Options for Intensification of Cropping System in Coastal Saline Ecosystem: Inclusion of Grain Legumes in Rice-Based Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Treatment Details
2.3. Biometrical Measurements and Estimation of Yield
2.4. Analysis of Plant and Soil Samples
2.4.1. Analysis of Soil Samples
2.4.2. Measurements for Nutrient Accumulation, Partitioning, and Remobilization
2.5. Cropping System Analysis
2.6. Economic Analysis
2.7. Statistical Analysis
3. Results
3.1. Effect of Land Situation and Date of Sowing on the Performance of Rice
3.1.1. Vegetative Growth Responses of Rice to Land Situation and Sowing Date Factors
3.1.2. Effect of Land Situation and Date of Sowing, on Yield Components and Yield of Rice
3.1.3. Effect of the Land Situation and Date of Sowing, on Macronutrient Uptake of Rice
3.2. Effect of Land Situation and, Date of Sowing on the Performance of Lathyrus
3.2.1. Effect of Land Situation and Date of Sowing, on Yield Components and Yield of Lathyrus
3.2.2. Effect of Land Situation and Date of Sowing, on Macronutrient Uptake of Lathyrus
3.3. Effect of Land Situation and Date of Sowing on the Performance of Lentil
3.3.1. Effect of Land Situation, and Date of Sowing, on Yield Components and Yield of Lentil
3.3.2. Effect of Land Situation, and Date of Sowing, on Macronutrient Uptake of Lentil
3.4. System Performance of Different Rice-Pulse Based Cropping Systems
3.4.1. Rice Equivalent Yield (REY) of Different Pulse Crop under the Rice-Pulse Cropping System
3.4.2. System Productivity and Production Efficiency of the Rice-Pulse Cropping Systems
3.4.3. Economics of the Cropping Systems
3.4.4. Soil Properties and Nutrient Status after Completion of Two Years Cropping Sequence
3.5. Dynamic of Gravimetric Water Content, Soil Salinity and Solute Potential at Various Depths
3.6. Relationship between Seed Yield and Soil Factors (Gravimetric Water Content, Salinity, and Solute Potential)
3.7. Redundancy Analysis
4. Discussion
4.1. Vegetative Growth Responses of Rice
4.2. Yield Attributes of Crops
4.3. Macronutrient Uptake by Rice
4.4. Macronutrient Uptake by Pulces
4.5. Effect of Soil Factors (Gravimetric Soil Moisture, Soil Salinity and Solute Potential) on Yield of Pulses
5. Conclusions
- The date of sowing significantly influenced the growth and yield attributes of rice in both years of experimentation. Significantly higher productions were obtained from medium lowland situations for both cropping systems.
- Irrespective of the land situation, rice sown on 15 June and 21 June recorded significantly higher grain yields.
- The date of sowing of rice and the land situation significantly influenced the seed and stover yield of different pulse crops. Irrespective of land situations, pulse crops sown on early dates recorded significantly higher seed yield.
- The te of sowing has influenced macro-nutrient uptake (NPK) in rice and pulse grains. In both the land situations, higher NPK content in rice grains was observed at an early date of sowing (15 June and 21 June). Amongst the pulse crops, lathyrus performed better than others due to its higher moisture and salinity stress tolerance capacity.
- A vivid understanding of the soil salinity and solute potential is crucial to the intensity of the rice-based cropping system in the coastal saline zone of the Indian Sundarbans.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarangi, S.K.; Singh, S.; Kumar, V.; Srivastava, A.K.; Sharma, P.C.; Johnson, D.E. Tillage and crop establishment options for enhancing the productivity, profitability, and resource use efficiency of rice-rabi systems of the salt-affected coastal lowlands of eastern India. Field Crops Res. 2019, 247, 107494. [Google Scholar] [CrossRef]
- Sarkar, S.; Samui, I.; Brahmachari, K.; Ray, K.; Ghosh, A. Management Practices for Utera Pulses in Rice-fallow System under Coastal Saline Zone of West Bengal. J. Indian Soc. Coast. Agric. Res. 2019, 37, 98–103. [Google Scholar]
- Brahmachari, K.; Sarkar, S.; Santra, D.K.; Maitra, S. Millet for Food and Nutritional Security in Drought Prone and Red Laterite Region of Eastern India. Int. J. Plant Soil Sci. 2019, 26, 1–7. [Google Scholar] [CrossRef]
- Mainuddin, M.; Rahman, M.A.; Maniruzzaman, M.; Sarker, K.K.; Mandal, U.K.; Nanda, M.K.; Gaydon, D.S.; Sarangi, S.K.; Sarkar, S.; Yu, Y.; et al. The Water and Salt Balance of Polders / Islands in the Ganges Delta. J. Indian Soc. Coast. Agric. Res. 2019, 37, 45–50. [Google Scholar] [CrossRef]
- Radanielson, A.M.; Angeles, O.; Li, T.; Ismail, A.M.; Gaydon, D.S. Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crops Res. 2018, 220, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Gaydon, D.S.; Balwinder-Singh; Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.; Chaki, A.K.; et al. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Res. 2017, 204, 52–75. [Google Scholar] [CrossRef]
- Ghosh, A. Assessing the impact of agro-climatic factors on pod filling of grass pea. Legume Res. 2018, 1–5. [Google Scholar] [CrossRef]
- Ghosh, A.; Khan, S.A. Study on the Interactions between Lathyrus (Lathyrus sativus L.) and Agro-climatic Factors to Generate Weather Based Yield Forecasting Models. Int. J. Bio-Resour. Stress Manag. 2019, 10, 157–165. [Google Scholar] [CrossRef]
- Ismail, A.M.; Heuer, S.; Thomson, M.J.; Wissuwa, M. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol. 2007, 65, 547–570. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.O.; Zuberi, M.I.; Sarker, A. Lentil Relay Cropping in the Rice-Based Cropping System: An Innovative Technology for Lentil Production, Sustainability and Nutritional Security in Changing Climate of Bangladesh. J. Food Sci. Eng. 2012, 2, 52. [Google Scholar]
- Meena, R.S.; Lal, R. Legumes for Soil Health and Sustainable Management. Legumes for Soil Health and Sustainable Management; Springer: Singapore, 2018. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization. 2019. Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 12 January 2020).
