Enhancing Corn Yield and Soil Quality in Irrigated Semiarid Region with Coal Char and Biochar Amendments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Coal Char, Biochar, and Farmyard Manure
2.3. Study Design and Amendments Application
2.4. Soil Sampling
2.5. Soil Water-Holding Capacity
2.6. Statistical Analysis
3. Results
3.1. Corn Grain Yield
3.2. Soil Chemical Properties and Nutrient Concentration
3.3. Soil Water-Holding Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping systems in agriculture and their impact on soil health-A review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative agriculture—A literature review on the practices and mechanisms used to improve soil health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Acton, D.F.; Gregorich, L.J. The Health of Our Soils: Toward Sustainable Agriculture in Canada; Agriculture and Agri-Food: Ottawa, ON, Canada, 1995. [Google Scholar]
- Doran, J.W.; Sarrantonio, M.; Liebig, M.A. Soil Health and Sustainability. Adv. Agron. 1996, 56, 1–54. [Google Scholar]
- Janmohammadi, M.; Abdoli, H.; Sabaghnia, N.; Esmailpour, M.; Aghaei, A. The effect of iron, zinc and organic fertilizer on yield of chickpea (Cicerartietinum L.) in mediterranean climate. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 49–60. [Google Scholar] [CrossRef]
- Dil, M.; Oelbermann, M.; Xue, W. An evaluation of biochar pre-conditioned with urea ammonium nitrate on maize (Zea mays L.) production and soil biochemical characteristics. Can. J. Soil Sci. 2014, 94, 551–562. [Google Scholar] [CrossRef]
- Cooper, J.A.; Drijber, R.A.; Malakar, A.; Jin, V.L.; Miller, D.N.; Kaiser, M. Evaluating coal char as an alternative to biochar for mitigating nutrient and carbon loss from manure-amended soils: Insights from a greenhouse experiment. J. Environ. Qual. 2022, 51, 272–287. [Google Scholar] [CrossRef] [PubMed]
- Żołnowski, A.C.; Bakuła, T.; Rolka, E.; Klasa, A. Effect of Mineral–Microbial Deodorizing Preparation on the Value of Poultry Manure as Soil Amendment. Int. J. Environ. Res. Public Health 2022, 19, 16639. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Liu, Y.; Li, F.; Zhou, X.; Xu, C.; Fang, F. Effect of phosphorus and potassium addition on greenhouse gas emissions and nutrient utilization of a rice-fish co-culture system. Environ. Sci. Pollut. Res. 2021, 28, 38034–38042. [Google Scholar] [CrossRef] [PubMed]
- Gmach, M.R.; Cherubin, M.R.; Kaiser, K.; Cerri, C.E.P. Processes that influence dissolved organic matter in the soil: A review. Soils Plant Nutr. 2020, 77, e20180164. [Google Scholar] [CrossRef]
- Odum, E.P.; Barrett, G.W. Fundamentals of Ecology, 5th ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2005; ISBN 0534420664. [Google Scholar]
- Stevenson, F.J.; Cole, M.A. Cycles of Soils: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, 2nd ed.; John Wiley and Sons Publishers: Hoboken, NJ, USA, 1999; p. 427. [Google Scholar]
- Horwath, W. Carbon cycling and formation of soil organic matter. In Soil Microbiology, Ecology and Biochemistry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 303–339. [Google Scholar]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Soil Organic Matter (SOM) and Nutrient Cycling. In An Introduction to Agroforesty; Springer: Cham, Germany, 2021; pp. 383–411. [Google Scholar]
- Wang, S.; Heal, K.V.; Zhang, Q.; Yu, Y.; Tigabu, M.; Huang, S.; Zhou, C. Soil microbial community, dissolved organic matter and nutrient cycling interactions change along an elevation gradient in subtropical China. J. Environ. Manag. 2023, 345, 118793. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. BC impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent advances in utilization of biochar. Renew. Sustain. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Kaiser, M.; Hergert, G.W.; Creech, C.F.; Nielsen, R.; Maharjan, B.; Easterly, A.C.; Lawrence, N.C. Can char carbon enhance soil properties and crop yields in low-carbon soils? J. Environ. Qual. 2020, 49, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, N.; Spokas, K.; Schmidt, H.P.; Kägi, R.; Böhler, M.A.; Bucheli, T.D. Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs. Water 2018, 10, 182. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Ding, F.; Van Zwieten, L.; Zhang, W.; Weng, Z.; Shi, S.; Wang, J.; Meng, J. A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment. J. Soils Sediments 2018, 18, 1507–1517. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Laird, D.A.; Heaton, E.A.; Rathke, S.; Acharya, B.S. Soil carbon increased by twice the amount of biochar carbon applied after 6 years: Field evidence of negative priming. GCB Bioenergy 2020, 12, 240–251. [Google Scholar] [CrossRef]
