Ciliated Protist Communities in Soil: Contrasting Patterns in Natural Sites and Arable Lands across Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Sample Processing
2.3. Statistical Analysis
3. Results
3.1. Ciliate Community Structure and Indicator Species Analysis in Organic (ORG), Conventional (CON), and Forest (FOR) Sites
3.2. Diversity and Abundances of Ciliates
3.3. Ciliate Communities and Correlation with Abiotic Parameters across ORG, CON, and FOR Sites
4. Discussion
5. Conclusions
Brief Notes on the Soil Ciliate Diversity from Italy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, J.M.; Healey, I.N. Seasonal and interspecific variation in major components of the gut contents of some woodland Collembola. J. Anim. Ecol. 1972, 41, 359–368. [Google Scholar] [CrossRef]
- Torsvik, V.; Sorheim, R.; Goksoyr, J. Total bacterial diversity in soil and sediment communities—A review. J. Ind. Microbiol. 1996, 17, 170–178. [Google Scholar] [CrossRef]
- Li, J.; Li, M.G.; Yang, J.; Wang, C.F.; Ai, Y.; Xu, R.L. The community structure of soil Sarcodina in Baiyun Mountain, Guangzhou, China. Eur. J. Soil Biol. 2010, 46, 1–5. [Google Scholar] [CrossRef]
- Ning, Y.Z.; Shen, Y.F. Soil protozoa in typical zones of China: II. Ecological study. Acta Zool. Sin. 1998, 44, 271–276, (In Chinese with English abstract). [Google Scholar]
- Geisen, S.; Mitchell, E.A.D.; Wilkinson, D.M.; Adl, S.; Bonkowski, M.; Brown, M.W.; Fiore-Donno, A.M.; Heger, T.J.; Jassey, V.E.; Krashevska, V.; et al. Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol. Biochem. 2017, 111, 94–103. [Google Scholar] [CrossRef]
- Acosta-Mercado, D.; Lynn, D.H. Soil ciliate species richness and abundance associated with the rhizosphere of different subtropical plant species. J. Eukaryot. Microbiol. 2004, 51, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.D.; Gupta, V.V.S.R.; Elliott, E.T.; Paustian, K. Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community. Soil Biol. Biochem. 2001, 33, 1759–1768. [Google Scholar] [CrossRef]
- Sun, Y.X.; Lin, Q.M.; Zhao, X.R. Interaction of protozoa and phosphate-solubilizing bacteria on rock phosphate dissolution. Chin. J. Ecol. 2003, 22, 84–86. (In Chinese) [Google Scholar]
- Foissner, W.; Berger, H.; Xu, K.; Zechmeister-Boltenstern, S. A huge, undecided soil ciliate (Protozoa: Ciliophora) diversity in natural forest stands of Central Europe. Biodivers. Conserv. 2005, 14, 617–701. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef]
- Santos, V.B.; Araújo, A.S.F.; Leite, L.F.C.; Nunes, L.A.P.L.; Melo, W.J. Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 2012, 170, 227–231. [Google Scholar] [CrossRef]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Louws, F.J.; Creamer, N.G.; Paul Mueller, J.; Brownie, C.; Fager, K.; Bell, M.; Hu, S. Responses of soil microbial biomass and N availability to transition strategies from conventional to organic farming systems. Agric. Ecosyst. Environ. 2006, 113, 206–215. [Google Scholar] [CrossRef]
