Residual Effects of Rice Husk Biochar and Organic Manure Application after 1 Year on Soil Chemical Properties, Rice Yield, and Greenhouse Gas Emissions from Paddy Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Treatments
2.2. Measurement of Grain Yield and GHG Measurements
2.3. Statistical Analysis
3. Results
3.1. Effects of Biochar Fertilization after 1 Year on Soil Nutrients
3.2. Grain Yield under Different Biochar Amendments
3.3. CH4 and N2O Fluxes and GHG Emissions
3.4. GWP
3.5. Standardized Regression Coefficients
4. Discussion
4.1. Soil Chemical Properties Changes over 1 Year under Different Treatments
4.2. Yield Response to Various Rice Husk Biochar Fertilizations
4.3. GHG Emissions during Pot Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C.; et al. Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef] [PubMed]
- Farooq, A.; Farooq, N.; Akbar, H.; Hassan, Z.U.; Gheewala, S.H. A Critical Review of Climate Change Impact at a Global Scale on Cereal Crop Production. Agronomy 2023, 13, 162. [Google Scholar] [CrossRef]
- Vergé, X.P.C.; Kimpe, C.D.; Desjardins, R.L. Agricultural Production, Greenhouse Gas Emissions and Mitigation Potential. Agric. For. Meteorol. 2007, 142, 255–269. [Google Scholar] [CrossRef]
- Wang, J.; Vanga, S.; Saxena, R.; Orsat, V.; Raghavan, V. Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate 2018, 6, 41. [Google Scholar] [CrossRef]
- Chataut, G.; Bhatta, B.; Joshi, D.; Subedi, K.; Kafle, K. Greenhouse Gases Emission from Agricultural Soil: A Review. J. Agric. Food Res. 2023, 11, 100533. [Google Scholar] [CrossRef]
- He, H.; Li, D.; Wu, Z.; Wu, Z.; Hu, Z.; Yang, S. Assessment of the Straw and Biochar Application on Greenhouse Gas Emissions and Yield in Paddy Fields under Intermittent and Controlled Irrigation Patterns. Agric. Ecosyst. Environ. 2024, 359, 108745. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Khatun, A.; Islam, A. Integrated Plant Nutrient Systems Improve Rice Yields without Affecting Greenhouse Gas Emissions from Lowland Rice Cultivation. Sustainability 2022, 14, 11338. [Google Scholar] [CrossRef]
- Habib, M.A.; Islam, S.M.M.; Haque, M.A.; Hassan, L.; Ali, M.Z.; Nayak, S.; Dar, M.H.; Gaihre, Y.K. Effects of Irrigation Regimes and Rice Varieties on Methane Emissions and Yield of Dry Season Rice in Bangladesh. Soil Syst. 2023, 7, 41. [Google Scholar] [CrossRef]
- Davys, D.; Rayns, F.; Charlesworth, S.; Lillywhite, R. The Effect of Different Biochar Characteristics on Soil Nitrogen Transformation Processes: A Review. Sustainability 2023, 15, 16446. [Google Scholar] [CrossRef]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. Mutual Relationships of Biochar and Soil pH, CEC, and Exchangeable Base Cations in a Model Laboratory Experiment. J. Soils Sediments 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- He, T.; Yun, F.; Liu, T.; Jin, J.; Yang, Y.; Fu, Y.; Wang, J. Differentiated Mechanisms of Biochar- and Straw-Induced Greenhouse Gas Emissions in Tobacco Fields. Appl. Soil Ecol. 2021, 166, 103996. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Xu, Z.; Yu, Z. How Does Biochar Amendment Affect Soil Methane Oxidation? A Review. J. Soils Sediments 2021, 21, 1575–1586. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, J.; Ni, J. Influence of Biochar on Soil Air Permeability and Greenhouse Gas Emissions in Vegetated Soil: A Review. Biogeotechnics 2023, 1, 100040. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Jacinthe, P.; Lal, R.; Lorenz, K.; Singh, M.P.; Demyan, S.M.; Ren, W.; Lindsey, L.E. Biochar as a Negative Emission Technology: A Synthesis of Field Research on Greenhouse Gas Emissions. J. Environ. Qual. 2023, 52, 769–798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of Biochar Amendment on Yield and Methane and Nitrous Oxide Emissions from a Rice Paddy from Tai Lake Plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s Role in Mitigating Soil Nitrous Oxide Emissions: A Review and Meta-Analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Mia, S.; Dijkstra, F.A.; Singh, B. Long-Term Aging of Biochar. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2017; Volume 141, pp. 1–51. ISBN 978-0-12-812423-9. [Google Scholar]
- Yao, Q.; Liu, J.; Yu, Z.; Li, Y.; Jin, J.; Liu, X.; Wang, G. Three Years of Biochar Amendment Alters Soil Physiochemical Properties and Fungal Community Composition in a Black Soil of Northeast China. Soil Biol. Biochem. 2017, 110, 56–67. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; Van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; et al. An Investigation into the Reactions of Biochar in Soil. Soil Res. 2010, 48, 501. [Google Scholar] [CrossRef]
- Mon, W.W.; Toma, Y.; Ueno, H. Combined Effects of Rice Husk Biochar and Organic Manures on Soil Chemical Properties and Greenhouse Gas Emissions from Two Different Paddy Soils. Soil Syst. 2024, 8, 32. [Google Scholar] [CrossRef]
- Almaramah, S.B.; Abu-Elsaoud, A.M.; Alteneiji, W.A.; Albedwawi, S.T.; El-Tarabily, K.A.; Al Raish, S.M. The Impact of Food Waste Compost, Vermicompost, and Chemical Fertilizers on the Growth Measurement of Red Radish (Raphanus sativus): A Sustainability Perspective in the United Arab Emirates. Foods 2024, 13, 1608. [Google Scholar] [CrossRef]
- Long, X.-X.; Yu, Z.-N.; Liu, S.; Gao, T.; Qiu, R.-L. A Systematic Review of Biochar Aging and the Potential Eco-Environmental Risk in Heavy Metal Contaminated Soil. J. Hazard. Mater. 2024, 472, 134345. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of Biochar on Chemical Properties of Acidic Soil. Arch. Agron. Soil Sci. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Mao, Y.; Hu, W.; Li, Y.; Li, Y.; Lei, B.; Zheng, Y. Long-Term Cattle Manure Addition Enhances Soil-Available Phosphorus Fractions in Subtropical Open-Field Rotated Vegetable Systems. Front. Plant Sci. 2023, 14, 1138207. [Google Scholar] [CrossRef]
