Soil Dynamics in Carbon, Nitrogen, and Enzyme Activity Under Maize–Green Manure Cropping Sequences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Soil Characterization
2.2. Field Preparation
2.3. Experiment Setup and Execution
2.4. Estimated Maize Crop Productivity
2.5. Soil Sampling
2.6. Chemical and Enzymatic Analysis
2.7. Statistical Analysis
3. Results
3.1. Maize Grain Yields Under Green Manure, Fallow and Maize Crop Succession Cycles
3.2. Enzyme Activity in Soil Under Green Manure, Fallow and Maize Crop Succession Cycles
3.3. Carbon and Nitrogen in Soil Under Green Manure, Fallow and Maize Crop Succession Cycles
3.4. Similarities of Crop Succession Systems Within Succession Cycles
4. Discussion
4.1. Maize Grain Yield Under Green Manure, Fallow and Maize Crop Succession Cycles
4.2. Enzyme Activity in Soil in Soil Under Green Manure, Fallow and Maize Crop Succession Cycles
4.3. Carbon and Nitrogen in Soil Under Green Manure, Fallow and Maize Crop Succession Cycles
4.4. Performance of Cycles of Crop Succession Systems for Maize Yield
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.; Akter, T.; Sohel, U.; Mohammad, R.; Alam, S. Green manuring effects on crop morpho-physiological characters, rice yield and soil properties. Physiol. Mol. Biol. Plants 2019, 25, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef] [PubMed]
- He, H.-B.; Li, W.-X.; Zhang, Y.-W.; Cheng, J.-K.; Jia, X.-Y.; Li, S.; Yang, H.-R.; Chen, B.-M.; Xin, G.-R. Effects of Italian ryegrass residues as green manure on soil properties and bacterial communities under an Italian ryegrass (Lolium multiflorum L.)-rice (Oryza sativa L.) rotation. Soil Tillage Res. 2020, 196, 104487. [Google Scholar] [CrossRef]
- Ambrosano, E.J.; Wutke, E.B.; Tanaka, R.T.; Mascarenhas, H.A.A.; Braga, N.R.; Muraoka, T. Leguminosas Para Adubação Verde: Uso Apropriado em Rotação de Culturas; Coordenadoria de Assistência Técnica Integral: Campinas, Brazil, 1997; p. 24.
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping systems in agriculture and their impact on soil health—A review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover Crops for Sustainable Cropping Systems: A Review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K.; Cortasa, M.S.; Loges, R. Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses? Plant Soil 2009, 322, 101–114. [Google Scholar] [CrossRef]
- Yang, L.; Bai, J.; Liu, J.; Zeng, N.; Cao, W. Green Manuring Effect on Changes of Soil Nitrogen Fractions, Maize Growth, and Nutrient Uptake. Agronomy 2018, 8, 261. [Google Scholar] [CrossRef]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Balota, E.L.; Chaves, J.C.D. Atividade enzimática e mineralização do carbono e nitrogênio sob solo cultivado com adubos verdes na cultura do cafeeiro. Rev. Bras. Cienc. Solo 2010, 34, 1573–1583. [Google Scholar] [CrossRef]
- Balota, E.L.; Kanashiro, M.; Filho, A.C.; Andrade, D.S.; Dick, R.P. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems in subtropical agro-ecosystems. Braz. J. Microbiol. 2004, 35, 300–306. [Google Scholar] [CrossRef]
- Malhi, S.S.; Nyborg, M.; Goddard, T.; Puurveen, D. Long-term tillage, straw management and N fertilization effects on quantity and quality of organic C and N in a Black Chernozem soil. Nutr. Cycl. Agroecosyst. 2011, 90, 227–241. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Ritz, K.; Bardgett, R.D.; Cook, R.; Christensen, S.; Ekelund, F.; Sørensen, S.J.; Bååth, E.; Bloem, J.; De Ruiter, P.C.; et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: An examination of the biodiversity–ecosystem function relationship. Oikos 2000, 90, 279–294. [Google Scholar] [CrossRef]
- Zornoza, R.; Acosta, J.A.; Faz, A.; Bååth, E. Microbial growth and community structure in acid mine soils after addition of different amendments for soil reclamation. Geoderma 2016, 272, 64–72. [Google Scholar] [CrossRef]
- Matsumoto, L.S.; Martines, A.M.; Avanzi, M.A.; Albino, U.; Brasil, C.; Saridakis, D.; Rampazo, L.; Zangaro, W.; Andrade, G. Interactions among functional groups in the cycling of, carbon, nitrogen and phosphorus in the rhizosphere of three successional species of tropical woody trees. Appl. Soil Ecol. 2005, 28, 57–65. [Google Scholar] [CrossRef]
- Shamshitov, A.; Kadžienė, G.; Supronienė, S. The Role of Soil Microbial Consortia in Sustainable Cereal Crop Residue Management. Plants 2024, 13, 766. [Google Scholar] [CrossRef]
- Mummey, D.L.; Stahl, P.D.; Buyer, J.S. Soil microbiological properties 20 years after surface mine reclamation: Spatial analysis of reclaimed and undisturbed sites. Soil Biol. Biochem. 2002, 34, 1717–1725. [Google Scholar] [CrossRef]
- Gómez-Sagasti, M.T.; Alkorta, I.; Becerril, J.M.; Epelde, L.; Anza, M.; Garbisu, C. Microbial Monitoring of the Recovery of Soil Quality During Heavy Metal Phytoremediation. Water Air Soil Pollut. 2012, 223, 3249–3262. [Google Scholar] [CrossRef]
- Bandick, A.K.; Dick, R.P. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999, 31, 1471–1479. [Google Scholar] [CrossRef]
- Daunoras, J.; Kačergius, A.; Gudiukaitė, R. Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. Biology 2024, 13, 85. [Google Scholar] [CrossRef]
- