Carbon and Nitrogen Stocks and Soil Organic Matter Persistence under Native Vegetation along a Topographic and Vegetation Gradient in the Central Amazon Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Survey and Field Procedures
2.3. Soil Profile Selection to Evaluate Soil C Persistence
2.4. Soil Analyses
- BD—soil bulk density,
- Ms—oven-dried soil mass (105–110 °C, 48 h),
- Tv—total soil sample volume.
- SOCS—soil organic carbon stocks (Mg ha−1),
- SNS—soil nitrogen stocks (Mg ha−1),
- C—organic carbon content (Kg Mg−1),
- N—nitrogen content (Kg Mg−1),
- BD—soil bulk density (Mg m−3),
- T—thickness of the soil layer (m).
2.5. Statistical Analysis
3. Results
3.1. Soil Organic Carbon and Nitrogen Stocks in Soils
3.2. Light Fractions of SOM in the Selected Soil Profiles
4. Discussion
Soil Organic Carbon and Nitrogen Stocks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Illegal Deforestation in Brazil Soars amid Climate of Impunity. Available online: https://www.science.org/content/article/illegal-deforestation-brazil-soars-amid-climate-impunity (accessed on 12 February 2024).
- Flores, B.M.; Montoya, E.; Sakschewski, B.; Nascimento, N.; Staal, A.; Betts, R.A.; Levis, C.; Lapola, D.M.; Esquível-Muelbert, A.; Jakovac, C.; et al. Critical transitions in the Amazon Forest system. Nature 2024, 626, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Deforestation in the Amazon Rainforest Continues to Plunge. Available online: https://news.mongabay.com/2023/09/deforestation-in-the-amazon-rainforest-continues-to-plunge/ (accessed on 12 February 2024).
- McBratney, A.; Field, D.J.; Koch, A. The dimensions of soil security. Geoderma 2014, 213, 203–213. [Google Scholar] [CrossRef]
- Hoffland, E.; Kuyper, T.W.; Comans, R.N.J.; Creamer, R.E. Eco-functionality of organic matter in soils. Plant Soil 2020, 455, 1–22. [Google Scholar] [CrossRef]
- da Silva, C.S.R.; da Silva Araújo, E.; Costa, L.S.; de Araújo, S.; Silva Júnior, J.; Ziviani, M.M.; da Silva, M.S.; Guerra, J.G.; Espindola, J.A.; Pinheiro, E.F.M. No-till system organic vegetable production under green manure: Effect on yield and soil properties. Org. Agric. 2024. [Google Scholar] [CrossRef]
- Fearnside, P.M. Saving Tropical Forests as a Global Warming Countermeasure: An Issue That Divides the Environmental Movement. Ecol. Econ. 2001, 39, 167–184. [Google Scholar] [CrossRef]
- Pinheiro, E.F.M.; Lima, E.; Ceddia, M.B.; Urquiaga, S.S.; Alves, B.J.R.; Boddey, R.M. Impact of pre-harvest burning versus trash conservation on soil carbon and nitrogen stocks on a sugarcane plantation in the Brazilian Atlantic Forest region. Plant Soil 2010, 333, 71–80. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Lavallee, J.M. Chapter One—Soil Organic Matter Formation, Persistence, and Functioning: A Synthesis of Current Understanding to Inform Its Conservation and Regeneration. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 172, pp. 1–66. [Google Scholar]
- Christensen, B.T. Physical fractionation of soil and organic matter in primary particle size and density separates. In Advances in Soil Science; Springer: New York, NY, USA, 1992; Volume 20, pp. 1–90. [Google Scholar]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S.; et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation. Soil Sci. 1941, 52, 415. [Google Scholar] [CrossRef]