- Blundell, R.; Schmidt, J.E.; Igwe, A.; Cheung, A.L.; Vannette, R.L.; Gaudin, A.C.M.; Casteel, C.L. Organic management promotes natural pest control through altered plant resistance to insects. Nat. Plants 2020, 6, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, E.; Röling, W.F.M.; Gamper, H.A.; Kowalchuk, G.A.; Verhoef, H.A.; van der Heijden, M.G.A. Positive effects of organic farming on below-ground mutualists: Large-scale comparison of mycorrhizal fungal communities in agricultural soils. N. Phytol. 2010, 186, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Lupatini, M.; Korthals, G.W.; de Hollander, M.; Janssens, T.K.S.; Kuramae, E.E. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 2017, 7, 2064. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Tao, C.; Jousset, A.; Xiong, W.; Wang, Z.; Shen, Z.; Wang, B.; Xu, Z.; Gao, Z.; Liu, S.; et al. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. ISME J. 2022, 16, 1932–1943. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Beare, M.H.; Lavelle, P.; Izac, A.-M.-N.; Swift, M.J. Agricultural intensification, soil biodiversity and agroecosystem function. Appl. Soil Ecol. 1997, 6, 3–16. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G.A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef]
- Dupont, A.Ö.; Griffiths, R.I.; Bell, T.; Bass, D. Differences in soil micro eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs. Environ. Microbiol. 2016, 18, 2010–2024. [Google Scholar] [CrossRef]
- Zhao, Z.-B.; He, J.-Z.; Geisen, S.; Han, L.-L.; Wang, J.-T.; Shen, J.-P.; Wei, W.-X.; Fang, Y.-T.; Li, P.-P.; Zhang, L.-M. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome 2019, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.-B.; He, J.-Z.; Quan, Z.; Wu, C.-F.; Sheng, R.; Zhang, L.-M.; Geisen, S. Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biol. Biochem. 2020, 148, 107863. [Google Scholar] [CrossRef]
- Geisen, S.; Bandow, C.; Jörg, R.; Bonkowski, M. Soil water availability strongly alters the community composition of soil protists. Pedobiologia 2014, 57, 205–213. [Google Scholar]
- Fournier, B.; Pereira Dos Santos, S.; Gustavsen, J.A.; Imfeld, G.; Lamy, F.; Mitchell, E.A.D.; Mota, M.; Noll, D.; Planchamp, C.; Heger, T.J. Impact of a synthetic fungicide (fosetyl-Al and propamocarb-hydrochloride) and a biopesticide (Clonostachysrosea) on soil bacterial, fungal, and protist communities. Sci. Total Environ. 2020, 738, 139635. [Google Scholar] [CrossRef] [PubMed]
- Coppellotti, O.; Matarazzo, P. Ciliate colonization of artificial substrates in the Lagoon of Venice. J. Mar. Biol. Assoc. U.K. 2000, 80, 419–427. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, Y.; Al-Rasheid, K.S.; Al-Farraj, S.; Song, W. Application of an indicator based on taxonomic relatedness of ciliated protozoan assemblages for marine environmental assessment. Environ. Sci. Pollut. Res. Int. 2011, 18, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Debastiani, C.; Meira, B.R.; Lansac-Tôha, F.M.; Velho, L.F.M.; Lansac-Tôha, F.A. Protozoa ciliates community structure in urban streams and their environmental use as indicators. Braz. J. Biol. 2016, 76, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Lüftenegger, G.; Foissner, W.; Adam, H. r- and k-selection in soil ciliates: A field and experimental approach. Oecologia 1985, 66, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Foissner, W. Soil protozoa: Fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Prog. Protistol. 1987, 2, 69–212. [Google Scholar]
- Yeates, G.W.; Bamforth, S.S.; Ross, D.J.; Tate, K.R.; Sparling, G.P. Recolonization of methyl bromide sterilized soils under four different field conditions. Biol. Fert. Soils 1991, 11, 181–189. [Google Scholar] [CrossRef]
- Foissner, W. Soil protozoa as bioindicators: Pros and cons, methods, diversity representative examples. Agric. Ecosyst. Environ. 1999, 74, 95–112. [Google Scholar] [CrossRef]
- Mayzlish, E.; Steiberger, Y. Effects of chemical inhibitors on soil protozoan dynamics in a desert ecosystem. Biol. Fert. Soils 2004, 39, 415–421. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, Q.; Li, G.; Zhao, X. The ciliate protozoan Colpodacucullus can improve maize growth by transporting soil phosphates. J. Integr. Agric. 2022, 21, 855–861. [Google Scholar] [CrossRef]
- Abraham, J.S.; Sripoorna, S.; Dagar, J.; Jangra, S.; Kumar, A.; Yadav, K.; Singh, S.; Goyal, A.; Maurya, S.; Gambhir, G.; et al. Soil ciliates of the Indian Delhi Region: Their community characteristics with emphasis on their ecological implications as sensitive bio indicators for soil quality. Saudi J. Biol. Sci. 2019, 26, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Tiberi, M.; Ciabocco, G.; Bernacconi, C.; Bampa, F.; Dunbar, M.B.; Montanarella, L. MOSYSS (MOnitoringSYstem of Soils at multiScale)–Monitoring System of Physical, Chemical and Biological Soil Parameters in Relation to Forest and Agricultural Land Management; Report EUR 26386 EN; Publications Office of the European Union: Luxembourg, 2014; pp. 1–136. [Google Scholar]
- Bharti, D.; Kumara, S.; La Terza, A. Description and molecular phylogeny of a novel hypotrich ciliate from the soil of Marche Region, Italy; including notes on the MOSYSS Project. J. Eukaryot. Microbiol. 2017, 64, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Pepper, I.L.; Gerba, C.P.; Gentry, T.; Maier, R.M. (Eds.) Chapter 8. Environmental sample collection and processing. In Environmental Microbiology, 2nd ed.; Elsevier Science: Amsterdam, The Netherland, 2009; pp. 1–598. [Google Scholar]
- Bharti, D.; Kumar, S.; La Terza, A. Two gonostomatid ciliates from the soil of Lombardia, Italy; including note on the soil mapping project. J. Eukaryot. Microbiol. 2015, 62, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bharti, D.; Marinsalti, S.; Insom, E.; La Terza, A. Morphology, morphogenesis, and molecular phylogeny of Paraparentocirrussibillinensis n. gen., n. sp., a “StylonychineOxytrichidae” (Ciliophora, Hypotrichida) without transverse cirri. J. Eukaryot. Microbiol. 2014, 61, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Kamra, K.; Sapra, G.R. Partial retention of parental ciliature during morphogenesis of the ciliate Coniculostomummonilata (Dragesco and Njine, 1971) Njine, 1978 (Oxytrichidae, Hypotrichida). Eur. J. Protistol. 1990, 25, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.R.; Green, R.H. Statistical design and analysis for a “biological effects” study. Mar. Ecol. Prog. Ser. 1988, 46, 213–226. [Google Scholar] [CrossRef]
- Clark, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical and Interpretation; PlymouthMarine Laboratory: Plymouth, UK, 2001. [Google Scholar]
- Clarke, K.; Gorley, R. PRIMER v6: User Manual/Tutorial; Primer-E: Plymouth, UK, 2006; p. 192. [Google Scholar]
