Fast High-Resolution pKa Spectrotitrimetry for Quantification of Surface Functional Groups of Retisols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area Description and Soil Sampling
2.2. General Soil Analysis
2.3. Reagents and Solvents
2.4. Titration
2.4.1. Model Solutions
2.4.2. Kaolinite
2.4.3. Soils
2.5. Data Treatment
2.5.1. Titration-Curve Treatment
2.5.2. Principal Component Analysis
3. Results and Discussion
3.1. Morphological and General Soils Properties
3.2. Titration-Curve Treatment Selection
3.3. Initial Tests of Model Systems
3.4. Kaolinite
3.5. Soil Titration
3.5.1. Retisol I, Intercrown (Open) Space
3.5.2. Retisol II (Under the Crown of Spruce)
3.6. Principal Component Analysis and Classification
3.7. Correlation of pKa and Soil Indicators
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shoba, S.A. National Soil Atlas of Russia = Russian Soil Atlas = Soil Atlas of Russian Federation; Astrel: Moscow, Russia, 2011. [Google Scholar]
- Sokolova, T.A.; Trofimov, S.Y. Sorption Properties of Soils. Fdsorption. Cation Exchange; University Book: Moscow, Russia, 2009. [Google Scholar]
- Thompson, A.; Goyne, K.W. Introduction to the sorption of chemical constituents in soils. Nat. Educ. Knowl. 2012, 4, 7. [Google Scholar]
- Huang, P.M.; Wang, S.-L.; Tzou, Y.-M.; Huang, Y.; Weng, B.; Zhuang, S.; Wang, M.K. Physicochemical and biological interfacial interactions: Impacts on soil ecosystem and biodiversity. Environ. Earth Sci. 2012, 68, 2199–2209. [Google Scholar] [CrossRef]
- Audette, Y.; Congreves, K.A.; Schneider, K.; Zaro, G.C.; Nunes, A.L.P.; Zhang, H.; Voroney, R.P. The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review. Biol. Fertil. Soils 2021, 57, 881–894. [Google Scholar] [CrossRef] [PubMed]
- Demydenko, O.; Bulygin, S.; Velychko, V.; Kaminsky, V.; Tkachenko, M. Soil moisture potential of agrocenoses in the Forest-Steppe of Ukraine. Agric. Sci. Pract. 2021, 8, 49–61. [Google Scholar] [CrossRef]
- Schindler, M. The structural and compositional complexity of surfaces on minerals and organic matter in soils. Abstr. Pap. Am. Chem. Soc. 2018, 256, 2. [Google Scholar]
- Kleber, M.; Sollins, P.; Sutton, R. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 2007, 85, 9–24. [Google Scholar] [CrossRef]
- Jeon, I.; Nam, K. Change in the site density and surface acidity of clay minerals by acid or alkali spills and its effect on pH buffering capacity. Sci. Rep. 2019, 9, 9878. [Google Scholar] [CrossRef] [PubMed]
- Gang, Y.; Li, Q.; Li, H. Measurement of Surface Charges and Mechanism of Interfacial Processes for Soil Clay Minerals. Eurasian Soil Sci. 2021, 54, 1546–1563. [Google Scholar] [CrossRef]
- Hao, W.; Flynn, S.L.; Kashiwabara, T.; Alam, M.S.; Bandara, S.; Swaren, L.; Robbins, L.J.; Alessi, D.S.; Konhauser, K.O. The impact of ionic strength on the proton reactivity of clay minerals. Chem. Geol. 2019, 529, 119294. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Peng, Y.; Cheng, P.; Li, F.; Liu, T. Acid-base buffering characteristics of non-calcareous soils: Correlation with physicochemical properties and surface complexation constants. Geoderma 2020, 360, 114005. [Google Scholar] [CrossRef]
- Sposito, G. The Operational Definition of the Zero Point of Charge in Soils. Soil Sci. Soc. Am. J. 1981, 45, 292–297. [Google Scholar] [CrossRef]
- Wang, X.; Tang, C.; Mahony, S.; Baldock, J.A.; Butterly, C.R. Factors affecting the measurement of soil pH buffer capacity: Approaches to optimize the methods. Eur. J. Soil Sci. 2014, 66, 53–64. [Google Scholar] [CrossRef]