- Zech, W.; Senesi, N.; Guggenberger, G.; Kaiser, K.; Lehmann, J.; Miano, T.M.; Miltner, A.; Schroth, G. Factors Controlling Humification and Mineralization of Soil Organic Matter in the Tropics. Geoderma 1997, 79, 117–161. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; Lützow, M.; Marin-Spiotta, E.; Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil Organic Carbon Storage as a Key Function of Soils—A Review of Drivers and Indicators at Various Scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Marques, J.; Luizão, F.; Teixeira, W.; Nogueira, E.; Fearnside, P.; Sarrazin, M. Soil Carbon Stocks under Amazonian Forest: Distribution in the Soil Fractions and Vulnerability to Emission. Open J. For. 2017, 7, 121–142. [Google Scholar] [CrossRef]
- Chauvel, A. Os latossolos amarelos, álicos, argilosos dentro dos ecossistemas das bacias experimentais do INPA e da região vizinha. Acta Amaz. 1982, 12, 47–60. [Google Scholar] [CrossRef]
- Fearnside, P.M.; Filho, N.L. Soil and development in Amazonia: Lessons from the biological dynamics of forest fragments project. In Lessons from Amazonia: The Ecology and Conservation of a Fragmented Forest; Yale University Press: New Haven, CT, USA, 2001. [Google Scholar]
- Quesada, C.A.; Phillips, O.L.; Schwarz, M.; Czimczik, C.I.; Baker, T.R.; Patiño, S.; Fyllas, N.M.; Hodnett, M.G.; Herrera, R.; Almeida, S.; et al. Basin-Wide Variations in Amazon Forest Structure and Function Are Mediated by Both Soils and Climate. Biogeosciences 2012, 9, 2203–2246. [Google Scholar] [CrossRef]
- Guo, X.; Meng, M.; Zhang, J.; Chen, H.Y.H. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests. Sci. Rep. 2016, 6, 29607. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Leff, J.W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Caporaso, J.G. Cross-Biome Metagenomic Analyses of Soil Microbial Communities and Their Functional Attributes. Proc. Natl. Acad. Sci. USA 2012, 109, 21390–21395. [Google Scholar] [CrossRef] [PubMed]
- Lugato, E.; Lavallee, J.M.; Haddix, M.L.; Panagos, P.; Cotrufo, M.F. Different Climate Sensitivity of Particulate and Mineral-Associated Soil Organic Matter. Nat. Geosci. 2021, 14, 295–300. [Google Scholar] [CrossRef]
- Ceddia, M.B.; Villela, A.L.O.; Pinheiro, É.F.M.; Wendroth, O. Spatial Variability of Soil Carbon Stock in the Urucu River Basin, Central Amazon-Brazil. Sci. Total Environ. 2015, 526, 58–69. [Google Scholar] [CrossRef]
- Sollins, P.; Homann, P.; Caldwell, B. Stabilization and Destabilization of Soil Organic Matter: Mechanisms and Controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
- Hoorn, C.; Wesselingh, F.; ter Steege, H.; Bermudez, M.; Mora, A.; Sevink, J.; Sanmartin, I.; Sanchez Meseguer, A.; Anderson, C.L.; Figueiredo, J.; et al. Amazonia through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science 2010, 330, 927–931. [Google Scholar] [CrossRef]
- Manual de Descrição e Coleta de Solo No Campo. Available online: https://www.sbcs.org.br/loja/index.php?route=product/product&product_id=55 (accessed on 26 August 2023).
- dos Santos, H.G. Sistema Brasileiro de Classificação de Solos; 5a̲ edição revista e ampliada; Embrapa: Brasília, DF, Brazil, 2018; ISBN 978-85-7035-800-4. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington DC, USA, 2014.
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Manual de Métodos de Análise de Solos; Embrapa: Brasília, DF, Brazil, 2018; ISBN 978-85-7035-771-7.