- Silber, A.; Levkovitch, I.; Graber, E.R. pH-Dependent Mineral Release and Surface Properties of Cornstraw Biochar: Agronomic Implications. Environ. Sci. Technol. 2010, 44, 9318–9323. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-Chemical Properties and Microbial Responses in Biochar-Amended Soils: Mechanisms and Future Directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Abrishamkesh, S.; Gorji, M.; Asadi, H.; Bagheri-Marandi, G.H.; Pourbabaee, A.A. Effects of Rice Husk Biochar Application on the Properties of Alkaline Soil and Lentil Growth. Plant Soil Environ. 2015, 61, 475–482. [Google Scholar] [CrossRef]
- Schmidt, H.; Pandit, B.; Martinsen, V.; Cornelissen, G.; Conte, P.; Kammann, C. Fourfold Increase in Pumpkin Yield in Response to Low-Dosage Root Zone Application of Urine-Enhanced Biochar to a Fertile Tropical Soil. Agriculture 2015, 5, 723–741. [Google Scholar] [CrossRef]
- Ali, I.; Adnan, M.; Iqbal, A.; Ullah, S.; Khan, M.; Yuan, P.; Zhang, H.; Nasar, J.; Gu, M.; Jiang, L. Effects of Biochar and Nitrogen Application on Rice Biomass Saccharification, Bioethanol Yield and Cell Wall Polymers Features. Int. J. Mol. Sci. 2022, 23, 13635. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Wei, X.; Shaukat, N.; Chen, J.; Raza, A.; Younis, A.; Nafees, M.; Abideen, Z.; Zaid, A.; Latif, N.; et al. Effects of Biochar and Biochar–Compost Mix on Growth, Performance and Physiological Responses of Potted Alpinia Zerumbet. Sustainability 2021, 13, 11226. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Wang, Y.C.; Ni, J.J.; So, P.S. Effects of Phosphorus-Modified Biochar as a Soil Amendment on the Growth and Quality of Pseudostellaria heterophylla. Sci. Rep. 2022, 12, 7268. [Google Scholar] [CrossRef] [PubMed]
- Khademalrasoul, A.; Naveed, M.; Heckrath, G.; Kumari, K.G.I.D.; De Jonge, L.W.; Elsgaard, L.; Vogel, H.-J.; Iversen, B.V. Biochar Effects on Soil Aggregate Properties under No-Till Maize. Soil Sci. 2014, 179, 273–283. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and Its Importance on Nutrient Dynamics in Soil and Plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Wang, S.; Pu, X. Benefits of Organic Manure Combined with Biochar Amendments to Cotton Root Growth and Yield under Continuous Cropping Systems in Xinjiang, China. Sci. Rep. 2020, 10, 4718. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of Biochar Amendment on Soil Quality, Crop Yield and Greenhouse Gas Emission in a Chinese Rice Paddy: A Field Study of 2 Consecutive Rice Growing Cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Kimetu, J.M.; Lehmann, J. Stability and Stabilisation of Biochar and Green Manure in Soil with Different Organic Carbon Contents. Soil Res. 2010, 48, 577. [Google Scholar] [CrossRef]
- Marcińczyk, M.; Oleszczuk, P. Biochar and Engineered Biochar as Slow- and Controlled-Release Fertilizers. J. Clean. Prod. 2022, 339, 130685. [Google Scholar] [CrossRef]
- Ni, J.J.; Bordoloi, S.; Shao, W.; Garg, A.; Xu, G.; Sarmah, A.K. Two-Year Evaluation of Hydraulic Properties of Biochar-Amended Vegetated Soil for Application in Landfill Cover System. Sci. Total Environ. 2020, 712, 136486. [Google Scholar] [CrossRef]
- Mer, J.L.; Roger, P. Production, Oxidation, Emission and Consumption of Methane by Soils: A Review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Wang, J.; Pan, X.; Liu, Y.; Zhang, X.; Xiong, Z. Effects of Biochar Amendment in Two Soils on Greenhouse Gas Emissions and Crop Production. Plant Soil 2012, 360, 287–298. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Toma, Y.; Nufita Sari, N.; Akamatsu, K.; Oomori, S.; Nagata, O.; Nishimura, S.; Purwanto, B.; Ueno, H. Effects of Green Manure Application and Prolonging Mid-Season Drainage on Greenhouse Gas Emission from Paddy Fields in Ehime, Southwestern Japan. Agriculture 2019, 9, 29. [Google Scholar] [CrossRef]
- Islam, S.F.; Sander, B.O.; Quilty, J.R.; de Neergaard, A.; van Groenigen, J.W.; Jensen, L.S. Mitigation of Greenhouse Gas Emissions and Reduced Irrigation Water Use in Rice Production through Water-Saving Irrigation Scheduling, Reduced Tillage and Fertiliser Application Strategies. Sci. Total Environ. 2020, 739, 140215. [Google Scholar] [CrossRef]
- Serrano-Silva, N.; Sarria-Guzmán, Y.; Dendooven, L.; Luna-Guido, M. Methanogenesis and Methanotrophy in Soil: A Review. Pedosphere 2014, 24, 291–307. [Google Scholar] [CrossRef]
- Gaihre, Y.; Padre, A.; Wassmann, R.; Aquino, E.; Villegas-Pangga, G.; Santa Cruz, P. Spatial and Temporal Variations in Methane Fluxes from Irrigated Lowland Rice Fields. Philipp. Agric. Sci. 2011, 94, 335–342. [Google Scholar]
- Wang, C.; Lai, D.Y.F.; Sardans, J.; Wang, W.; Zeng, C.; Peñuelas, J. Factors Related with CH4 and N2O Emissions from a Paddy Field: Clues for Management Implications. PLoS ONE 2017, 12, e0169254. [Google Scholar] [CrossRef]
- Liao, X.; Chen, Y.; Hu, J.; Zhang, C.; Mao, S.; Ruan, H.; Malghani, S. Effects of Fresh and Aged Biochar on Soil N2O Emission from a Poplar Plantation. Pedosphere 2023, S1002016023001315. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Sánchez-Monedero, M.A.; Roig, A.; Hanley, K.; Enders, A.; Lehmann, J. Biochar and Denitrification in Soils: When, How Much and Why Does Biochar Reduce N2O Emissions? Sci. Rep. 2013, 3, 1732. [Google Scholar] [CrossRef]
- Wang, L.; Du, H.; Han, Z.; Zhang, X. Nitrous Oxide Emissions from Black Soils with Different pH. J. Environ. Sci. 2013, 25, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Naser, H.M.; Nagata, O.; Sultana, S.; Hatano, R. Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan. Agriculture 2019, 10, 6. [Google Scholar] [CrossRef]
Measurements | Unit | Chicken Manure | Cow Manure |
---|---|---|---|
Total N | % | 4.1 | 1.9 |
Total C | % | 25.0 | 34.1 |
C/N | 6.1 | 17.9 | |
Available P content | mg kg−1 | 1334 | 2548 |
Treatments | Aboveground Dry Weight (g pot−1) | Root Dry Weight (g pot−1) | Grain Yield (g pot−1) | |||
---|---|---|---|---|---|---|
MF | LF | MF | LF | MF | LF | |
C | 34.3 ± 0.5 d | 21.5 ± 0.6 b | 4.2 ± 0.1 b | 2.80 ± 0.4 a | 34.8 ± 1.7 e | 18.9 ± 1.0 e |
B5 | 44.5 ± 0.7 a | 33.2 ± 1.6 a | 5.9 ± 0.4 a | 3.50 ± 0.3 a | 47.1 ± 1.5 c | 27.7 ± 0.8 c |
B10 | 44.9 ± 0.5 a | 29.9 ± 2.5 a | 5.6 ± 0.6 a | 3.60 ± 0.2 a | 53.9 ± 1.0 a | 35.4 ± 1.0 a |
B5:CHM | 46.3 ± 1.1 a | 30.8 ± 1.0 a | 6.3 ± 0.3 a | 4.00 ± 0.1 a | 58.1 ± 1.6 a | 39.3 ± 4.0 a |
B5:COM | 35.8 ± 0.5 c | 26.7 ± 1.6 a | 5.8 ± 0.2 a | 3.53 ± 0.1 a | 37.8 ± 2.3 d | 23.8 ± 1.7 d |
B10:CHM | 45.8 ± 1.9 a | 32.4 ± 0.7 a | 5.9 ± 0.4 a | 4.07 ± 0.5 a | 58.5 ± 1.0 a | 41.7 ± 1.5 a |
B10:COM | 40.1 ± 0.6 b | 29.6 ± 0.8 a | 5.3 ± 0.3 a | 3.63 ± 0.2 a | 50.0 ± 1.4 b | 28.1 ± 3.0 b |
Between two soils | <0.001 | <0.001 | <0.001 | |||
Within treatments | <0.001 | <0.001 | <0.001 | |||
Soils × treatments | 0.1135 | 0.6798 | 0.4979 |
Treatments | Cumulative CH4 Emission (mg C m−2 96 Days−1) | Cumulative N2O Emission (mg N m−2 96 Days−1) | ||
---|---|---|---|---|
MF | LF | MF | LF | |
C | 1440 ± 42.1 bc | 1431 ± 173.7 c | 16.30 ± 1.8 a | 17.22 ± 0.5 a |
B5 | 1400 ± 58.4 bc | 1434 ± 43.9 b | 12.50 ± 5.7 a | 16.69 ± 4.2 a |
B10 | 1742 ± 130.0 b | 1180 ± 228.3 bcd | 0.69 ± 4.5 a | −5.40 ± 5.2 c |
B5:CHM | 1487 ± 159.4 c | 1396 ± 24.6 d | 2.19 ± 1.0 a | −1.62 ± 0.9 a |
B5:COM | 1429 ± 6.3 bc | 2343 ± 218.3 a | 6.56 ± 3.8 a | 10.60 ± 2.8 a |
B10:CHM | 3059 ± 25.3 a | 2674 ± 34.2 a | −4.44 ± 4.1 b | −3.74 ± 4.6 b |
B10:COM | 2810 ± 32.3 a | 2486 ± 76.6 a | −1.79 ± 0.9 a | 6.01 ± 4.7 a |
Between two soils | 0.3461 | 0.5801 | ||
Within treatments | <0.001 | <0.001 | ||
Soils × treatments | <0.001 | 0.5420 |
Response Variables | Explanatory Variables | |||||||
---|---|---|---|---|---|---|---|---|
Grain Yield | GWPCH4 | GWPN2O | GWPtotal | |||||
Year | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
Biochar | 0.24 * | 0.42 *** | 0.30 *** | 0.41 * | 0.62 *** | −0.65 *** | 0.17 | 0.36 * |
CHM | 0.51 *** | 0.33 *** | −0.07 * | 0.38 * | −0.66 *** | −0.38 *** | −0.09 | 0.31 |
COM | 0.04 | 0.33 *** | 0.86 *** | 0.46 * | −0.002 | −0.01 | 0.16 | 0.45 * |
Soil fertility | 0.41 *** | 0.73 *** | −0.07 * | 0.05 | 0.39 *** | −0.06 | 0.04 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mon, W.W.; Toma, Y.; Ueno, H. Residual Effects of Rice Husk Biochar and Organic Manure Application after 1 Year on Soil Chemical Properties, Rice Yield, and Greenhouse Gas Emissions from Paddy Soils. Soil Syst. 2024, 8, 91. https://doi.org/10.3390/soilsystems8030091
Mon WW, Toma Y, Ueno H. Residual Effects of Rice Husk Biochar and Organic Manure Application after 1 Year on Soil Chemical Properties, Rice Yield, and Greenhouse Gas Emissions from Paddy Soils. Soil Systems. 2024; 8(3):91. https://doi.org/10.3390/soilsystems8030091
Chicago/Turabian StyleMon, War War, Yo Toma, and Hideto Ueno. 2024. "Residual Effects of Rice Husk Biochar and Organic Manure Application after 1 Year on Soil Chemical Properties, Rice Yield, and Greenhouse Gas Emissions from Paddy Soils" Soil Systems 8, no. 3: 91. https://doi.org/10.3390/soilsystems8030091
APA StyleMon, W. W., Toma, Y., & Ueno, H. (2024). Residual Effects of Rice Husk Biochar and Organic Manure Application after 1 Year on Soil Chemical Properties, Rice Yield, and Greenhouse Gas Emissions from Paddy Soils. Soil Systems, 8(3), 91. https://doi.org/10.3390/soilsystems8030091