- Shrestha, B.M.; Certini, G.; Forte, C.; Singh, B.R. Soil Organic Matter Quality under Different Land Uses in a Mountain Watershed of Nepal. Soil Sci. Soc. Am. J. 2008, 72, 1563–1569. [Google Scholar] [CrossRef]
- Pinsky, D.L. Ion-Exchange Processes in Soils; Russian Academy of Sciences: Pushchino, Russia, 1997; p. 166. [Google Scholar]
- Ulrich, B.; Sumner, M.E. Soil Acidity; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kelley, A.P. Soil Acidity, an Ecological Factor; University of Pennsylvania: Philadelphia, PA, USA, 1923. [Google Scholar]
- Raveh, A.; Avnimelech, Y. Potentiometric Determination of Soil Organic Matter. Soil Sci. Soc. Am. J. 1972, 36, 967–968. [Google Scholar] [CrossRef]
- Magdoff, F.R.; Bartlett, R.J. Soil pH Buffering Revisited. Soil Sci. Soc. Am. J. 1985, 49, 145–148. [Google Scholar] [CrossRef]
- Bradfield, R. The Nature of the Acidity of the Colloidal Clay of Acid Soils. J. Am. Chem. Soc. 2002, 45, 2669–2678. [Google Scholar] [CrossRef]
- Puri, A.N.; Asghar, A.G. Titration Curve and Dissociation Constants of Soil Acidoids. Soil Sci. 1938, 45, 359–368. [Google Scholar] [CrossRef]
- Simon, B.; Tolner, L.; Rékási, M.; Michéli, E. Soil Acidity Investigation by Potentiometric Titrations. Cereal Res. Commun. 2006, 34, 283–286. [Google Scholar] [CrossRef]
- Xiaocui, W.E.N.; Jiuyu, L.I.; Jie, S.; Liang, T.A.O. Research Progress on the Acid-base Properties of Variable Charge Soils Using Potentiometric Titration. Acta Pedol. Sin. 2022, 59, 910–923. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resources; Food & Agriculture Org.: Rome, Italy, 1998; Volume 3. [Google Scholar]
- Shishov, L.; Tonkonogov, V.; Lebedeva, I.; Gerasimova, M. Classification and Diagnostics of Soils of Russia; Oikumena: Smolensk, Russia, 2004. (In Russian) [Google Scholar]
- Nachtergaele, F. The “soils” to be classified in the World Reference Base for Soil Resources. Eurasian Soil Sci. 2005, 38, S13–S19. [Google Scholar]
- Sokolova, T.A.; Tolpeshta, I.I.; Rusakova, E.S. Contributions of separate reactions to the acid–base buffering of soils in brook floodplains (Central Forest State Reserve). Eurasian Soil Sci. 2016, 49, 399–411. [Google Scholar] [CrossRef]
- Shamrikova, E.V.; Ryazanov, M.A.; Vanchikova, E.V. Acid-base properties of water-soluble organic matter of forest soils, studied by the pK-spectroscopy method. Chemosphere 2006, 65, 1426–1431. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Wang, Y.; Cheng, K.; Li, F.; Qin, H.; Liu, T. The Acid-Base Buffer Capacity of Red Soil Variable Charge Minerals and Its Surface Complexation Model. Acta Chim. Sin. 2017, 75, 637–644. [Google Scholar] [CrossRef]
- Nelson, P.N.; Su, N. Soil pH buffering capacity: A descriptive function and its application to some acidic tropical soils. Soil Res. 2010, 48, 201–207. [Google Scholar] [CrossRef]
- Xu, R.-K.; Zhao, A.-Z.; Yuan, J.-H.; Jiang, J. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars. J. Soils Sediments 2012, 12, 494–502. [Google Scholar] [CrossRef]
- Kissel, D.E.; Sonon, L.S.; Cabrera, M.L. Rapid Measurement of Soil pH Buffering Capacity. Soil Sci. Soc. Am. J. 2012, 76, 694–699. [Google Scholar] [CrossRef]
- Maksimova, Y.G.; Maryakhina, N.N.; Tolpeshta, I.I.; Sokolova, T.A. The acid-base buffer capacity of podzolic soils and its changes under the impact of treatment with the Mehra-Jackson and Tamm reagents. Eurasian Soil Sci. 2010, 43, 1120–1131. [Google Scholar] [CrossRef]
- Shamrikova, E.V.; Sokolova, T.A.; Zaboeva, I.V. Identification of buffer reactions occurring in the course of acid-base titration of water suspensions from virgin and plowed podzolic soils. Eurasian Soil Sci. 2002, 35, 363–373. [Google Scholar]
- Hartikainen, H. Acid- and base titration behaviour of finnish mineral soils. Z. Pflanzen. Bodenk. 2007, 149, 522–532. [Google Scholar] [CrossRef]
- Kuznetsov, N.B.; Alekseeva, S.A.; Shashkova, G.V.; Dronova, T.Y.; Sokolova, T.A. Buffer capacities of podzolic and peat gleyic podzolic soils to sulfuric and nitric acids. Eurasian Soil Sci. 2007, 40, 353–366. [Google Scholar] [CrossRef]
- Rusakova, E.S.; Ishkova, I.V.; Tolpeshta, I.I.; Sokolova, T.A. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes. Eurasian Soil Sci. 2012, 45, 503–513. [Google Scholar] [CrossRef]
- Aringhieri, R.; Pardini, G. Protonation of Soil Particle Surfaces: Kinetics. Can. J. Soil Sci. 1985, 65, 677–686. [Google Scholar] [CrossRef]
- Sakurai, K.; Ohdate, Y.; Kyuma, K. Comparison of salt titration and potentiometric titration methods for the determination of zero point of charge (ZPC). Soil Sci. Plant Nutr. 1988, 34, 171–182. [Google Scholar] [CrossRef]
- Garmash, A.V.; Ustimova, I.V.; Kudryavtsev, A.V.; Vorob’eva, O.N.; Polenova, T.V. Potentiometric analysis of complex protolytic systems by pK spectroscopy using linear regression. J. Anal. Chem. 1998, 53, 212–218. [Google Scholar]
- Garmash, A.V.; Vorob’eva, O.N.; Kudryavtsev, A.V.; Danchenko, N.N. Potentiometric analysis of polyelectrolytes by pK spectroscopy using linear regression analysis. J. Anal. Chem. 1998, 53, 361–367. [Google Scholar]
- Garmash, A.V.; Vorob’eva, O.N. Verification of the accuracy of results in the potentiometric analysis of polyelectrolytes by pK spectroscopy. J. Anal. Chem. 1998, 53, 228–233. [Google Scholar]
- Lodygin, E.; Shamrikova, E. Use of the pK Spectroscopy Method in the Study of Protolytic Properties of Humic Substances and Other Soil Polyelectrolytes. Agronomy 2021, 11, 1051. [Google Scholar] [CrossRef]
- Field Guide to Russian Soils; V.V. Dokuchaev Soil Institute: Moscow, Russia, 2008. (In Russian)
- Taskaev, A.I. (Ed.) Atlas Pochv Respubliki Komi; Komi Respublikanskaya Tipografiya: Syktyvkar, Russia, 1997; p. 356. [Google Scholar]
- Dymov, A.A. Soils of Native Forest Ecosystems. Eurasian Soil Sci. 2023, 56, S36–S45. [Google Scholar] [CrossRef]
- van Reeuwijk, L.P. Technical Paper 09: Procedures for Soil Analysis (6th Edition). In Technical Paper/International Soil Reference and Information Centre; van Reeuwijk, L.P., Ed.; ISRIC: Wageningen, The Netherlands, 2002; Volume 9. [Google Scholar]
- Tamm, O. Method of estimation of the inorganic compounds of the gel complex in soils. Medd. Statens. Skoysgforsksanstant. 1922, 19, 387–404. [Google Scholar]
- Mehra, O.P.; Jackson, M.L. Iron oxid removal from soils and clays by ditionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 1960, 7, 317–327. [Google Scholar]
- Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1995. [Google Scholar]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark Iv. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Li, G.; Qin, S.J.; Zhou, D. Geometric properties of partial least squares for process monitoring. Automatica 2010, 46, 204–210. [Google Scholar] [CrossRef]