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kjeldahl, J. A New Method for the Determination of Nitrogen in Organic Matter. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Bernoux, M.; Carvalho, M.; Volkoff, B.; Cerri, C.C. Brazil’s Soil Carbon Stocks. Soil Sci. Soc. Am. J. 2002, 66, 888–896. [Google Scholar] [CrossRef]
- Sohi, S.; Mahieu, N.; Arah, J.; Polwson, D.; MAdari, B.; Gaunt, J. A procedure for isolating soil organic matter fractions suitable for modeling. Soil Sci. Soc. Am. J. 2001, 65, 1121–1128. [Google Scholar] [CrossRef]
- Pinheiro, E.F.M.; de Campos, D.V.B.; Balieiri, F.C.B.; dos Anjos, L.H.C.; Pereira, M.G. Tillage systems effects on soil carbon stock and physical fractions of soil organic matter. Agric. Syst. 2015, 132, 35–39. [Google Scholar] [CrossRef]
- Braz, S.P.; Urquiaga, S.; Alves, B.J.R.; Jantalia, C.P.; Guimarães, A.P.; dos Santos, C.; dos Santos, S.; Pinheiro, E.F.M.; Boddey, R.M. Soil Carbon Stocks under Productive and Degraded Brachiaria Pastures in the Brazilian Cerrado. Soil Sci. Soc. Am. J. 2013, 77, 914–928. [Google Scholar] [CrossRef]
- Lal, R.; Blum, W.E.H.; Valentin, C.; Stewart, B.A. Methods for Assessment of Soil Degradation; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-1-00-014210-5. [Google Scholar]
- Kirkby, C.A.; Kirkegaard, J.A.; Richardson, A.E.; Wade, L.J.; Blanchard, C.; Batten, G. Stable Soil Organic Matter: A Comparison of C:N:P:S Ratios in Australian and Other World Soils. Geoderma 2011, 163, 197–208. [Google Scholar] [CrossRef]
- Scott, N.A.; Cole, C.V.; Elliott, E.T.; Huffman, S.A. Soil Textural Control on Decomposition and Soil Organic Matter Dynamics. Soil Sci. Soc. Am. J. 1996, 60, 1102–1109. [Google Scholar] [CrossRef]
- Pulrolnik, K. Transformações do Carbono no Solo; Embrapa: Brasília, DF, Brazil, 2009. [Google Scholar]
- Schoenholtz, S.H.; Miegroet, H.V.; Burger, J.A. A Review of Chemical and Physical Properties as Indicators of Forest Soil Quality: Challenges and Opportunities. For. Ecol. Manag. 2000, 138, 335–356. [Google Scholar] [CrossRef]
- de Carvalho Conceição Telles, E.; de Camargo, P.B.; Martinelli, L.A.; Trumbore, S.E.; da Costa, E.S.; Santos, J.; Higuchi, N.; Oliveira, R.C., Jr. Influence of Soil Texture on Carbon Dynamics and Storage Potential in Tropical Forest Soils of Amazonia. Glob. Biogeochem. Cycles 2003, 17, 1–12. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2002GB001953 (accessed on 12 February 2024).
- Aduan, R.E.; Vilela, M.d.F.; Klink, C.A. Ciclagem de Carbono em Ecossistemas Terrestres: O caso do Cerrado Brasileiro; Embrapa: Brasília, DF, Brazil, 2003. [Google Scholar]
- Rosendo, J.d.S.; Rosa, R. Comparação do estoque de C estimado em pastagens e vegetação nativa de Cerrado. Soc. Nat. 2012, 24, 359–376. [Google Scholar] [CrossRef]
- Bruun, T.B.; Elberling, B.; Christensen, B.T. Lability of Soil Organic Carbon in Tropical Soils with Different Clay Minerals. Soil Biol. Biochem. 2010, 42, 888–895. [Google Scholar] [CrossRef]
- de Freitas, P.L.; Blancaneaux, P.; Gavinelli, E.; Larré-Larrouy, M.-C.; Feller, C. Nível e natureza do estoque orgânico de latossolos sob diferentes sistemas de uso e manejo. Pesqui. Agropecuária Bras. 2000, 35, 157–170. [Google Scholar] [CrossRef]
- Fidalgo, E.C.C.; Benites, V.d.M.; Machado, P.L.O.d.A.; Madari, B.E.; Coelho, M.R.; de Moura, I.B.; de Lima, C.X. Estoque de Carbono nos Solos do Brasil; Embrapa: Brasília, DF, Brazil, 2007. [Google Scholar]
- Trujillo Cabrera, L. Dinâmica da Matéria Orgânica do solo em Ecossistemas de Floresta Secundária Sobre Solos Antrópicos e Solos Não-Antrópicos (Adjacentes) na Amazônia Central; Instituto Nacional de Pesquisas da Amazônia—INPA: Manaus, Brazil, 2009.