- Backer, R.G.M.; Schwinghamer, T.D.; Whalen, J.K.; Seguin, P.; Smith, D.L. Crop yield and SOC responses to biochar application were dependent on soil texture and crop type in southern Quebec, Canada. J. Plant Nutr. Soil Sci. 2016, 179, 399–408. [Google Scholar] [CrossRef]
- Aller, D.; Mazur, R.; Moore, K.; Hintz, R.; Laird, D.; Horton, R. Biochar Age and Crop Rotation Impacts on Soil Quality. Soil Sci. Soc. Am. J. 2017, 81, 1157–1167. [Google Scholar] [CrossRef]
- Sandhu, S.S.; Kumar, S. Impact of Three Types of Biochar on the Hydrological Properties of Eroded and Depositional Landscape Positions. Soil Sci. Soc. Am. J. 2017, 81, 878–888. [Google Scholar] [CrossRef]
- Greenberg, I.; Kaiser, M.; Gunina, A.; Ledesma, P.; Polifka, S.; Wiedner, K. Substitution of mineral fertilizers with biogas digestate plus biochar increases physically stabilized soil carbon but not crop biomass in a field trial. Sci. Total Environ. 2019, 680, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, K.; Han, L.; Chen, Y.; Liu, J.; Xing, B. Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biol. Biochem. 2022, 169, 108657. [Google Scholar] [CrossRef]
- Han, L.; Sun, K.; Yang, Y.; Xia, X.; Li, F.; Yang, Z.; Xing, B. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma 2020, 364, 114184. [Google Scholar] [CrossRef]
- Sun, K.; Qiu, M.; Han, L.; Jin, J.; Wang, Z.; Pan, Z.; Xing, B. Speciation of phosphorus in plant-and manure-derived biochars and its dissolution under various aqueous conditions. Sci. Total Environ. 2018, 634, 1300–1307. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biochar-amended soils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef]
- Cooper, J.; Greenberg, I.; Ludwig, B.; Hippich, L.; Fischer, D.; Glaser, B. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agric. Ecosyst. Environ. 2020, 295, 106882. [Google Scholar] [CrossRef]
- Panday, D.; Mikha, M.M.; Sun, X.; Maharjan, B. Coal char effects on soil chemical properties and maize yields in semi-arid region. Agrosyst. Geosci. Environ. 2021, 4, e20145. [Google Scholar] [CrossRef]
- Houben, D.; Evrard, L.; Sonnet, P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 2013, 57, 196–204. [Google Scholar] [CrossRef]
- Thapa, R.B.; Coupal, R.H.; Dangi, M.B.; Stahl, P.D. An Assessment of Plant Growth and Soil Properties Using Coal Char and Biochar as a Soil Amendment. Agronomy 2024, 14, 320. [Google Scholar] [CrossRef]
- Basu, M.; Pande, M.; Bhadoria, P.B.S.; Mahapatra, S.C. Potential fly-ash utilization in agriculture: A global review. Prog. Nat. Sci. 2009, 19, 1173–1186. [Google Scholar] [CrossRef]
- Nihalani, S.A.; Mishra, Y.D.; Meeruty, A.R. Handling and utilisation of fly ash from thermal power plants. In Circular Economy and Fly Ash Management; Ghos, S., Kumar, V., Eds.; Springer: Singapore, 2020; pp. 1–11. [Google Scholar] [CrossRef]
- Panday, D.; Mikha, M.M.; Collins, H.P.; Jin, V.L.; Kaiser, M.; Cooper, J.; Malakar, A.; Maharjan, B. Optimum rates of surface-applied coal char decreased soil ammonia volatilization loss. J. Environ. Qual. 2020, 49, 256–267. [Google Scholar] [CrossRef]
- Akimbekov, N.S.; Digel, I.; Tastambek, K.T.; Sherelkhan, D.K.; Jussupova, D.B.; Altynbay, N.P. Low-rank coal as a source of humic substances for soil amendment and fertility management. Agriculture 2021, 11, 1261. [Google Scholar] [CrossRef]
- Little, K.R.; Rose, M.T.; Jackson, W.R.; Cavagnaro, T.R.; Patti, A.F. Do lignite-derived organic amendments improve early-stage pasture growth and key soil biological and physicochemical properties? Crop Pasture Sci. 2014, 65, 899–910. [Google Scholar] [CrossRef]
- Adani, F.; Genevini, P.; Zaccheo, P.; Zocchi, G. The effect of commercial humic acid on tomato plant growth and mineral nutrition. J. Plant Nutr. 1998, 21, 561–575. [Google Scholar] [CrossRef]
- Tito, G.A.; Fernandes, J.D.; Chaves, L.H.G.; Guerra, H.O.C.; Dantas, E.R.B. Organic carbon mineralization of the biochar and organic compost of poultry litter in an Argisol. Semin. Ciênc. Agrár. 2021, 42, 3167–3184. [Google Scholar] [CrossRef]
- Thapa, R.B. Use of Pyrolyzed Coal as a Soil Amendment: Effect on Plant Growth, Crop Yield, and Soil Health. Ph.D. Thesis, University of Wyoming, Laramie, WY, USA, 2023. [Google Scholar]
- Kellogg Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version No. 6.0. U. S. Department of Agriculture, Natural Resources Conservation Service. 2004. Available online: https://www.nrcs.usda.gov/sites/default/files/2023-01/SSIR42.pdf (accessed on 16 June 2024).
- Abella, S.R.; Zimmer, B.W. Estimating organic carbon from loss-on-ignition in northern Arizona forest soils. Soil Sci. Soc. Am. J. 2007, 71, 545–550. [Google Scholar] [CrossRef]
- Kachurina, O.M.; Zhang, H.; Raun, R.W.; Krenzer, E.G. Simultaneous determination of soil aluminum, ammonium- and nitrate-nitrogen using 1 M potassium chloride extraction. Commun. Soil Sci. Plant Anal. 2000, 31, 893–903. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate; USDA Circular: Washington, DC, USA, 1954; p. 19.
- Doll, E.C.; Lucas, R.E. Testing soil for potassium, calcium and magnesium. In Soil Testing and Plant Analysis; Walsh, L.M., Beaton, J.D., Eds.; SSSA: Madison, WI, USA, 1973; pp. 133–152. [Google Scholar]
- Yu, O.Y.; Raichle, B.; Sink, S. Impact of biochar on the water holding capacity of loamy sand soil. Int. J. Energy Environ. Eng. 2013, 4, 44. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Zhuravel, A.; Silva, F.C.; Amaro, A.; Ben-Hur, M.; Keizer, J.J. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma 2019, 347, 194–202. [Google Scholar] [CrossRef]
- Péron, H.; Hueckel, T.; Laloui, L. An improved volume measurement for determining soil water retention curves. Geotech. Test. J. 2007, 30, 1–8. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Wang, S.; Pu, X. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Sci. Rep. 2020, 10, 4718. [Google Scholar] [CrossRef] [PubMed]
- Vijay, V.; Shreedhar, S.; Adlak, K.; Payyanad, S. Review of Large-Scale Biochar Field-Trials for Soil Amendment and the Observed Influences on Crop Yield Variations. Front. Energy Res. 2021, 9, 710766. [Google Scholar] [CrossRef]
- Frimpong, K.A.; Phares, C.A.; Boateng, I.; Abban-Baidoo, E.; Apuri, L. One-time application of biochar influenced crop yield across three cropping cycles on tropical sandy loam soil in Ghana. Heliyon 2021, 7, e06267. [Google Scholar] [CrossRef]
- Khan, A. Manure Technology and Sustainable Development (Sustainable Materials and Technology), 1st ed.; Jawaid, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; ISBN 13-978-9811941191. [Google Scholar]
- Antonious, G.F. Biochar and animal manure impact on soil, crop yield and quality. Agric. Waste Residues 2018, 2, 45–67. [Google Scholar]
- Knoblauch, C.; Priyadarshani, S.H.R.; Haefele, S.M.; Schröder, N.; Pfeiffer, E.-M. Impact of biochar on nutrient supply, crop yield and microbial respiration on sandy soils of northern Germany. Eur. J. Soil Sci. 2021, 72, 1885–1901. [Google Scholar] [CrossRef]
- Borchard, N.; Siemens, J.; Ladd, B.; Möller, A.; Amelung, W. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Tillage Res. 2014, 144, 184–194. [Google Scholar] [CrossRef]
- Zhang, M.; Riaz, M.; Zhang, L.; El-desouki, Z.; Jiang, C. Biochar Induces Changes to Basic Soil Properties and Bacterial Communities of Different Soils to Varying Degrees at 25 mm Rainfall: More Effective on Acidic Soils. Front. Microbiol. 2019, 10, 1321. [Google Scholar] [CrossRef]
- Karer, J.; Wimmer, B.; Zehetner, F.; Kloss, S.; Soja, G. Biochar application to temperate soils: Effects on nutrient uptake and crop yield under field conditions. Agric. Food Sci. 2013, 22, 390–403. [Google Scholar] [CrossRef]
- Liu, X.-H.; Zhang, X.-C. Effect of biochar on pH of alkaline soils in the loess plateau: Results from incubation experiments. Int. J. Agric. Biol. 2012, 14. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20123332330 (accessed on 16 June 2024).