- Ochoa-Muñoz, A.F.; Contreras-Reyes, J.E. Multiple Factor Analysis Based on NIPALS Algorithm to Solve Missing Data Problems. Algorithms 2023, 16, 457. [Google Scholar] [CrossRef]
- Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- Startsev, V.V.; Yakovleva, E.V.; Kutyavin, I.N.; Dymov, A.A. Fire Impact on Carbon Pools and Basic Properties of Retisols in Native Spruce Forests of the European North and Central Siberia of Russia. Forests 2022, 13, 1135. [Google Scholar] [CrossRef]
- Robakidze, E.A.; Torlopova, N.V.; Bobkova, K.S. Chemical composition of wet precipitation in old-growth middle-taiga spruce stands. Geochem. Int. 2013, 51, 65–75. [Google Scholar] [CrossRef]
- López, R.; Gondar, D.; Antelo, J.; Fiol, S.; Arce, F. Study of the acid-base properties of a peat soil and its humin and humic acid fractions. Eur. J. Soil Sci. 2012, 63, 487–494. [Google Scholar] [CrossRef]
- Fernández, J.M.; Plaza, C.; Senesi, N.; Polo, A. Corrigendum to: “Acid–base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA-Donnan model” [Chemosphere 69(4) (2007) 630–635]. Chemosphere 2012, 87, 586. [Google Scholar] [CrossRef]
- Tipping, E.; Woof, C. Humic substances in acid organic soils: Modelling their release to the soil solution in terms of humic charge. J. Soil Sci. 2006, 41, 573–586. [Google Scholar] [CrossRef]
- Skic, K.; Boguta, P.; Sokołowska, Z. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods. Int. Agrophys. 2016, 30, 369–374. [Google Scholar] [CrossRef]
- Sokolova, T.; Pakhomov, A.; Terekhin, V. Continuous potentiometric titration measurement of acid-base buffering of podzolic soils. Eurasian Soil Sci. 1994, 26, 91–105. [Google Scholar]
- Reis, C.D.G.; Fonseca, R.A.D.; Reis, E.L.; Reis, C.; Brighenti, C.R.G.; Matias, A.A. Programa de ajuste multiparamétrico de curvas de titulação potenciométricas de ácidos húmicos. Rev. Bras. Ciência do Solo 2010, 34, 569–573. [Google Scholar] [CrossRef]
- Gutz, I.G.R. CurTiPot—pH and Acid-Base Titration Curves: Analisis and Simulation Software, Version 4.3.1. Available online: http://www.iq.usp.br/gutz/Curtipot_.html (accessed on 23 July 2023).
- Benjamin, F.T. ProtoFit—A Program for Optimizing Surface Protonation Models. Available online: http://protofit.sourceforge.net/ (accessed on 26 February 2019).
- Volk, V.V.; Jackson, M.L. Inorganic pH Dependent Cation Exchange Charge of Soils. Clays Clay Miner. 1963, 12, 281–295. [Google Scholar] [CrossRef]
- Bergaya, F.; Theng, B.K.G.; Lagaly, G. Handbook of Clay Science; Elsevier Science Bv: Amsterdam, The Netherlands, 2006; pp. 1–1224. [Google Scholar]
- Young, R.A.; Hewat, A.W. Verification of the triclinic crystal structure of kaolinite. Clays Clay Miner. 1998, 36, 225–232. [Google Scholar] [CrossRef]
- Kriaa, A.; Hamdi, N.; Srasra, E. Determination of Point of Zero Charge of Tunisian Kaolinites by Potentiometric and Mass Titration Methods. J. Chin. Chem. Soc. 2008, 55, 53–61. [Google Scholar] [CrossRef]
- Liu, X.; Lu, X.; Sprik, M.; Cheng, J.; Meijer, E.J.; Wang, R. Acidity of edge surface sites of montmorillonite and kaolinite. Geochim. Cosmochim. Acta 2013, 117, 180–190. [Google Scholar] [CrossRef]
- Furda, L.V.; Lebedeva, O.E. The influence of acid-modified montmorillonite containing clays on thermal destruction of polyethylene. Nauk. Pr. DonNTU 2014, 2, 178–184. [Google Scholar]
- Danchenko, N.N.; Perminova, I.V.; Garmash, A.V.; Kudryavtsev, A.V. Determination of carboxyl acidity of humic substances by titrimetric methods. Vestn. Mosk. Univ. Seriya 2 Khimiya 1998, 39, 127–131. [Google Scholar]