- TerBraak, C.J. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 1986, 67, 1167–1179. [Google Scholar] [CrossRef]
- TerBraak, C.J.; Verdonschot, F.M. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 1995, 57, 255–289. [Google Scholar] [CrossRef]
- TerBraak, C.J.F.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5); Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Bakker, J.D. Increasing the utility of Indicator Species Analysis. J. Appl. Ecol. 2008, 45, 1829–1835. [Google Scholar] [CrossRef]
- Taylor, W.D.; Shuter, B.J. Body size, genome size, and intrinsic rate of increase in ciliated protozoa. Am. Nat. 1981, 118, 160–172. [Google Scholar] [CrossRef]
- Jackson, K.M.; Berger, J. Survivorship curves of ciliate protozoa under starvation conditions and at low bacterial levels. Protistologica 1985, 21, 17–24. [Google Scholar]
- Acosta-Mercado, D.; Lynn, D.H. A preliminary assessment of spatial patterns of soil ciliate diversity in two subtropical forests in Puerto Rico and its implications for designing an appropriate sampling approach. Soil Biol. Biochem. 2002, 34, 1517–1520. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, H.; Hu, X.; Zhu, M.; Al-Rasheid, K.A.; Warren, A. An approach to analyzing spatial patterns of planktonic ciliate communities for monitoring water quality in Jiaozhou Bay, northern China. Mar. Pollut. Bull. 2011, 62, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Foissner, W. Colpodea (Ciliophora); Gustav Fischer Verlag: Stuttgart, Germany; Jena, NY, USA, 1993; p. 798. [Google Scholar]
- Foissner, W.; Agatha, S.; Berger, H. Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha Region and the Namib Desert. Denisia 2002, 5, 1–1459. [Google Scholar]
- Ning, Y.Z.; Wu, W.N.; Du, H.F.; Wang, H.J. Response of soil ciliate communities to ecological restoration after the implementation of the conversion of cropland to forest and grassland program: A case study of Platycladusorientalis forest. Acta Ecol. Sin. 2016, 36, 288–297. [Google Scholar]
- Grime, J. Competitive exclusion in herbaceous vegetation. Nature 1973, 242, 344–347. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Amblard, C.; Sime-Ngando, T.; Rachiq, S.; Bourdier, G. Importance of ciliated protozoa in relation to the bacterial and phytoplanktonic biomass in an oligo-mesotrophic lake, during the spring diatom bloom. Aquat. Sci. 1993, 55, 1–9. [Google Scholar] [CrossRef]
- Kchaou, N.; Elloumi, J.; Drira, Z.; Hamza, A.; Ayadi, H.; Bouain, A.; Aleya, L. Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuar. Coast Shelf Sci. 2009, 83, 414–424. [Google Scholar] [CrossRef]
- Wu, F.; Huang, J.; Dai, M.; Liu, H.; Huang, H. Using ciliates to monitor different aquatic environments in Daya Bay, South China Sea. Can. J. Zool. 2016, 94, 265–273. [Google Scholar] [CrossRef]
- Foissner, W. Terrestrial and semiterrestrial ciliates (Protozoa, Ciliophora) from Venezuela and Galápagos. Denisia 2016, 35, 1–912. [Google Scholar]
- Vargas, R.; Hattori, T. The distribution of protozoa among soil aggregates. FEMS Microbiol. Ecol. 1990, 74, 73–78. [Google Scholar] [CrossRef]
- Ekelund, F.; Rønn, R. Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol. Rev. 1994, 15, 321–353. [Google Scholar] [CrossRef] [PubMed]