- Dixit, G.P.; Parihar, A.K.; Bohra, A.; Singh, N.P. Achievements and prospects of lathyrus (Lathyrus sativus L.) improvement for sustainable food production. Crop J. 2016, 4, 407–416. [Google Scholar] [CrossRef]
- Mandi, S.K.; Reja, M.H.; Kundu, M.K.; Maji, S.; Nath, R.; Das, S.; Sarker, A. Agronomic management of lentil under relay cropping system. Indian J. Agric. Res. 2017, 51, 536–542. [Google Scholar]
- Bandyopadhyay, P.K.; Singh, K.C.; Mondal, K.; Nath, R.; Ghosh, P.K.; Kumar, N.; Basu, P.S.; Singh, S.S. Effects of stubble length of rice in mitigating soil moisture stress and on yield of lentil (Lens culinaris Medik) in rice-lentil relay crop. Agric. Water Manag. 2016, 173, 91–102. [Google Scholar] [CrossRef]
- Bandyopadhyay, B.K.; Maji, B.; Sen, H.S.; Tyagi, N.K. Coastal Soils of West Bengal—Their Nature, Distribution and Characteristics; Bulletin No. 1/2003; Central Soil Salinity Research Institute, Regional Research Station: Canning, India, 2003; p. 62. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons. Inc.: New York, NY, USA, 1984. [Google Scholar]
- Directorate of Agriculture, Estimates of Area, Yield Rate & Production of Principal Crops in West Bengal; Evaluation Wing, Government of West Bengal: Kolkata, India, 2022; 81p.
- Palacios-Cabrera, H.; Jimenes-Vargas, K.; González, M.; Flor-Unda, O.; Almeida, B. Determination of moisture in rice grains based on visible spectrum analysis. Agronomy 2022, 12, 3021. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 11th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Deggareff method for determining soil organic matter and a proposed modification of the chronic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; pp. 183–347, 387–408. [Google Scholar]
- Subbiah, B.; Asija, G.L. A rapid procedure for the estimation of available N in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanale, F.S.; Dean, L.A. Estimation of Available Phosphorus in Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954.
- Brown, A.J.; Warncke, D. Recommended Chemical Soil Test Procedures for the North Carolina Region, 499; Dahnke, W.C., Ed.; North Dakota Agricultural Experimental Station Bulletin: Fargo, ND, USA, 1988; pp. 15–16. [Google Scholar]
- Bhattacharyya, K.; Das, T.; Ray, K.; Dutta, S.; Majumdar, K.; Pari, A.; Banerjee, H. Yield of and nutrient-water use by maize exposed to moisture stress and K fertilizers in an inceptisol of West Bengal, India. Agric. Water Manag. 2018, 206, 31–41. [Google Scholar] [CrossRef]
- Sarker, B.C.; Ali, M.A.; Bell, R.W.; Kabir, M.E. Effect of nitrogen rate and application ratio on late sown sunflower in wet soil under zero tillage in the coastal zone of southwestern Bangladesh. Indian J. Agric. Res. 2022, 56, 415–421. [Google Scholar] [CrossRef]
- Paul, P.L.C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E. Straw mulch and irrigation affect solute potential and sunflower yield in heavy textured soil in the Ganges Delta. Agric. Water Manag. 2020, 239, 106211. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Shivay, Y.S.; Prasad, R.; Kaur, R.; Pal, M. Relative Efficiency of Zinc Sulphate and Chelated Zinc on Zinc Biofortification of Rice Grains and Zinc Use-Efficiency in Basmati Rice. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2016, 86, 973–984. [Google Scholar] [CrossRef]
- Lal, B.; Gautam, P.; Panda, B.B.; Raja, R.; Singh, T.; Tripathi, R.; Shahid, M.; Nayak, A.K. Crop and varietal diversification of rainfed rice-based cropping systems for higher productivity and profitability in Eastern India. PLoS ONE 2017, 12, e0175709. [Google Scholar] [CrossRef] [PubMed]
- Tomar, S.S.; Tiwari, A.S. Production potential and economics of different cropping sequence. Indian J. Agron. 1990, 35, 30–35. [Google Scholar]