- Ryazanov, M.; Zlobin, D.; Lodygin, E.; Beznosikov, V. Evaluation of the acid-base properties of fulvic acids using pK spectroscopy. Eurasian Soil Sci. 2001, 34, 830–836. [Google Scholar]
- Ryazanov, M.A.; Dudkin, B.N. Acid–Base Properties of γ-Al2O3 Suspension Studied by pK Spectroscopy. Colloid J. 2003, 65, 761–766. [Google Scholar] [CrossRef]
- Gulmini, M.; Zelano, V.; Daniele, P.G.; Prenesti, E.; Ostacoli, G. Acid-base properties of a river sediment: Applicability of potentiometric titrations. Anal. Chim. Acta 1996, 329, 33–39. [Google Scholar] [CrossRef]
- Kremleva, T.A.; Lebedeva, N.N.; Allayarov, D.A.; Novopashin, V.V.; Volchkov, A.V. Determination of the Specific Surface Charge of the Benthal Deposits by the Potentiometric Method. Vestn. Tyumen State Univ. Seriya Khimiya 2014, 5, 63–72. [Google Scholar]
- Shamrikova, E.V.; Vanchikova, E.V.; Ryazanov, M.A. Study of the acid-base properties of mineral soil horizons using pK spectroscopy. Eurasian Soil Sci. 2007, 40, 1169–1174. [Google Scholar] [CrossRef]
- Rich, C.I. Conductometric and Potentiometric Titration of Exchangeable Aluminum. Soil Sci. Soc. Am. J. 1970, 34, 31–38. [Google Scholar] [CrossRef]
- Bergelin, A.; van Hees, P.A.W.; Wahlberg, O.; Lundström, U.S. The acid–base properties of high and low molecular weight organic acids in soil solutions of podzolic soils. Geoderma 2000, 94, 223–235. [Google Scholar] [CrossRef]
- Kapoor, B.S.; Goswami, S.C. Acid Character of Dioctahedral Vermiculite: Permanent and pH-Dependent Charge Component of Cation Exchange Capacity. J. Ind. Soc. Soil Sci. 1978, 24, 332–338. [Google Scholar]
- Öhman, L.-O.; Sjöberg, S.; Melander, L.; Wahlgren, U.; Watt, C.I.F. Equilibrium and Structural Studies of Silicon(IV) and Aluminium(III) in Aqueous Solution. 8. A Potentiometric Study of Aluminium(III) Salicylates and Aluminium(III) Hydroxo Salicylates in 0.6 M Na(Cl). Acta Chem. Scand. 1983, 37a, 875–880. [Google Scholar] [CrossRef]
- Violante, P.; Violante, A. Characterization of H-bentonites and interpretation of the 3rd buffer range appearing on pH titration curves. Agrochimica 1980, 24, 47–58. [Google Scholar]
- Orlov, D.S. Humic Acids and General Tejry of Gumification; MSU: East Lansing, MI, USA, 1990; p. 325. [Google Scholar]
- Makarov, M.I. Soil Organic Phosphorus; GEOS: Moscow, Russia, 2009; p. 397. [Google Scholar]
- Evans, L.J. Some aspects of the chemistry of aluminium in podzolic soils. Commun. Soil Sci. Plant Anal. 2008, 19, 793–803. [Google Scholar] [CrossRef]
- Shamrikova, E.V.; Gruzdev, I.V.; Punegov, V.V.; Khabibullina, F.M.; Kubik, O.S. Water-soluble low-molecular-weight organic acids in automorphic loamy soils of the tundra and taiga zones. Eurasian Soil Sci. 2013, 46, 654–659. [Google Scholar] [CrossRef]
- Kerienė, I.; Šaulienė, I.; Šukienė, L.; Judžentienė, A.; Ligor, M.; Valiuškevičius, G.; Grendaitė, D.; Buszewski, B. Enrichment of Water Bodies with Phenolic Compounds Released from Betula and Pinus Pollen in Surface Water. Plants 2024, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- Ryazanov, M.A.; Dudkin, B.N. The pK spectroscopy study of the acid–base properties of hydrated aluminum oxide sols. Colloid J. 2004, 66, 726–728. [Google Scholar] [CrossRef]
- Borůvka, L.; Mládková, L.; Penížek, V.; Drábek, O.; Vašát, R. Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma 2007, 140, 374–382. [Google Scholar] [CrossRef]