- Forge, T.A.; Hogue, E.; Neilsen, G.; Neilsen, D. Effects of organic mulches on soil microfauna in the root zone of apple: Implications for nutrient fluxes and functional diversity of the soil food web. Appl. Soil. Ecol. 2003, 22, 39–54. [Google Scholar] [CrossRef]
- Bharti, D.; Kumar, S.; La Terza, A. Morphology, morphogenesis and molecular phylogeny of a novel soil ciliate, Pseudouroleptusplestiensis n. sp. (Ciliophora, Oxytrichidae), from the uplands of Colfiorito, Italy. Int. J. Syst. Evol. Microbiol. 2014, 64, 2625–2636. [Google Scholar] [CrossRef]
- Chao, A.; Li, P.C.; Agatha, S.; Foissner, W. A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents. Oikos 2006, 114, 479–493. [Google Scholar] [CrossRef]
- Foissner, W.; Chao, A.; Katz, L. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers. Conserv. 2008, 17, 345–363. [Google Scholar] [CrossRef]
Site No. | Site Code | Habitat Type | Locality | Latitude | Longitude | Altitude (asl) | Humus Type | Geological Substrate |
---|---|---|---|---|---|---|---|---|
1 | ORG_APP | Arable land | Gaglianvecchio, San Severino Marche (MC) | 43°19′15.74″ | 13°8′59.86″ | 506 m | Not present | Calcareous marls |
2 | ORG_M | Arable land | Berta, San Severino Marche (MC) | 43°17′17.53″ | 13°12′56.29″ | 187 m | Not present | Marly clay |
3 | ORG_CUC | Arable land | Cantagallo, Pollenza (MC) | 43°15′10.75″ | 13°26′47.20″ | 265 m | Not present | Peliticcalcareous rocks |
4 | CON_MG30 | Arable land | Passatempo, Osimo (AN) | 43°28′10.26″ | 13°26′11.22″ | 46 m | Not present | Calcareous marls |
5 | CON_MG34 | Arable land | Pian del Medico, Jesi (AN) | 43°27′27.43″ | 13°23′7.90″ | 88 m | Not present | Calcareous marls |
6 | BF_GUA | Beech forest | Gualdo, Visso (MC) | 42°53′16.71″ | 13°12′15.17″ | 1236 m | Oligomull | Marl limestones |
7 | BF_FIU | Beech forest | Monte Vermenone, Fiuminata (MC) | 43°8′19.58″ | 12°56′24.34″ | 1126 m | Dysmoder | Flint limestones |
8 | BF_CAN | Beech forest | Canfaito, San Severino Marche (MC) | 43°14′14.21″ | 13°4′24.04″ | 1025 m | Dysmoder | Flint limestones |
9 | OF_FB | Mixed forest | FossoBarronciano, Serravalle del Chienti (MC) | 43°0′23.31″ | 13°0′58.45″ | 843 m | Hemimoder | Marl limestones |
10 | CF_TOR | Mixed forest | Torrone, Camerino (MC) | 43°6′48.78″ | 13°10′58.08″ | 684 m | Hemimoder | pelitic calcareous rocks |
Soil Parameters | ORG (Organic) | CON (Conventional) | FOR (Forest) | p-Value |
---|---|---|---|---|
pH | 8–8.2 | 8.2–8.3 | 6.5–7 | 0.0001 *** |
(8.1 ± 0.2) | (8.2 ± 0.1) | (6.8 ± 0.2) | ||
Organic carbon (OC) (g/Kg) | 7.4–8.3 | 9.1–10.8 | 17.7–206.3 | ns |
(7.7 ± 0.6) | (10 ± 1.3) | (80.3 ± 85.6) | ||
Organic matter (OM) (g/Kg) | 12.6–14.3 | 15.6–18.2 | 30.6–355.6 | ns |
(13.3 ± 1) | (16.9 ± 1.9) | (138.5 ± 147.5) | ||
Total nitrogen (TN) (g/Kg) | 0.9–1.1 | 1.1–1.4 | 1.6–1.9 | ns |
(1 ± 0.2) | (1.3 ± 0.2) | (1.8 ± 0.2) | ||
Carbon/nitrogen (C/N) | 6.8–8.6 | 8–8.2 | 10.1–16.4 | 0.03 * |
(7.8 ± 1) | (8.1 ± 0.2) | (12.2 ± 2.7) | ||
Cation exchange capacity (CEC) meq/100 g | 16.4–22.7 | 18.8–19.8 | 17.6–71.7 | ns |
(19.3 ± 3.2) | (19.3 ± 0.8) | (41 ± 19.7) | ||
S1 (g/Kg) | 4–71 | 7–10 | 68–380 | ns |
(26.7 ± 38.4) | (8.5 ± 2.2) | (201.2 ± 130.1) | ||
S2 (g/Kg) | 13–57 | 50–64 | 20–145 | ns |
(33.7 ± 22.2) | (57 ± 9.9) | (58 ± 51.1) | ||
S3 (g/Kg) | 95–171 | 162–215 | 116–484 | ns |