- Ter Braak, C.J. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 1986, 67, 1167–1179. [Google Scholar] [CrossRef]
- Jashemi, M.; Darabi, F.; Naseri, R.; Naserirad, H.; Bazdar, S. Effect of planting date and nitrogen fertilizer application on grain yield and yield components in maize. Am.-Eurasian J. Agric. Environ. Sci. 2013, 13, 914–919. [Google Scholar]
- Maga, T.J.; Vange, T.; Ogwuche, J.O. The influence of sowing dates on the growth and yield of two maize (Zea mays L.) varieties cultivated under Southern Guinea Savannah Agro-Ecological Zone. American J. Exp. Agric. 2015, 5, 200. [Google Scholar] [CrossRef]
- Grazia, J.; Tittonell, P.A.; Germinara, D.; Chiesa, A. Short communication: Phosphorus and nitrogen fertilization in sweet corn (Zea mays L. var. saccharata Bailey). Span. J. Agric. Res. 2003, 1, 103–107. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, R.N.; Ram, U.S.; Singh, M.K. Growth, yield attributes, yield, and economics of winter popcorn (Zea mays everta Sturt.) as influenced by planting time fertility level and plant population under late sown condition. J. Appl. Nat. Sci. 2016, 8, 1438–1443. [Google Scholar]
- Al-Doori, S.A.M. Influence of sowing dates on growth, yield and quality of some flax genotypes (Linum usitatissimum L.). Coll. Basic Educ. Res. J. 2012, 12, 733–746. [Google Scholar]
- Pal, R.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Impact of sowing date on yield, dry matter and nitrogen accumulation, and nitrogen translocation in dry-seeded rice in North-West India. Field Crops Res. 2017, 206, 138–148. [Google Scholar] [CrossRef]
- Przulj, N.; Momcilovic, V. Genetic variation for dry matter and nitrogen accumulation and translocation in two-rowed spring barley: I. Dry matter translocation. Eur. J. Agron. 2001, 15, 241–254. [Google Scholar] [CrossRef]
- Chen, C.; Huang, J.; Zhu, L.; Shah, F.; Nie, L.; Cui, K.; Peng, S. Varietal difference in the response of rice chalkiness to temperature during ripening phase across different sowing dates. Field Crops Res. 2013, 151, 85–91. [Google Scholar] [CrossRef]
- Huang, M.; Fang, S.; Shan, S.; Zou, Y. Delayed transplanting reduced grain yield due to low-temperature stress at anthesis in machine-transplanted late-season rice. Exp. Agric. 2019, 55, 843–848. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, A.K.; Gupta, S.K.; Kaur, N. Effect of sowing time on protein quality and starch pasting characteristics in wheat (Triticum aestivum L.) genotypes grown under irrigated and rain-fed conditions. Food Chem. 2010, 122, 559–565. [Google Scholar] [CrossRef]
- Ramroodi, M.; Galavi, M.; Nakhzari, M.A. Evaluation of yield and yield components of some lentil genotypes to different planting dates. Res. J. Agric. 2008, 8, 45–56. [Google Scholar]
- Roy, A.; Aich, S.S.; Bhowmick, M.K.; Biswas, P.K. Response of lentil varieties to sowing time in the plains of West Bengal. J. Crop Weed 2009, 5, 92–94. [Google Scholar]
- Yadav, R.P.; Tripathi, M.L.; Trivedi, S.K. Effect of irrigation and nutrients levels on productivity and profitability of sunflower (Helianthus annuus). Indian J. Agron. 2009, 54, 332–335. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Schwarz, D.; Franken, P.; Colla, G. Effect of drought on nutrient uptake and assimilation in vegetable crops. In Plant Responses to Drought Stress; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 171–195. [Google Scholar]
- Saroj, R.; Sharma, S.K.; Sharma, R. Effect of salinity on germination and early seedling growth in six leguminous pulse crops. J. Indian Bot. Soc. 2007, 27, 156. [Google Scholar]
- Zhang, W.; Zhou, G.; Li, Q.; Liao, N.; Guo, H.; Min, W.; Ma, L.; Ye, J.; Hou, Z. Saline water irrigation stimulates N2O emission from a drip-irrigated cotton field. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2015, 66, 141–152. [Google Scholar] [CrossRef]