- Li, C.; Zhao, C.; Zhao, X.; Wang, Y.; Lv, X.; Zhu, X. Beneficial effects of biochar application with nitrogen fertilizer on soil nitrogen retention, absorption, and utilization in maize production. Agronomy 2022, 13, 113. [Google Scholar] [CrossRef]
- Obia, A.; Cornelissen, G.; Mulder, J.; Dörsch, P. Effect of Soil pH increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils. PLoS ONE 2015, 10, e0138781. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L.; Chintala, R. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Wimmer, B.; Buecker, J.; Rempt, F.; Soja, G. Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions. J. Plant Nutr. Soil Sci. 2014, 177, 3–15. [Google Scholar] [CrossRef]
- Juriga, M.; Šimanský, V.; Horák, J.; Kondrlová, E.; Igaz, D.; Polláková, N.; Buchkina, N.; Balashov, E. The Effect of Different Rates of Biochar and Biochar in Combination with N Fertilizer on the Parameters of Soil Organic Matter and Soil Structure. J. Ecol. Eng. 2018, 19, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Mensah, A.K.; Frimpong, K.A. Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. Int. J. Agron. 2018, 1, 6837404. [Google Scholar] [CrossRef]
- Domingues, R.R.; Sánchez-Monedero, M.A.; Spokas, K.A.; Melo, L.C.A.; Trugilho, P.F.; Valenciano, M.N.; Silva, C.A. Enhancing cation exchange capacity of weathered soils using biochar: Feedstock, pyrolysis conditions and addition rate. Agronomy 2020, 10, 824. [Google Scholar] [CrossRef]
- Gruba, P.; Mulder, J. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Sci. Total Environ. 2015, 511, 655–662. [Google Scholar] [CrossRef]
- Apori, S.O.; Byalebeka, J.; Murongo, M.; Ssekandi, J.; Noel, G.L. Effect of co-applied corncob biochar with farmyard manure and NPK fertilizer on tropical soil. Resour. Environ. Sustain. 2021, 5, 100034. [Google Scholar] [CrossRef]
- Šimanský, V.; Horák, J.; Lgaz, D.; Balashov, E.; Jonczak, J. Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. J. Soils Sediments 2017, 18, 1432–1440. [Google Scholar] [CrossRef]
- Ag Service Lab, Public Service and Agriculture, Regulatory Service, Clemson University. CEC, Acidity, and Percent Base Saturation. Available online: https://www.clemson.edu/public/regulatory/ag-srvc-lab/soil-testing/cec.html (accessed on 21 June 2024).
- Gao, S.; Hoffman-krull, K.; Bidwell, A.L.; Deluca, T.H. Locally produced wood biochar increases nutrient retention and availability in agricultural soils of the San Juan Islands, USA. Agric. Ecosyst. Environ. 2016, 233, 43–54. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Herbert, S.; Xing, B. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 2013, 206, 32–39. [Google Scholar] [CrossRef]
- Banik, C.; Koziel, J.A.; De, M.; Bonds, D.; Chen, B.; Singh, A. Biochar-swine manure impact on soil nutrients and carbon under controlled leaching experiment using a midwestern mollisols. Front. Environ. Sci. 2021, 9, 609621. [Google Scholar] [CrossRef]
- Hua, W.; Luo, P.; An, N.; Cai, F.; Zhang, S.; Chen, K.; Yang, J.; Han, X. Manure application increased crop yields by promoting nitrogen use efficiency in the soils of 40-year soybean-maize rotation. Sci. Rep. 2020, 10, 14882. [Google Scholar] [CrossRef] [PubMed]
- Alsunuse, B.T.B.; AI-Ani, M.A.M.; Faituri, M.Y.; Ashilenje, D.S.; Alawami, A.A.; Stahl, P.D. Effects of Arbuscular Mycorrhizal Fungi on Growth and Phosphorous Uptake of Maize (Zea mays L.) at different Levels of Soil Phosphorous and Soil Moisture. J. Dryland Agric. 2021, 7, 22–33. [Google Scholar]
- Sadowska, U.; Domagała-Świkatkiewicz, I.; Żabiński, A. BC and its effects on plant-soil macronutrient cycling during a three-year field trial on sandy soil with peppermint (Mentha piperita L.). Part I: Yield and macro element content in soil and plant biomass. Agronomy 2020, 10, 1950. [Google Scholar] [CrossRef]
- Hou, J.; Pugazhendhi, A.; Sindhu, R.; Vinayak, V.; Thanh, N.C.; Brindhadevi, K.; Chi, N.T.L.; Yuan, D. An assessment of biochar as a potential amendment to enhance plant nutrient uptake. Environ. Res. 2022, 214, 113909. [Google Scholar] [CrossRef]
- Kocsis, T.; Kotroczó, Z.; Kardos, L.; Biró, B. Optimization of increasing biochar doses with soil--plant--microbial functioning and nutrient uptake of maize. Environ. Technol. Innov. 2020, 20, 101191. [Google Scholar] [CrossRef]
- Adhikari, S.; Timms, W.; Mahmud, M.A.P. Optimising water holding capacity and hydrophobicity of biochar for soil amendment--A review. Sci. Total Environ. 2022, 851, 158043. [Google Scholar] [CrossRef] [PubMed]
- Batista, E.M.; Shultz, J.; Matos, T.T.; Fornari, M.R.; Ferreira, T.M.; Szpoganicz, B.; de Freitas, R.A.; Mangrich, A.S. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci. Rep. 2018, 8, 10677. [Google Scholar] [CrossRef] [PubMed]
- Dehkhoda, A.M.; West, A.H.; Ellis, N. Biochar based solid acid catalyst for biodiesel production. Appl. Catal. A Gen. 2010, 382, 197–204. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
pH (1:1) | 8 |
EC (ds m−1) | 1.23 |
SOM (%) | 2.53 |
NO3-N (mg kg−1) | 7.73 |
P (mg kg−1) | 40 |
K (mg kg−1) | 347 |
Ca (mg kg−1) | 2977 |
Mg (mg kg−1) | 339 |
CEC (meq 100 g−1) | 20.13 |
Soil texture (Hydrometer method) | Sandy loam |
Sand (%) | 53 |
Silt (%) | 33 |
Clay (%) | 14 |
Parameters | CC | BC | FM |
---|---|---|---|
Dry Matter—Total Solids, % | 95.6 | 98.5 | 93.3 |
Moisture, % | 4.4 | 1.5 | 6.7 |
EC (ds m−1) | 7.5 | 0.14 | 38.4 |
pH 1:1 | 9.6 | 8.93 | 7.6 |
Organic Nitrogen, mg kg−1 | 9300 | 5280 | 10,100 |
Ammonium, mg kg−1 | 10 | 2.1 | 60 |
Nitrate, mg kg−1 | <10 | <10 | 2500 |
Total Nitrogen, mg kg−1 | 9310 | 5282 | 12,700 |
Phosphorus as P2O5, mg kg−1 | 1700 | 3200 | 11,200 |
Potassium as K2O, mg kg−1 | 500 | 1400 | 27,700 |
Organic C (%) | 78.87 | 87.4 | 42.36 |
C/N Ratio | 84.5 | NA | 6.9 |
Sulfur, mg kg−1 | 4700 | NA | 4500 |
Calcium, mg kg−1 | 24,300 | NA | 48,900 |
Magnesium, mg kg−1 | 4100 | NA | 13,100 |
Treatment Types | CC and BC Application Rate (Mg ha−1) | FM Application Rate (Mg ha−1) |
---|---|---|
Control | 0 | 0 |
FM | 0 | 66 |
CC | 22 | 0 |
44 | 0 | |
22 | 66 | |
44 | 66 | |
BC | 22 | 0 |
44 | 0 | |
22 | 66 | |
44 | 66 |
Cropping Seasons | Fertilizers | Application of Nutrient Elements (kg ha−1) | ||
---|---|---|---|---|
Strip Tiller | Planter | Vertical Tiller | ||
Side Dress | ||||
Nitrogen | 47.10 | 44.83 | 112.10 | |
Spring 2021 | Phosphorus | 17.93 | 8.97 | x |
Potassium | 9.72 | 8.7 | x | |
Sulfur | x | 11.21 | 23.51 | |
Nitrogen | 71.73 | 60.51 | 112.10 | |
Phosphorus | 35.87 | 17.93 | 17.93 | |
Spring 2022 | Potassium | 6.71 | x | x |
Sulfur | x | 7.85 | 7.85 |
Source of Variance | Yield | pH | EC | OM | CEC | NO3-N | P | K | Ca | Mg | WHC |
---|---|---|---|---|---|---|---|---|---|---|---|
Amendment (A) | 0.001 | 0.063 | 0.133 | <0.001 | 0.217 | 0.146 | 0.336 | 0.118 | 0.274 | 0.061 | 0.03 |
Manure (M) | 0.023 | 0.107 | 0.377 | 0.054 | 0.389 | 0.033 | <0.001 | <0.001 | 0.003 | <0.001 | 0.204 |
Year (Y) | <0.001 | <0.001 | 0.902 | 0.755 | <0.001 | <0.001 | 0.249 | 0.014 | <0.001 | 0.389 | - |
A X M | 0.163 | 0.283 | 0.074 | <0.001 | 0.652 | 0.521 | 0.247 | 0.088 | 0.087 | 0.126 | 0.018 |
A X Y | 0.139 | 0.183 | 0.035 | 0.046 | 0.085 | 0.65 | 0.514 | 0.641 | 0.14 | 0.184 | - |
M X Y | 0.589 | 0.718 | 0.884 | 0.169 | 0.056 | 0.247 | 0.344 | 0.202 | 0.394 | 0.238 | - |
A X M X Y | 0.272 | 0.502 | 0.348 | 0.396 | 0.575 | 0.346 | 0.892 | 0.758 | 0.731 | 0.932 | - |
Fixed Effects | pH | CEC | NO3-N | P | K | Ca | Mg | |
---|---|---|---|---|---|---|---|---|
(1:1) | (meq 100 g−1) | --------------------(mg kg−1)-------------------- | ||||||
Manure | +FM | 7.9 a | 19 a | 85 a | 189.3 a | 778 a | 2909 a | 330 a |
0FM | 7.9 a | 18 a | 59 b | 48.6 b | 436 b | 2787 b | 289 b | |
Year | 2021 | 8.0 a | 20 a | 97 a | 129 a | 649 a | 2962 a | 313 a |
2022 | 7.7 b | 18 b | 47 b | 108 a | 564 b | 2734 b | 305 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapa, R.B.; Budhathoki, S.; Shilpakar, C.; Panday, D.; Alsunuse, B.; Tang, S.X.; Stahl, P.D. Enhancing Corn Yield and Soil Quality in Irrigated Semiarid Region with Coal Char and Biochar Amendments. Soil Syst. 2024, 8, 82. https://doi.org/10.3390/soilsystems8030082
Thapa RB, Budhathoki S, Shilpakar C, Panday D, Alsunuse B, Tang SX, Stahl PD. Enhancing Corn Yield and Soil Quality in Irrigated Semiarid Region with Coal Char and Biochar Amendments. Soil Systems. 2024; 8(3):82. https://doi.org/10.3390/soilsystems8030082
Chicago/Turabian StyleThapa, Resham B., Samir Budhathoki, Chandan Shilpakar, Dinesh Panday, Bouzeriba Alsunuse, Sean X. Tang, and Peter D. Stahl. 2024. "Enhancing Corn Yield and Soil Quality in Irrigated Semiarid Region with Coal Char and Biochar Amendments" Soil Systems 8, no. 3: 82. https://doi.org/10.3390/soilsystems8030082
APA StyleThapa, R. B., Budhathoki, S., Shilpakar, C., Panday, D., Alsunuse, B., Tang, S. X., & Stahl, P. D. (2024). Enhancing Corn Yield and Soil Quality in Irrigated Semiarid Region with Coal Char and Biochar Amendments. Soil Systems, 8(3), 82. https://doi.org/10.3390/soilsystems8030082