(142.4 ± 41.3) | (188.5 ± 37.5) | (234.4 ± 153.9) | ||
Silt (g/Kg) | 424–471 | 479–480 | 162–314 | 0.0001 *** |
(443.7 ± 24.5) | (479.5 ± 0.8) | (228.6 ± 67.5) | ||
Clay (g/Kg) | 277–452 | 232–301 | 90–526 | ns |
(353.7 ± 89.5) | (266.5 ± 48.8) | (277.8 ± 226.4) |
Species | ORG (IndV) | FOR (IndV) | CON (IndV) | p-Value |
---|---|---|---|---|
Actinobolina sp. | 50.3 | 12.6 | 28.6 | 0.0495 * |
Anteholosticha sp. | 83.3 | 0.0 | 0.0 | 0.0013 ** |
Aspidisca sp. | 100 | 0.0 | 0.0 | 0.0001 *** |
Colpoda inflata | 0.0 | 80.2 | 19.7 | 0.0001 *** |
Colpoda cucullus | 6.9 | 16.6 | 74.5 | 0.0005 *** |
Frontonia sp. | 0.0 | 0.5 | 47.05 | 0.0192 * |
Gonostomum affine | 13.6 | 62.9 | 11.7 | 0.0024 ** |
Halteria grandinella | 62.6 | 4.339 | 22.8 | 0.024 * |
Rigidocortex octanucleatus | 0.0 | 0.0 | 50 | 0.0001 *** |
Diversity Indices | ORG (Organic) | CON (Conventional) | FOR (Forest) | |||
---|---|---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | |
Speciesrichness (S) | 17–27 | 21.5 ± 3.94 | 13–21 | 16.5 ± 3.7 | 11–22 | 15 ± 3.5 |
Abundance (N) | 740–1492 | 1131 ± 269 | 1079–1267 | 1203 ± 84.1 | 773–2267 | 1313 ± 506 |
Margalef’s index (d’) | 2.32–3.9 | 2.9 ± 0.6 | 1.69–2.86 | 2.2 ± 0.5 | 1.5–3.16 | 2 ± 0.5 |
Pielou’s index (J’) | 0.72–0.9 | 0.8 ± 0.1 | 0.60–0.76 | 0.7 ± 0.1 | 0.47–0.82 | 0.7 ± 0.1 |
Shannon–Weiner (H’) | 2.08–2.79 | 2.45 ± 0.24 | 1.59–2.29 | 1.94 ± 0.28 | 1.22–2.53 | 1.8 ± 0.4 |
Axes | 1 | 2 | 3 | 4 | Total Inertia |
---|---|---|---|---|---|
Eigenvalues | 0.326 | 0.149 | 0.108 | 0.086 | 0.818 |
Species–environment correlations | 1 | 0.993 | 0.971 | 0.997 | |
Cumulative percentage variance | |||||
of species data | 39.8 | 58.1 | 71.3 | 81.9 | |
of species–environment relation | 42.9 | 62.6 | 76.9 | 88.2 | |
Sum of all eigenvalues | 0.818 | ||||
Sum of all canonical eigenvalues | 0.759 | ||||
Sand | −0.713 | −0.224 | −0.028 | −0.106 | |
Silt | 0.697 | 0.384 | 0.060 | 0.116 | |
Clay | 0.251 | −0.057 | −0.017 | 0.027 | |
pH | 0.783 | 0.357 | −0.052 | 0.048 | |
OC | −0.592 | −0.283 | −0.004 | 0.054 | |
OM | −0.592 | −0.283 | −0.004 | 0.054 | |
TN | −0.560 | −0.226 | 0.092 | −0.045 | |
C/N | −0.727 | 0.070 | 0.167 | −0.482 | |
TP | −0.213 | 0.293 | −0.040 | −0.092 | |
CEC | −0.694 | −0.392 | 0.126 | 0.177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharti, D.; Kumar, S.; Basuri, C.K.; La Terza, A. Ciliated Protist Communities in Soil: Contrasting Patterns in Natural Sites and Arable Lands across Italy. Soil Syst. 2024, 8, 64. https://doi.org/10.3390/soilsystems8020064
Bharti D, Kumar S, Basuri CK, La Terza A. Ciliated Protist Communities in Soil: Contrasting Patterns in Natural Sites and Arable Lands across Italy. Soil Systems. 2024; 8(2):64. https://doi.org/10.3390/soilsystems8020064
Chicago/Turabian StyleBharti, Daizy, Santosh Kumar, Charan Kumar Basuri, and Antonietta La Terza. 2024. "Ciliated Protist Communities in Soil: Contrasting Patterns in Natural Sites and Arable Lands across Italy" Soil Systems 8, no. 2: 64. https://doi.org/10.3390/soilsystems8020064
APA StyleBharti, D., Kumar, S., Basuri, C. K., & La Terza, A. (2024). Ciliated Protist Communities in Soil: Contrasting Patterns in Natural Sites and Arable Lands across Italy. Soil Systems, 8(2), 64. https://doi.org/10.3390/soilsystems8020064