- Marques, J.D.d.O.; Luizão, F.J.; Teixeira, W.G.; Vitel, C.M.; Marques, E.M.d.A. Soil organic carbon, carbon stock and their relationships to physical attributes under forest soils in central Amazonia. Rev. Árvore 2016, 40, 197–208. [Google Scholar] [CrossRef]
- Batjes, N.H.; Dijkshoorn, J.A. Carbon and Nitrogen Stocks in the Soils of the Amazon Region. Geoderma 1999, 89, 273–286. [Google Scholar] [CrossRef]
- Amelung, W.; Zech, W. Minimisation of Organic Matter Disruption during Particle-Size Fractionation of Grassland Epipedons. Geoderma 1999, 92, 73–85. [Google Scholar] [CrossRef]
- John, B.; Yamashita, T.; Ludwig, B.; Flessa, H. Storage of Organic Carbon in Aggregate and Density Fractions of Silty Soils under Different Types of Land Use. Geoderma 2005, 128, 63–79. [Google Scholar] [CrossRef]
- Yamashita, T.; Flessa, H.; John, B.; Helfrich, M.; Ludwig, B. Organic Matter in Density Fractions of Water-Stable Aggregates in Silty Soils: Effect of Land Use. Soil Biol. Biochem. 2006, 38, 3222–3234. [Google Scholar] [CrossRef]
- Lynch, L.M. Tracing Carbon Flows through Arctic and Alpine Watersheds. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2018. [Google Scholar]
- Strickland, M.S.; Wickings, K.; Bradford, M.A. The Fate of Glucose, a Low Molecular Weight Compound of Root Exudates, in the Belowground Foodweb of Forests and Pastures. Soil Biol. Biochem. 2012, 49, 23–29. [Google Scholar] [CrossRef]
- Gmach, M.R.; Cherubin, M.R.; Kaiser, K.; Cerri, C.E.P. Processes That Influence Dissolved Organic Matter in the Soil: A Review. Sci. Agric. 2019, 77, e20180164. [Google Scholar] [CrossRef]
- Gregorich, E.; Beare, M.H.; McKim, U.F.; Skjemstad, J.O. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci. Soc. Am. J. 2006, 70, 975–985. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Janzen, H.H. Storage of Soil Carbon in the Light Fraction and Macro-Organic Matter. In Structure and Soil Organic Matter Storage in Agricultural Soils; Carter, M.R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1996; pp. 167–190. [Google Scholar]
- Freixo, A.; Machado, P.L.O.; Santos, H.P.; Silva, C.A.; Fadigas, F.S. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil. Soil Tillage Res. 2002, 64, 221–230. [Google Scholar] [CrossRef]
- Golchin, A.; Clarke, P.; Oades, J.M.; Skjemstad, J.O. The effects of cultivation on the composition of organic-matter and structural stability of soils. Soil Res. 1995, 33, 975–993. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
Soil Classes (SiBCS—2018) [28] | Soil Classes (Soil Taxonomy, 2014) [29] | Soil Classes (WRB, 2022) [30] | n | Frequency (%) |
---|---|---|---|---|
Argissolos | Ultisols | Acrisols | 21 | 60.0 |
Cambissolos | Inceptisols | Cambisols | 5 | 14.3 |
Gleissolos | Entisols | Gleysols | 4 | 11.4 |
Espodossolos | Spodosols | Podzols | 4 | 11.4 |
Planossolo | Albaqualfs | Planosols | 1 | 2.9 |
Total | 35 | 100 |
EC | N | Soil Classes (SiBCS) * | Code ** | Relief | Vegetation Type |
---|---|---|---|---|---|
01 | ARGISSOLO VERMELHO-AMARELO Distrófico típico | PVdtip1 | Terra Firme | Upland Dense Tropical Rainforests | |
EC1 | 02 | ARGISSOLO VERMELHO-AMARELO Alumínico típico | PVAatip1 | Terra Firme | Upland Dense Tropical Rainforests |
03 | ARGISSOLO VERMELHO-AMARELO Alumínico plintossolico | PVAaplin | Terra Firme | Upland Dense Tropical Rainforests | |
