Based Approach to Evaluating Soil Phosphorus Availability across Complex Landscapes. Soil Biol. Biochem. 2015, 88, 110–119. [Google Scholar] [CrossRef]
- Li, C.; Zhang, P.; Zhang, J.; Zhu, P.; Wang, L. Forms, Transformations and Availability of Phosphorus after 32 Years of Manure and Mineral Fertilization in a Mollisol under Continuous Maize Cropping. Arch. Agron. Soil Sci. 2021, 67, 1256–1271. [Google Scholar] [CrossRef]
- Amin, A.E.-E.A.Z.; Mihoub, A. Effect of Sulfur-Enriched Biochar in Combination with Sulfur-Oxidizing Bacterium (Thiobacillus Spp.) on Release and Distribution of Phosphorus in High Calcareous P-Fixing Soils. J. Soil Sci. Plant Nutr. 2021, 21, 2041–2047. [Google Scholar] [CrossRef]
- Sun, F.; Sun, N.; Ma, X.; Zhou, B.; Zhu, P.; Gao, H.; Xu, M. The Application of Fertilizer Phosphorus Affected Olsen P and the Phosphorus Fractions of Hedley Method in Black Soil. Agronomy 2022, 12, 3146. [Google Scholar] [CrossRef]
- Steinfurth, K.; Hirte, J.; Morel, C.; Buczko, U. Conversion Equations between Olsen-P and Other Methods Used to Assess Plant Available Soil Phosphorus in Europe—A Review. Geoderma 2021, 401, 115339. [Google Scholar] [CrossRef]
- Guo, A.; Ding, L.; Tang, Z.; Zhao, Z.; Duan, G. Microbial Response to CaCO3 Application in an Acid Soil in Southern China. J. Environ. Sci. 2019, 79, 321–329. [Google Scholar] [CrossRef]
- Calonego, J.C.; Rosolem, C.A. Phosphorus and Potassium Balance in a Corn–Soybean Rotation under No-till and Chiseling. Nutr. Cycl. Agroecosyst. 2013, 96, 123–131. [Google Scholar] [CrossRef]
- Odutola Oshunsanya, S. Introductory Chapter: Relevance of Soil pH to Agriculture. In Soil pH for Nutrient Availability and Crop Performance; Oshunsanya, S., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-78985-015-4. [Google Scholar]
pH (1:2.5) | OC (g·kg−1) | TN (g·kg−1) | TP (g·kg−1) | CaCO3 (g·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) |
---|---|---|---|---|---|---|
8.21 | 10.52 | 0.92 | 0.84 | 59.71 | 20.74 | 148.61 |
Treatment | Wheat Grain Yield (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|
2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | Mean Yield (kg·ha−1) | Change to CK (%) | Change to Zero P (%) | |
CK | 5537 d | 5081 e | 4840 d | 4296 e | 4939 | 0 | −18.3 |
Zero P | 6249 c | 5956 d | 5745 c | 5415 d | 5841 | 18.3 | 0 |
Poly P | 7995 a | 8029 ab | 8067 a | 8158 a | 8062 | 63.2 | 38.0 |
MAP | 7913 a | 8164 a | 8017 a | 8097 ab | 8048 | 62.9 | 37.8 |
Ca-Mg P | 6933 b | 7079 c | 7189 b | 7110 c | 7078 | 43.3 | 21.2 |
SSP | 7811 a | 7840 b | 7898 a | 7901 b | 7863 | 59.2 | 34.6 |
MDP | 6967 b | 7111 c | 7135 b | 7118 c | 7083 | 43.4 | 21.2 |
Maize grain yield (kg ha−1) | |||||||
2018 | 2019 | 2020 | 2021 | Mean yield (kg·ha−1) | Change to CK (%) | Change to Zero P (%) | |
CK | 5045 e | 4825 d | 4665 d | 4431 e | 4742 | 0 | −16.1 |
Zero P | 5840 d | 5678 c | 5482 c | 5028 d | 5507 | 16.1 | 0 |
Poly P | 6295 b | 6311 a | 6459 a | 6548 a | 6403 | 35.0 | 16.3 |
MAP | 6382 ab | 6368 a | 6398 a | 6432 a | 6395 | 34.9 | 16.1 |
Ca-Mg P | 6052 c | 6081 b | 6005 b | 6071 c | 6052 | 27.6 | 9.9 |
SSP | 6458 a | 6230 a | 6277 ab | 6269 b | 6309 | 33.0 | 14.6 |
MDP | 6088 c | 5998 b | 6040 b | 6099 c | 6056 | 27.7 | 10.0 |
Treatment | P Input | Crop P Removal | P Surplus | PRE (%) |
---|---|---|---|---|
(Kg P ha−1 Year−1) | (Kg P ha−1 Year−1) | (Kg P ha−1 Year−1) | ||
CK | 0 | 83.4 e 1 | −83.4 e | - |
Zero P | 0 | 113.4 d | −113.4 d | - |