- Salehi, A.; Zahedi Amiri, G. Study of Physical and Chemical Soil Properties Variations Using Principal Component Analysis Method in the Forest, North of Iran. Caspian J. Env. Sci. 2005, 3, 131–137. [Google Scholar]
- Visconti, F.; de Paz, J.M.; Rubio, J.L. Principal component analysis of chemical properties of soil saturation extracts from an irrigated Mediterranean area: Implications for calcite equilibrium in soil solutions. Geoderma 2009, 151, 407–416. [Google Scholar] [CrossRef]
- Bolan, N.S.; Loganathan, P.; Saggar, S. Calcium and Magnesium in Soils. In Encyclopedia of Soils in the Environment; Elsevier Ltd.: Amsterdam, The Netherlands, 2005; pp. 149–154. [Google Scholar]
- Ge, S.; Xu, H.; Ji, M.; Jiang, Y. Characteristics of Soil Organic Carbon, Total Nitrogen, and C/N Ratio in Chinese Apple Orchards. Open J. Soil Sci. 2013, 03, 213–217. [Google Scholar] [CrossRef]
- Paterson, E.; Goodman, B.A.; Farmer, V.C. The Chemistry of Aluminium, Iron and Manganese Oxides in Acid Soils. In Soil Acidity; Ulrich, B., Sumner, M.E., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 97–124. [Google Scholar]
- Shamrikova, E.V.; Punegov, V.V.; Gruzdev, I.V.; Vanchikova, E.V.; Vetoshkina, A.A. Individual organic compounds in water extracts from podzolic soils of the Komi Republic. Eurasian Soil Sci. 2012, 45, 939–946. [Google Scholar] [CrossRef]
- Shamrikova, E.V.; Gruzdev, I.V.; Punegov, V.V.; Vanchikova, E.V. Influence of Biota on Low Molecular Weight Organic Acids in Soil Solutions of Taiga and Tundra Soils in the East-European Russia; Springer: Dordrecht, The Netherlands, 2013; pp. 107–111. [Google Scholar]
- Pierzynski, G.M.; McDowell, R.W.; Thomas Sims, J. Chemistry, Cycling, and Potential Movement of Inorganic Phosphorus in Soils. In Phosphorus: Agriculture and the Environment; Agronomy Monographs; American Society of Agronomy, Inc.: Madison, WI, USA, 2015; pp. 51–86. [Google Scholar]
Soils | Coordinates | Location | Vegetation of Ground Cover | Soil Profile |
---|---|---|---|---|
R I | N 61°45′43.6″ E 54°17′50.1″ h = 260 | The intercrown space | Vaccinium myrtillus, Gymnocarpium dryopteris, Equisetum sylvaticum, Carex globularis. | Oi–Oe–Oa–E/Eh–BEL–Btw–C |
R II | Spruce crown (260 years old) | Hylocomium splendens, Equisetum sylvaticum, Vaccinium myrillus, Pleurozium schereberi | Oi–Oe–Oa–E/Eh–BELc, i–Btw–C |
Horizon | Depth, cm | Clay Fraction, % | pH | Hydrolytic Acidity, mmol/100 g | Exchangeable Cations, mmol/kg | Ctot, % | Ntot, % | C:N | Oxalate Soluble, % | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Water | Salt | Ca | Mg | Fe2O3 | Al2O3 | |||||||
Retisol I (intercrown space) | ||||||||||||
Oi | 0–3 | — | 4.6 | 3.9 | 58.8 | 21.4 | 7.8 | 44.2 | 1.63 | 32 | — | — |
Oe | 3–6 | — | 4.3 | 3.3 | 56.3 | 15.7 | 2.98 | 43.2 | 1.9 | 27 | — | — |
Oa | 6–8 | — | 4.0 | 2.9 | 73.7 | 11.4 | 3.03 | 35.8 | 1.58 | 26 | — | — |
E1 | 6–11 | 11 | 3.9 | 2.9 | 14.9 | 0.60 | 0.28 | 2.20 | 0.148 | 17 | 0.18 | 0.28 |
Eh | 11–14 | 13 | 4.1 | 3.3 | 5.93 | 0.71 | 0.32 | 3.20 | 0.22 | 17 | 1.27 | 0.54 |
E2 | 20–30 | 8 | 4.9 | 3.8 | 8.83 | 0.57 | 0.210 | 0.41 | 0.046 | 10 | 0.66 | 0.44 |
30–40 | 8 | 5.0 | 3.8 | 8.28 | 0.50 | 0.243 | 0.21 | 0.030 | 8 | 0.35 | 0.29 | |
BEL* BEL** | 40–50 | 10 | 5.3 | 3.8 | 6.69 | 1.17 | 0.77 | 0.17 | 0.024 | 8 | 0.28 | 0.24 |
50–60 | 13 | 5.3 | 3.8 | 6.53 | 2.44 | 1.68 | 0.12 | 0.021 | 7 | 0.28 | 0.26 | |
60–70 | 24 | 5.5 | 3.8 | 5.48 | 8.3 | 3.40 | 0.12 | 0.024 | 6 | 0.3 | 0.27 | |