- Paul, P.L.C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E.; Gaydon, D.S. Opportunities and risks with early sowing of sunflower in a salt-affected coastal region of the Ganges Delta. Agron. Sustain. Dev. 2021, 41, 39. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Caterina, D.; Giuliani, R.; Flagella, D.C. Influence of salt stress on seed yield and oil quality of two sunflower hybrids. Ann. Appl. Biol. 2007, 151, 145–154. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; La, C. Estimating osmotic potential from electrical conductivity for solutions/extracts in salt-affected soils using a universal equation. J. Food Agric. Environ. 2014, 12, 1033–1035. [Google Scholar]
- Comission for Agricultural Costs and Prices. 2019. Available online: https://cacp.da.gov.in/ (accessed on 15 January 2019).
- Ray, K.; Brahmachari, M.; Goswami, R.; Sarkar, S.; Brahmachari, K.; Ghosh, A.; Nanda, M.K. Adoption of Improved Technologies for Cropping Intensification in the Coastal Zone of West Bengal, India: A Village Level Study for Impact Assessment. J. Indian Soc. Coast. Agric. Res. 2019, 37, 144–152. [Google Scholar]
Soil Depth (cm) | Clay (%) | Silt (%) | Sand (%) | OC (%) | N (kg/ha) | P2O5 (kg/ha) | K2O (kg/ha) | BD (g/cm3) | EC1:5 (dS/m) | pH |
---|---|---|---|---|---|---|---|---|---|---|
Medium upland condition | ||||||||||
0–15 | 45.2 | 28.0 | 26.8 | 0.50 | 125.44 | 14.34 | 445.20 | 1.530 | 0.22 | 5.45 |
15–30 | 46.8 | 28.4 | 24.8 | 0.41 | 150.52 | 19.12 | 404.90 | 1.480 | 0.27 | 5.65 |
30–50 | 47.6 | 29.5 | 22.9 | 0.29 | 125.44 | 28.68 | 493.70 | 1.450 | 0.27 | 5.75 |
50–80 | 49.1 | 29.1 | 21.8 | 0.23 | 113.07 | 23.90 | 415.40 | 1.430 | 0.29 | 5.70 |
80–120 | 53.2 | 26.0 | 20.8 | 0.21 | 103.65 | 22.65 | 398.31 | 1.410 | 0.31 | 5.70 |
Medium-lowland condition | ||||||||||
0–15 | 47.9 | 27.6 | 24.5 | 0.51 | 137.98 | 23.90 | 465.35 | 1.510 | 0.13 | 5.65 |
15–30 | 48.1 | 28.7 | 23.2 | 0.46 | 175.61 | 9.56 | 406.05 | 1.450 | 0.24 | 6.05 |
30–50 | 48.3 | 28.3 | 23.4 | 0.44 | 175.61 | 28.68 | 466.80 | 1.430 | 0.25 | 5.62 |
50–80 | 50.5 | 29.5 | 20.0 | 0.38 | 112.89 | 19.12 | 474.80 | 1.410 | 0.29 | 5.52 |
80–120 | 55.3 | 26.6 | 18.1 | 0.32 | 111.3 | 21.21 | 469.31 | 1.390 | 0.29 | 5.52 |
Factors | No. of Panicles/m2 | Fill Grains/Panicle | Test Weight (g) | Grain Yield (kg/ha) | Straw Yield (kg/ha) | Harvest Index (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
Land Situation (LS) | ||||||||||||
Medium upland | 306 | 326 | 159 | 168 | 20.5 | 21.1 | 4754 | 4782 | 6485 | 6530 | 42.2 | 42.2 |
Medium lowland | 330 | 334 | 187 | 195 | 20.6 | 20.8 | 5023 | 5005 | 6787 | 6653 | 42.5 | 43.0 |
SEm (±) | 4.08 | 5.82 | 1.24 | 0.64 | 0.10 | 0.41 | 99.8 | 36.4 | 37.7 | 47.5 | 0.54 | 0.48 |
LSDp≤0.05 | 18.3 | NS | 5.59 | 2.88 | NS | NS | NS | 163.8 | 169 | 117 | NS | NS |
Date of Sowing (DOS) | ||||||||||||
1st DOS | 364 | 397 | 196 | 203 | 21.4 | 22.1 | 5506 | 5385 | 7054 | 6415 | 43.8 | 45.7 |
2nd DOS | 329 | 336 | 194 | 199 | 21.2 | 21.9 | 5163 | 5330 | 6775 | 6361 | 43.2 | 45.7 |
3rd DOS | 311 | 311 | 175 | 180 | 20.3 | 21.0 | 4925 | 4964 | 6625 | 7056 | 42.7 | 41.3 |
4th DOS | 306 | 333 | 163 | 178 | 20.3 | 20.5 | 4844 | 4855 | 6531 | 7026 | 42.6 | 40.9 |
5th DOS | 294 | 299 | 160 | 167 | 19.8 | 20.1 | 4513 | 4521 | 6450 | 6453 | 41.1 | 41.2 |
6th DOS | 306 | 304 | 151 | 162 | 20.1 | 20.0 | 4381 | 4304 | 6381 | 6237 | 40.7 | 40.8 |
SEm (±) | 11.4 | 13.5 | 6.57 | 2.34 | 0.24 | 0.35 | 109 | 86.1 | 215 | 128 | 0.80 | 0.32 |
LSDp≤0.05 | 34.3 | 40.7 | 19.79 | 7.07 | 0.72 | 1.06 | 329 | 260 | 650 | 387 | 2.42 | 0.95 |
Cropping System (CS) | ||||||||||||
Rice-Lathyrus | 316 | 331 | 174 | 183 | 20.79 | 20.7 | 4912 | 4881 | 6624 | 6602 | 42.5 | 42.5 |
Rice-Lentil | 321 | 329 | 172 | 180 | 20.24 | 21.1 | 4865 | 4905 | 6648 | 6581 | 42.1 | 42.7 |