SSP | 205 | 147.4 b | 57.6 b | 16.59 b |
MAP | 205 | 150.2 ab | 54.8 ab | 17.95 b |
MDP | 205 | 132.5 c | 72.5 c | 9.17 c |
Ca-Mg P | 205 | 134.2 c | 70.8 c | 10.24 c |
Poly P | 205 | 162.3 a | 42.7 a | 23.85 a |
Treatment | pH (1:2.5) | Organic C (g·kg−1) | Total N (g·kg−1) | Total P (g·kg−1) | CaCO3 (g·kg−1) | Available P (mg·kg−1) | Available K (mg·kg−1) |
---|---|---|---|---|---|---|---|
CK | 8.23 a 1 | 9.83 b | 0.68 c | 0.73 c | 59.3 a | 18.17 c | 148.11 a |
Zero P | 8.19 a | 9.92 b | 0.84 b | 0.69 c | 59.21 a | 17.03 c | 148.12 a |
SSP | 8.13 ab | 10.04 a | 0.89 ab | 0.85 b | 59.12 a | 21.03 b | 147.25 a |
MAP | 7.93 c | 10.08 a | 0.95 a | 0.86 ab | 59.16 a | 22.03 b | 146.32 a |
MDP | 7.83 c | 9.91 ab | 0.93 a | 0.88 a | 59.11 a | 21.45 b | 147.42 a |
Ca-Mg P | 8.11 b | 10.01 a | 0.76 c | 0.91 a | 59.92 a | 22.35 ab | 146.32 a |
Poly P | 8.01 c | 10.13 a | 1.03 a | 0.89 a | 59.01 a | 23.56 a | 146.93 a |
Treatment | Water-Pi | NaHCO3-Pi | NaHCO3-Po | NaOH-Pi | NaOH-Po | HCl-Pi | Residual-P | Sum of Pi | Sum of Po |
---|---|---|---|---|---|---|---|---|---|
CK | 5.1 c 1 | 22.2 c | 13.1 b | 86.2 c | 55.4 c | 429.7 c | 106.6 b | 541.2 c | 68.5 b |
Zero P | 7.4 c | 25.6 c | 17.2 b | 84.2 c | 57.1 b | 422.6 c | 111.4 b | 539.8 c | 74.3 b |
SSP | 22.2 b | 33.7 ab | 28.4 a | 94.6 b | 69.5 a | 503.2 b | 149.3 a | 653.7 b | 97.9 a |
MAP | 28.5 a | 37.8 a | 25.6 a | 104.6 a | 64.2 b | 532.3 a | 153.2 a | 703.2 b | 89.8 a |
Poly P | 29.2 a | 39.1 a | 29.2 a | 115.8 a | 71.7 a | 521.2 a | 155.3 a | 705.3 b | 100.9 a |
Ca-Mg P | 28.5 a | 32.5 b | 25.5 a | 102.2 a | 68.8 a | 521.2 a | 158.7 a | 684.4 a | 96.3 a |
MDP | 27.2 a | 34.3 ab | 23.6 b | 95.2 b | 61.2 b | 525.8 a | 156.8 a | 682.5 a | 80.8 a |
Variable | Direct Path Coefficient | Indirect Path Coefficient | ||||||
---|---|---|---|---|---|---|---|---|
Water-Pi | NaHCO3-Pi | NaHCO3-Po | NaOH-Pi | NaOH-Po | HCl-Pi | Residual-P | ||
Water-Pi | 0.782 | 0.687 | 0.116 | 0.226 | 0.185 | −0.245 | −0.838 | |
NaHCO3-Pi | 0.74 | 0.618 | 0.122 | 0.226 | 0.182 | −0.22 | −0.746 | |
NaHCO3-Po | 0.132 | 0.692 | 0.684 | 0.211 | 0.216 | −0.207 | −0.747 | |
NaOH-Pi | 0.267 | 0.662 | 0.626 | 0.104 | 0.177 | −0.176 | −0.656 | |
NaOH-Po | 0.227 | 0.638 | 0.594 | 0.125 | 0.209 | −0.191 | −0.704 | |
HCl-Pi | −0.25 | 0.766 | 0.650 | 0.109 | 0.207 | 0.173 | −0.838 | |
Residual-P | −0.853 | 0.769 | 0.647 | 0.116 | 0.205 | 0.187 | −0.246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, C.; Liu, X.; Feng, L.; Jin, N.; Lv, J.; Yu, Q. Optimizing Phosphorus Fertilizer Use on the Loess Plateau: Impact on Soil Properties and Crop Production Efficiency. Soil Syst. 2024, 8, 3. https://doi.org/10.3390/soilsystems8010003
Liang C, Liu X, Feng L, Jin N, Lv J, Yu Q. Optimizing Phosphorus Fertilizer Use on the Loess Plateau: Impact on Soil Properties and Crop Production Efficiency. Soil Systems. 2024; 8(1):3. https://doi.org/10.3390/soilsystems8010003
Chicago/Turabian StyleLiang, Chutao, Xiaoqi Liu, Lei Feng, Ning Jin, Jialong Lv, and Qiang Yu. 2024. "Optimizing Phosphorus Fertilizer Use on the Loess Plateau: Impact on Soil Properties and Crop Production Efficiency" Soil Systems 8, no. 1: 3. https://doi.org/10.3390/soilsystems8010003
APA StyleLiang, C., Liu, X., Feng, L., Jin, N., Lv, J., & Yu, Q. (2024). Optimizing Phosphorus Fertilizer Use on the Loess Plateau: Impact on Soil Properties and Crop Production Efficiency. Soil Systems, 8(1), 3. https://doi.org/10.3390/soilsystems8010003