70–80 | 24 | 5.6 | 3.8 | 4.92 | 9.4 | 4.3 | 0.11 | 0.024 | 5 | 0.29 | 0.31 | |
Btw1 | 80–90 | 26 | 5.7 | 3.9 | 4.23 | 10.4 | 5.6 | 0.14 | 0.030 | 5 | 0.27 | 0.27 |
90–110 | 28 | 5.8 | 4.0 | 3.71 | 11.5 | 5.9 | 0.13 | 0.021 | 7 | 0.28 | 0.26 | |
Btw2 | 110–125 | 30 | 6.0 | 4.1 | 3.40 | 12.0 | 6.1 | 0.14 | 0.025 | 7 | 0.23 | 0.24 |
Cg | 130–140 | 26 | 5.7 | 4.1 | 3.05 | 12.1 | 6.2 | 0.13 | 0.025 | 6 | 0.22 | 0.22 |
140–150 | 28 | 6.1 | 4.2 | 2.74 | 11.6 | 6.0 | 0.11 | 0.025 | 5 | 0.21 | 0.21 | |
Retisol II (under the crown of spruce) | ||||||||||||
Oi | 0–2 | — | 5.2 | 4.5 | 50.3 | 32.1 | 7.9 | 45.7 | 1.8 | 30 | — | — |
Oe | 2–4 | — | 4.8 | 4.0 | 60.2 | 25.0 | 5.1 | 46.2 | 1.9 | 28 | — | — |
Oa | 4–6 | — | 4.1 | 3.1 | 88.2 | 10.8 | 2.50 | 41.8 | 1.7 | 29 | — | — |
E | 6–10 | 13 | 4.0 | 3.1 | 14.9 | 0.63 | 0.32 | 2.0 | 0.125 | 19 | 0.3 | 0.34 |
Eh,c | 10–20 | 11 | 4.3 | 3.5 | 16.9 | 0.76 | 0.32 | 2.0 | 0.128 | 18 | 1.28 | 0.54 |
BELc,i | 20–30 | 17 | 4.5 | 3.6 | 16.9 | 0.73 | 0.31 | 2.1 | 0.138 | 18 | 1.22 | 0.7 |
30–45 | 22 | 4.8 | 3.8 | 15.5 | 0.99 | 0.50 | 0.91 | 0.074 | 14 | 0.92 | 0.75 | |
Btw1 | 45–60 | 26 | 5.1 | 3.7 | 13.9 | 2.28 | 1.54 | 0.29 | 0.033 | 10 | 0.52 | 0.6 |
Btw2 | 60–80 | 27 | 5.3 | 3.8 | 10.1 | 6.5 | 3.40 | 0.29 | 0.038 | 9 | 0.44 | 0.49 |
Acid Mixture | pKa | |||||||
---|---|---|---|---|---|---|---|---|
2.5 | 3.0 | 6.5 | 7.0 | 7.5 | 9.0 | 9.5 | 10.0 | |
0.00625 M H3PO4 and 0.00625 M H3BO3 | 0.00388 | 0.00269 | 0 | 0.00439 | 0.00200 | 0.00000 | 0.00619 | 0 |
0.00657 | 0.00640 | 0.00619 | ||||||
0.00375 M H3PO4 and 0.00875 M H3BO3 | 0.00248 | 0.00135 | 0.00033 | 0.00299 | 0.00000 | 0.00384 | 0.00449 | – |
0.00383 | 0.00332 | 0.00833 | ||||||
0.00875 M H3PO4 and 0.00375 M H3BO3 | 0.00634 | 0.00278 | 0.00000 | 0.00602 | 0.00286 | 0.00000 | 0.00314 | 0.00067 |
0.00912 | 0.00888 | 0.00381 |
pH Range | Main Determining Factors |
---|---|
4.0–5.0 | Reactions of carboxyl groups and H-acids of humic substances [78] |
5.0–6.5 | Hydrolysis of exchangeable Al [79,80] |
6.0–7.0 | HCO3−, CO2 from air/water; deprotonation of carboxyl groups of water-soluble organic matter; amorphous aluminosilicates [81,82] |
8.0–8.5 | Amino groups [83] and polymeric hydroxy compounds of Al [14] |
8.5–9.5 | Weak OH groups of soluble phenolic, polyphenolic compounds and their hydrolysis products [83], phospholipids and diesters [84] |
9.5–10.0 | Al and Fe complex compounds with organic ligands and phenolic compounds [85] |
pKa or pKa Range | R I Correlation | R II Correlation | R I + R II |
---|---|---|---|
5.0 | Strong positive correlations with the amount of C, N, C/N, oxalate-soluble Al2O3 and Fe2O3, dithionite-soluble Fe2O3 and SO3 | Positive correlations with the amount of oxalate-soluble Al2O3 and dithionite-soluble Fe2O3. Negative correlation with C, N, C/N | Weak correlations with the amount of C, N. Correlations with the amounts of oxalate-soluble Al2O3, Fe2O3 |
6.5 | Strong positive correlations with the amount of C, N, C/N, oxalate-soluble Al2O3 and Fe2O3, dithionite-soluble Fe2O3 and SO3 | Strong positive correlations with the amount of C and N; negative correlation with oxalate-soluble Al2O3 and Fe2O3 and dithionite-soluble Fe2O3 | Correlations with the amount of C, N. Correlations with the amounts of oxalate-soluble Fe2O3 |
8.5 | Positive correlations with the amount of C, N, C/N, oxalate-soluble Al2O3 and Fe2O3, dithionite-soluble Fe2O3 and SO3 | Positive correlations with the amounts of oxalate-soluble Al2O3, Fe2O3 | Correlations with the amounts of oxalate-soluble Al2O3 |