SEm (±) | 12.3 | 13.4 | 4.77 | 4.96 | 0.56 | 0.49 | 23.5 | 59.8 | 39.6 | 58.5 | 0.08 | 0.04 |
LSDp≤0.05 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Interaction | ||||||||||||
LS × DOS | NS | NS | NS | NS | NS | NS | ** | ** | NS | NS | NS | NS |
LS × CS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
DOS × CS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
LS × DOS × CS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Factors | Nitrogen Uptake | Phosphorous Uptake | Potassium Uptake | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain (%) | Straw (%) | Grain (%) | Straw (%) | Grain (%) | Straw (%) | |||||||
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
Land Situation (LS) | ||||||||||||
Medium upland | 0.915 | 0.934 | 0.549 | 0.493 | 0.23 | 0.23 | 0.12 | 0.14 | 0.23 | 0.23 | 2.25 | 1.84 |
Medium lowland | 0.923 | 0.941 | 0.428 | 0.417 | 0.34 | 0.34 | 0.09 | 0.10 | 0.34 | 0.34 | 2.40 | 1.82 |
SEm (±) | 0.003 | 0.003 | 0.018 | 0.017 | 0.003 | 0.004 | 0.005 | 0.004 | 0.003 | 0.004 | 0.062 | 0.046 |
LSDp≤0.05 | NS | 0.007 | 0.080 | NS | 0.015 | 0.017 | 0.022 | 0.020 | 0.015 | 0.017 | NS | NS |
Date of Sowing (DOS) | ||||||||||||
1st DOS | 1.158 | 1.182 | 0.447 | 0.406 | 0.29 | 0.29 | 0.11 | 0.13 | 0.29 | 0.29 | 2.30 | 1.95 |
2nd DOS | 0.920 | 0.939 | 0.400 | 0.364 | 0.36 | 0.37 | 0.11 | 0.12 | 0.36 | 0.37 | 2.29 | 1.88 |
3rd DOS | 0.910 | 0.929 | 0.445 | 0.415 | 0.24 | 0.25 | 0.10 | 0.11 | 0.24 | 0.25 | 2.11 | 1.79 |
4th DOS | 0.836 | 0.853 | 0.529 | 0.491 | 0.28 | 0.28 | 0.09 | 0.10 | 0.28 | 0.28 | 2.28 | 1.79 |
5th DOS | 0.850 | 0.867 | 0.591 | 0.553 | 0.26 | 0.24 | 0.11 | 0.12 | 0.26 | 0.24 | 2.55 | 1.70 |
6th DOS | 0.837 | 0.853 | 0.519 | 0.501 | 0.27 | 0.25 | 0.11 | 0.12 | 0.27 | 0.25 | 2.41 | 1.87 |
SEm (±) | 0.016 | 0.017 | 0.018 | 0.017 | 0.005 | 0.006 | 0.006 | 0.008 | 0.005 | 0.006 | 0.142 | 0.101 |
LSDp≤0.05 | 0.049 | 0.050 | 0.055 | 0.052 | 0.016 | 0.019 | NS | NS | 0.016 | 0.019 | NS | NS |
Cropping System (CS) | ||||||||||||
Rice-Lathyrus | 0.924 | 0.943 | 0.482 | 0.448 | 0.28 | 0.28 | 0.09 | 0.11 | 0.28 | 0.28 | 2.41 | 1.85 |
Rice-Lentil | 0.913 | 0.932 | 0.495 | 0.495 | 0.28 | 0.28 | 0.12 | 0.13 | 0.28 | 0.27 | 2.24 | 1.80 |
SEm (±) | 0.007 | 0.009 | 0.007 | 0.012 | 0.001 | 0.002 | 0.023 | 0.025 | 0.02 | 0.02 | 0.013 | 0.017 |
LSDp≤0.05 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Interactions | ||||||||||||
LS × DOS | NS | NS | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
LS × CS | NS | NS | ** | ** | NS | NS | * | * | NS | NS | NS | NS |
DOS × CS | NS | NS | NS | * | NS | NS | * | * | NS | NS | NS | NS |
LS × DOS × CS | NS | NS | NS | NS | NS | NS | NS | * | NS | NS | NS | NS |
Factor | Pod/Plant | Seed/Pod | Test Weight (g) | Seed Yield (kg/ha) | Stover Yield (kg/ha) | Harvest Index (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
Land situation (LS) | ||||||||||||
Medium upland | 28.42 | 39.52 | 3.90 | 3.88 | 41.51 | 41.00 | 709 | 970 | 2232 | 2327 | 24.0 | 29.4 |
Medium lowland | 30.10 | 45.48 | 3.88 | 3.74 | 41.10 | 40.31 | 792 | 1016 | 2500 | 2647 | 24.0 | 27.8 |
SEm (±) | 0.26 | 0.78 | 0.08 | 0.12 | 0.62 | 0.56 | 4.5 | 9.8 | 67.3 | 26.2 | 0.49 | 0.23 |
LSDp≤0.05 | 1.15 | 3.53 | NS | NS | NS | NS | 20.3 | 44.3 | NS | 117.8 | NS | 1.05 |
Date of Sowing (DOS) | ||||||||||||
1st DOS | 30.69 | 51.19 | 4.28 | 3.83 | 42.38 | 39.77 | 937 | 1192 | 2654 | 2991 | 26.1 | 28.5 |
2nd DOS | 29.56 | 49.19 | 4.55 | 4.08 | 42.09 | 40.40 | 819 | 1085 | 2584 | 2509 | 24.2 | 30.4 |
3rd DOS | 29.38 | 42.50 | 3.48 | 3.75 | 40.51 | 41.05 | 773 | 993 | 2484 | 2488 | 23.8 | 28.6 |
4th DOS | 29.19 | 40.50 | 3.93 | 3.95 | 40.71 | 41.27 | 705 | 948 | 2370 | 2456 | 23.0 | 28.0 |
5th DOS | 28.81 | 36.63 | 3.59 | 3.35 | 40.63 | 40.61 | 669 | 910 | 2120 | 2359 | 24.0 | 28.0 |
6th DOS | 27.94 | 35.00 | 3.53 | 3.90 | 41.54 | 40.81 | 599 | 831 | 1982 | 2117 | 23.1 | 28.2 |