EC2 | 04 | ESPODOSSOLO FERRI-HUMILUVICO Órtico arênico | ESKare | River plains | Flooded Lowland Open Tropical Rainforest |
05 | ESPODOSSOLOS FERRI-HUMILUVICO Órtico durico | ESKodur | River plains | Flooded Lowland Open Tropical Rainforest | |
06 | ARGISSOLO ACINZENTADO Distrófico abruptico | PACdab | Terraces | Upland Open Tropical Rainforests | |
07 | GLEISSOLO HÁPLICO Tb Distrófico típico | GXbdtip2 | Terraces | Upland Open Tropical Rainforestst | |
EC3 | 08 | ESPODOSSOLO FERRI-HUMILUVICO Órtico típico | ESKotip | Terraces | Upland Open Tropical Rainforestst |
09 | GLEISSOLO MELÂNICO Tb Alumínico organossólico | GMbaorg | Terraces | Upland Open Tropical Rainforests | |
10 | PLANOSSOLO HÁPLICO Distrófico gleisólico endoalumínico | SXdglei | Terraces | Upland Open Tropical Rainforests |
N * | SOCS | SNS |
---|---|---|
EC1 | ||
01 | 149.2 | 12.8 |
02 | 66.2 | 28.6 |
03 | 113.5 | 36.8 |
EC2 | ||
04 | 110.1 | 14.4 |
05 | 57.3 | 8.5 |
EC3 | ||
06 | 181.2 | 34.2 |
07 | 27.4 | 21.1 |
08 | 204.7 | 22.0 |
09 | 230.3 | 39.7 |
10 | 163.0 | 42.0 |
Horizon | Depth | DS | FLF | ILF | VT | Ms | SFLF | SILF | SFLF/MS | SILF/MS | SCFLF | SCILF |
---|---|---|---|---|---|---|---|---|---|---|---|---|
cm | Mg m−3 | g kg−1 | g kg−1 | m3 | Mg ha−1 | Mg ha−1 | Mg ha−1 | % | % | Mg C ha−1 | Mg C ha−1 | |
Soil Profile 8 | ||||||||||||
A1 | 14 | 1.32 | 9.71 | 3.50 | 0.14 | 1848 | 17.94 | 6.47 | 0.97 | 0.35 | 5.56 | 0.26 |
AE | 17 | 1.50 | 9.64 | 2.60 | 0.17 | 2550 | 24.58 | 6.63 | 0.96 | 0.26 | 7.62 | 0.27 |
Total | 31 | - | 19.35 | 6.1 | 0.31 | 4398 | 43.92 | 13.10 | - | - | 13.18 | 0.53 |
Soil Profile 9 | ||||||||||||
H1 | 10 | 0.09 | 842.40 | 15.34 | 0.10 | 90 | 75.80 | 1.38 | 84 | 1.5 | 23.49 | 0.06 |
H2 | 14 | 0.16 | 787.51 | 11.89 | 0.14 | 224 | 176.4 | 2.6 | 79 | 1.1 | 54.68 | 0.10 |
H3 | 6 | 0.88 | 116.66 | 33.72 | 0.06 | 528 | 61.6 | 17.8 | 12 | 3.3 | 19.01 | 0.71 |
Total | 30 | - | 1746.57 | 60.95 | 0.30 | 842 | 313.8 | 21.78 | - | - | 97.18 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziviani, M.M.; Pinheiro, É.F.M.; Ceddia, M.B.; Ferreira, A.C.S.; Machado, F.S. Carbon and Nitrogen Stocks and Soil Organic Matter Persistence under Native Vegetation along a Topographic and Vegetation Gradient in the Central Amazon Region. Soil Syst. 2024, 8, 65. https://doi.org/10.3390/soilsystems8020065
Ziviani MM, Pinheiro ÉFM, Ceddia MB, Ferreira ACS, Machado FS. Carbon and Nitrogen Stocks and Soil Organic Matter Persistence under Native Vegetation along a Topographic and Vegetation Gradient in the Central Amazon Region. Soil Systems. 2024; 8(2):65. https://doi.org/10.3390/soilsystems8020065
Chicago/Turabian StyleZiviani, Melania Merlo, Érika Flávia Machado Pinheiro, Marcos Bacis Ceddia, Ana Carolina Souza Ferreira, and Frederico Santos Machado. 2024. "Carbon and Nitrogen Stocks and Soil Organic Matter Persistence under Native Vegetation along a Topographic and Vegetation Gradient in the Central Amazon Region" Soil Systems 8, no. 2: 65. https://doi.org/10.3390/soilsystems8020065
APA StyleZiviani, M. M., Pinheiro, É. F. M., Ceddia, M. B., Ferreira, A. C. S., & Machado, F. S. (2024). Carbon and Nitrogen Stocks and Soil Organic Matter Persistence under Native Vegetation along a Topographic and Vegetation Gradient in the Central Amazon Region. Soil Systems, 8(2), 65. https://doi.org/10.3390/soilsystems8020065