9.0 | Weak correlations with the amount of C, N, C/N, oxalate-soluble Al2O3 and Fe2O3, dithionite-soluble Fe2O3 | No correlations with the amount of C, N; correlation with the amount of CaO and dithionite-soluble Fe2O3 Positive correlations with C, N, C/N, Al2O3 and Fe2O3, P2O5 and hydrolytic acidity | No correlations |
10.0 | Negative correlations oxalate-soluble Al2O3 and Fe2O3 and dithionite-soluble Fe2O3 | Correlations with the amounts of oxalate-soluble Al2O3, P2O5 | |
4.0–6.0 | Correlations with the amount of C, N, oxalate-soluble Al2O3 and Fe2O3 | Negative correlations with CaO, weak correlation with oxalate-soluble Al2O3, P2O5 | Correlations with the amount of C, N. Correlations with the amounts of oxalate-soluble Al2O3, Fe2O3, P2O5 |
6.5–8.5 | Correlations with the amount of C, N, oxalate-soluble Al2O3 and Fe2O3 and SO3 | Negative correlations with exchangeable CaO and MgO, positive correlation with oxalate-soluble Al2O3 and Fe2O3 and dithionite-soluble Fe2O3, P2O5 | Correlations with the amount of C, N. Correlations with the amounts of oxalate-soluble Al2O3, Fe2O3, P2O5 |
4.0–5.0 | Correlations with the amount of C, N, oxalate-soluble Al2O3 and Fe2O3 and SO3 | Positive correlation with the hydrolytic acidity and with oxalate-soluble Al2O3 | Weak correlations with the amount of C, N. Correlations with the amounts of oxalate-soluble Al2O3 |
5.5–6.5 | Weak correlations with the amount of C, N, oxalate-soluble Al2O3 and Fe2O3 and SO3 | Weak positive correlation with C, N, negative correlation with oxalate-soluble Al2O3 and Fe2O3 and dithionite-soluble Fe2O3 | No correlations |
7.5–8.5 | Correlations with the amount of C, N, oxalate-soluble Al2O3 and Fe2O3 and SO3 | Correlation with oxalate-soluble Al2O3, P2O5 | Weak correlations with the amount of C, N. Correlations with the amounts of oxalate-soluble Al2O3, Fe2O3, P2O5 |
9.0–10.0 | Correlations with the amount of C, N, oxalate-soluble Al2O3 and Fe2O3 and SO3 | Positive correlation with C, N, C/N, P2O5, Al2O3 and Fe2O3 and hydrolytic acidity | Correlations with the amount of C, N, oxalate-soluble Al2O3 and Fe2O3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveeva, N.V.; Garmash, A.V.; Shishkin, M.A.; Dymov, A.A.; Rogova, O.B.; Volkov, D.S.; Proskurnin, M.A. Fast High-Resolution pKa Spectrotitrimetry for Quantification of Surface Functional Groups of Retisols. Soil Syst. 2024, 8, 63. https://doi.org/10.3390/soilsystems8020063
Matveeva NV, Garmash AV, Shishkin MA, Dymov AA, Rogova OB, Volkov DS, Proskurnin MA. Fast High-Resolution pKa Spectrotitrimetry for Quantification of Surface Functional Groups of Retisols. Soil Systems. 2024; 8(2):63. https://doi.org/10.3390/soilsystems8020063
Chicago/Turabian StyleMatveeva, Natal’ya V., Andrei V. Garmash, Mikhail A. Shishkin, Alexey A. Dymov, Olga B. Rogova, Dmitry S. Volkov, and Mikhail A. Proskurnin. 2024. "Fast High-Resolution pKa Spectrotitrimetry for Quantification of Surface Functional Groups of Retisols" Soil Systems 8, no. 2: 63. https://doi.org/10.3390/soilsystems8020063
APA StyleMatveeva, N. V., Garmash, A. V., Shishkin, M. A., Dymov, A. A., Rogova, O. B., Volkov, D. S., & Proskurnin, M. A. (2024). Fast High-Resolution pKa Spectrotitrimetry for Quantification of Surface Functional Groups of Retisols. Soil Systems, 8(2), 63. https://doi.org/10.3390/soilsystems8020063