SEm (±) | 0.54 | 1.68 | 0.22 | 0.13 | 0.72 | 0.49 | 25.2 | 27.5 | 77.3 | 79.6 | 0.56 | 0.38 |
LSDp≤0.05 | NS | 5.07 | 0.69 | 0.40 | NS | NS | 75.9 | 83.0 | 233.2 | 240.1 | 1.69 | 1.16 |
Interaction | ||||||||||||
LS × DOS | NS | ** | NS | NS | NS | NS | ** | ** | ** | ** | NS | NS |
Factors | Nitrogen Uptake | Phosphorous Uptake | Potassium Uptake | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain (%) | Stover (%) | Grain (%) | Stover (%) | Grain (%) | Stover (%) | |||||||
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
Land Situation (LS) | ||||||||||||
Medium upland | 3.67 | 3.78 | 1.13 | 1.18 | 0.232 | 0.238 | 0.153 | 0.162 | 1.09 | 1.16 | 3.38 | 3.30 |
Medium lowland | 3.75 | 3.90 | 1.03 | 1.07 | 0.250 | 0.256 | 0.144 | 0.152 | 1.19 | 1.24 | 3.60 | 3.28 |
SEm (±) | 0.04 | 0.06 | 0.01 | 0.01 | 0.004 | 0.004 | 0.003 | 0.003 | 0.02 | 0.01 | 0.09 | 0.08 |
LSDp≤0.05 | NS | NS | 0.05 | 0.05 | NS | NS | NS | NS | 0.08 | 0.07 | NS | NS |
Date of Sowing (DOS) | ||||||||||||
1st DOS | 3.89 | 4.02 | 1.07 | 1.11 | 0.258 | 0.264 | 0.169 | 0.179 | 1.11 | 1.16 | 3.45 | 3.50 |
2nd DOS | 3.73 | 3.86 | 1.16 | 1.20 | 0.246 | 0.253 | 0.148 | 0.156 | 1.17 | 1.26 | 3.44 | 3.38 |
3rd DOS | 3.71 | 3.84 | 1.03 | 1.07 | 0.239 | 0.245 | 0.147 | 0.156 | 1.04 | 1.12 | 3.17 | 3.22 |
4th DOS | 3.64 | 3.76 | 1.01 | 1.05 | 0.222 | 0.227 | 0.143 | 0.151 | 1.18 | 1.23 | 3.41 | 3.21 |
5th DOS | 3.63 | 3.75 | 1.18 | 1.23 | 0.241 | 0.247 | 0.141 | 0.150 | 1.21 | 1.23 | 3.83 | 3.08 |
6th DOS | 3.67 | 3.82 | 1.04 | 1.08 | 0.239 | 0.245 | 0.142 | 0.151 | 1.14 | 1.20 | 3.62 | 3.37 |
SEm (±) | 0.04 | 0.05 | 0.03 | 0.04 | 0.007 | 0.008 | 0.008 | 0.008 | 0.02 | 0.02 | 0.21 | 0.18 |
LSDp≤0.05 | 0.13 | 0.15 | 0.10 | 0.11 | NS | NS | NS | NS | 0.07 | 0.07 | NS | NS |
Interactions | ||||||||||||
LS × DOS | NS | NS | ** | ** | ** | ** | NS | NS | NS | NS | NS | NS |
Factor | Pods/Plant | Seed/Pod | Test Weight (g) | Seed Yield (kg/ha) | Stover Yield (kg/ha) | Harvest Index (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
Land situation (LS) | ||||||||||||
Medium upland | 61.76 | 76.88 | 1.66 | 2.05 | 19.97 | 21.17 | 662.3 | 713.1 | 1759 | 1488 | 27.4 | 32.6 |
Medium lowland | 76.17 | 84.53 | 1.88 | 2.10 | 19.94 | 21.71 | 668.0 | 783.0 | 1858 | 1761 | 26.4 | 30.8 |
SEm (±) | 2.06 | 0.52 | 0.03 | 0.07 | 0.34 | 0.19 | 9.98 | 9.57 | 61.3 | 12.8 | 0.6 | 0.1 |
LSDp≤0.05 | 9.25 | 2.34 | 0.12 | NS | NS | NS | NS | 43.08 | NS | 58 | NS | 0.6 |
Date of Sowing (DOS) | ||||||||||||
1st DOS | 88.02 | 96.25 | 1.80 | 2.18 | 21.39 | 21.47 | 784.7 | 906.9 | 2036 | 2010 | 27.9 | 31.1 |
2nd DOS | 82.89 | 93.55 | 1.90 | 2.21 | 20.60 | 21.21 | 773.4 | 838.3 | 2009 | 1927 | 27.9 | 30.3 |
3rd DOS | 63.35 | 72.99 | 1.72 | 2.10 | 19.50 | 20.83 | 693.1 | 759.0 | 1872 | 1644 | 27.1 | 31.7 |
4th DOS | 65.25 | 81.05 | 1.88 | 1.98 | 19.29 | 22.10 | 612.5 | 748.8 | 1700 | 1538 | 26.4 | 32.9 |
5th DOS | 59.84 | 70.98 | 1.68 | 2.09 | 19.67 | 21.80 | 569.1 | 647.5 | 1627 | 1402 | 26.1 | 31.7 |
6th DOS | 54.42 | 69.39 | 1.63 | 1.90 | 19.28 | 21.22 | 558.1 | 588.1 | 1606 | 1225 | 25.9 | 32.7 |
SEm (±) | 4.46 | 5.74 | 0.10 | 0.12 | 0.41 | 0.30 | 26.17 | 18.93 | 71.2 | 35.7 | 0.8 | 0.5 |
LSDp≤0.05 | 13.44 | 17.31 | NS | NS | 1.23 | NS | 78.89 | 57.06 | 215 | 107 | 1.5 | 1.4 |
Interaction | ||||||||||||
LS × DOS | NS | NS | NS | NS | NS | NS | NS | 115 | NS | ** | NS | NS |
Factors | Nitrogen Uptake | Phosphorous Uptake | Potassium Uptake | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain (%) | Stover (%) | Grain (%) | Stover (%) | Grain (%) | Stover (%) | |||||||
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
Land Situation (LS) | ||||||||||||
Medium upland | 3.71 | 3.93 | 1.79 | 1.94 | 0.36 | 0.39 | 0.30 | 0.33 | 1.73 | 1.66 | 2.33 | 2.68 |
Medium lowland | 3.79 | 4.06 | 1.63 | 1.77 | 0.38 | 0.42 | 0.29 | 0.31 | 1.90 | 1.77 | 2.47 | 2.66 |
SEm (±) | 0.04 | 0.06 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.02 | 0.06 | 0.06 |
LSDp≤0.05 | NS | NS | 0.09 | 0.07 | NS | NS | NS | NS | 0.12 | 0.09 | NS | NS |
Date of Sowing (DOS) | ||||||||||||
1st DOS | 3.93 | 4.18 | 1.69 | 1.83 | 0.40 | 0.44 | 0.33 | 0.36 | 1.77 | 1.66 | 2.36 | 2.84 |
2nd DOS | 3.77 | 4.02 | 1.83 | 1.99 | 0.38 | 0.42 | 0.29 | 0.32 | 1.85 | 1.76 | 2.36 | 2.73 |
3rd DOS | 3.75 | 3.99 | 1.63 | 1.77 | 0.37 | 0.40 | 0.29 | 0.32 | 1.65 | 1.60 | 2.18 | 2.61 |
4th DOS | 3.68 | 3.91 | 1.59 | 1.74 | 0.34 | 0.37 | 0.28 | 0.31 | 1.88 | 1.75 | 2.37 | 2.60 |
5th DOS | 3.67 | 3.90 | 1.87 | 2.03 | 0.37 | 0.41 | 0.28 | 0.30 | 1.93 | 1.80 | 2.63 | 2.49 |
6th DOS | 3.70 | 3.97 | 1.64 | 1.79 | 0.37 | 0.40 | 0.28 | 0.31 | 1.82 | 1.72 | 2.49 | 2.73 |
SEm (±) | 0.04 | 0.05 | 0.05 | 0.06 | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 | 0.03 | 0.15 | 0.15 |
LSDp≤0.05 | 0.13 | 0.15 | 0.16 | 0.18 | NS | 0.04 | NS | 0.05 | 0.12 | 0.10 | NS | NS |
Interactions | ||||||||||||
LS × DOS | NS | NS | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Treatments | Rice Equivalent Yield (kg/ha) | |
---|---|---|
Lathyrus | Lentil | |
Land situation (LS) | ||
Medium−upland | 1379.6 | 1615.0 |
Medium−lowland | 1486.8 | 1708.1 |
SEm (±) | 8.90 | 16.20 |
LSDp≤0.05 | 30.7 | 56.0 |
Date of Sowing (DOS) | ||
1st DOS | 1750.5 | 1990.4 |
2nd DOS | 1565.1 | 1892.8 |
3rd DOS | 1451.7 | 1705.9 |
4th DOS | 1358.4 | 1604.4 |
5th DOS | 1298.0 | 1430.8 |
6th DOS | 1175.3 | 1345.0 |
SEm (±) | 30.7 | 37.2 |
LSDp≤0.05 | 88.6 | 107.4 |
Factors | System Productivity (kg/ha) | Production Efficiency (kg/ha/day) |
---|---|---|
Land Situation (LS) | ||
Medium upland | 6242 | 24.48 |
Medium lowland | 6634 | 25.44 |
SEm (±) | 52.5 | 0.20 |
LSDp≤0.05 | 236.2 | 0.92 |
Date of Sowing (DOS) | ||
1st DOS | 7316 | 27.75 |
2nd DOS | 6975 | 26.63 |
3rd DOS | 6523 | 25.25 |
4th DOS | 6331 | 24.76 |
5th DOS | 5881 | 23.22 |
6th DOS | 5603 | 22.15 |
SEm (±) | 64.0 | 0.25 |
LSDp≤0.05 | 193.0 | 0.75 |
Cropping System (CS) | ||
Rice-Lathyrus | 6324 | 25.05 |
Rice-Lentil | 6552 | 24.88 |
SEm (±) | 9.8 | 0.04 |
LSDp≤0.05 | 44.0 | 0.13 |
Factor | Rice-Lathyrus System | Rice-Lentil System | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Organic Carbon (%) | Macronutrients (kg/ha) | pH | EC1:5 (dS/m) | Organic Carbon (%) | Macronutrients (kg/ha) | pH | EC1:5 (dS/m) | |||||
N | P2O5 | K2O | N | P2O5 | K2O | |||||||
Medium upland | ||||||||||||
1st DOS | 0.57 (+0.07) | 203 (+78) | 22.3 (+8.0) | 396 (−49) | 6.59 (+1.14) | 1.09 (+0.87) | 0.52 (+0.02) | 196 (+71) | 23.8 (+9.5) | 418 (−27) | 7.40 (+1.95) | 1.16 (+0.94) |
2nd DOS | 0.52 (+0.02) | 198 (+73) | 20.2 (+5.9) | 460 (+15) | 7.19 (+1.74) | 1.14 (+0.92) | 0.51 (+0.01) | 194 (+69) | 21.1 (+6.8) | 405 (−40) | 7.34 (+1.89) | 1.33 (+1.11) |
3rd DOS | 0.53 (+0.03) | 183 (+58) | 20.1 (+5.8) | 405 (−40) | 7.49 (+2.04) | 1.29 (+1.07) | 0.55 (+0.05) | 182 (+57) | 21.1 (+6.8) | 423 (−22) | 7.25 (+1.80) | 1.38 (+1.16) |
4th DOS | 0.52 (+0.02) | 136 (+11) | 19.6 (+5.3) | 416 (−29) | 6.93 (+1.48) | 1.41 (+1.19) | 0.51 (+0.01) | 150 (+25) | 20.3 (+6.0) | 417 (−28) | 7.40 (+1.95) | 1.30 (+1.08) |
5th DOS | 0.53 (+0.03) | 167 (+42) | 21.0 (+6.7) | 466 (−21) | 7.31 (+1.86) | 1.37 (+1.25) | 0.52 (+0.02) | 150 (+25) | 21.0 (+6.7) | 473 (+28) | 6.77 (+1.32) | 1.46 (+1.24) |
6th DOS | 0.51 (+0.01) | 152 (+27) | 20.3 (+6.0) | 451 (−6) | 7.42 (+1.25) | 1.47 (+1.25) | 0.50 (0.0) | 140 (+15) | 22.2 (+7.9) | 462 (+17) | 7.68 (+2.23) | 1.44 (+1.22) |
Medium lowland | ||||||||||||
1st DOS | 0.56 (+0.05) | 293 (+155) | 25.6 (+1.7) | 461 (−4) | 6.66 (+1.00) | 1.13 (+1.00) | 0.48 (−0.03) | 282 (+144) | 22.3 (−1.6) | 418 (−47) | 7.03 (+1.38) | 1.25 (+1.12) |
2nd DOS | 0.44 (−0.07) | 231 (+93) | 22.3 (−1.6) | 474 (−9) | 6.39 (+1.08) | 1.21 (+1.08) | 0.44 (−0.08) | 236 (+98) | 23.3 (−0.6) | 492 (+27) | 6.90 (+1.25) | 1.26 (+1.13) |
3rd DOS | 0.47 (−0.05) | 260 (+122) | 19.8 (−4.1) | 434 (−31) | 7.39 (+1.09) | 1.22 (+1.09) | 0.43 (−0.08) | 276 (+138) | 19.8 (−4.2) | 425 (−40) | 7.29 (+1.64) | 1.31 (+1.18) |
4th DOS | 0.48 (−0.03) | 191 (+53) | 22.1 (−1.8) | 436 (−29) | 6.32 (+1.21) | 1.34 (+1.21) | 0.48 (−0.03) | 216 (+78) | 19.2 (−4.7) | 402 (−53) | 6.48 (+0.83) | 1.28 (+1.15) |
5th DOS | 0.55 (+0.04) | 210 (+72) | 23.6 (−0.3) | 431 (−34) | 6.69 (+1.24) | 1.37 (+1.24) | 0.48 (−0.03) | 213 (+75) | 19.0 (−4.9) | 408 (−57) | 6.84 (+1.19) | 1.38 (+1.25) |
6th DOS | 0.58 (+0.07) | 194 (+56) | 19.9 (−4.0) | 426 (−39) | 6.43 (+1.25) | 1.38 (+1.25) | 0.52 (+0.01) | 205 (+67) | 19.1 (−4.8) | 427 (−38) | 6.72 (+1.07) | 1.42 (+1.29) |
Independent Factors | Regression Equation | 100R2 Value | Significant Level |
---|---|---|---|
Year 1 | |||
GSM Medium Upland | y = 589.8GSM + 625.8 | - | NS |
Soil Salinity Medium Upland | y = −237.7SS + 922.5 | 91(−) | ** |
Solute Potential Medium Upland | y = 0.112SP + 926.9 | 36(+) | * |
GSM Medium Lowland | y = 3505.6GSM + 244.9 | - | NS |
Soil Salinity Medium Lowland | y = −235.4SS + 1004.0 | 73(−) | * |
Solute Potential Medium Lowland | y = 0.175SP + 1013.7 | 74(+) | ** |
Year 2 | |||
GSM Medium Upland | y = 7412.6GSM − 202.69 | - | NS |
Soil Salinity Medium Upland | y = −299.2SS + 1339.5 | 70(−) | ** |
Solute Potential Medium Upland | y = 0.183SP + 1302.2 | 0.84(+) | ** |
GSM Medium Lowland | y = 6877.1GSM − 62.9 | - | NS |
Soil Salinity Medium Lowland | y = −281.7SS + 1208.8 | 70(−) | * |
Solute Potential Medium Lowland | y = 0.170SP + 1192.0 | 74(+) | ** |
Independent Factors | Regression Equation | 100R2 Value | Significant Level |
---|---|---|---|
Year 1 | |||
GSM Medium Upland | y = 1141.5 GSM + 463.7 | - | NS |
Soil Salinity Medium Upland | y = −176.6SS + 821.1 | 80(−) | ** |
Solute Potential Medium Upland | y = 0.10SP + 858.9 | 47(+) | ** |
GSM Medium Lowland | y = 2376 GSM + 286.43 | - | NS |
Soil Salinity Medium Lowland | y = −219.8SS + 865.8 | 84(−) | ** |
Solute Potential Medium Lowland | y = 0.164SP + 876.6 | 90(+) | ** |
Year 2 | |||
GSM Medium Upland | y = 7887 GSM − 534.3 | - | NS |
Soil Salinity Medium Upland | y = −350.1SS + 1145.9 | 71(−) | ** |
Solute Potential Medium Upland | y = 0.21SP + 1096.2 | 83(+) | ** |
GSM Medium Lowland | y = 4584 GSM − 63.72 | - | NS |
Soil Salinity Medium Lowland | y = −182.21SS + 907.7 | 68(−) | ** |
Solute Potential Medium Lowland | y = 0.11SP + 897.9 | 72(+) | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, S.; Brahmachari, K.; Gaydon, D.S.; Dhar, A.; Dey, S.; Mainuddin, M. Options for Intensification of Cropping System in Coastal Saline Ecosystem: Inclusion of Grain Legumes in Rice-Based Cropping System. Soil Syst. 2024, 8, 90. https://doi.org/10.3390/soilsystems8030090
Sarkar S, Brahmachari K, Gaydon DS, Dhar A, Dey S, Mainuddin M. Options for Intensification of Cropping System in Coastal Saline Ecosystem: Inclusion of Grain Legumes in Rice-Based Cropping System. Soil Systems. 2024; 8(3):90. https://doi.org/10.3390/soilsystems8030090
Chicago/Turabian StyleSarkar, Sukamal, Koushik Brahmachari, Donald S. Gaydon, Anannya Dhar, Saikat Dey, and Mohammed Mainuddin. 2024. "Options for Intensification of Cropping System in Coastal Saline Ecosystem: Inclusion of Grain Legumes in Rice-Based Cropping System" Soil Systems 8, no. 3: 90. https://doi.org/10.3390/soilsystems8030090
APA StyleSarkar, S., Brahmachari, K., Gaydon, D. S., Dhar, A., Dey, S., & Mainuddin, M. (2024). Options for Intensification of Cropping System in Coastal Saline Ecosystem: Inclusion of Grain Legumes in Rice-Based Cropping System. Soil Systems, 8(3), 90. https://doi.org/10.3390/soilsystems8030090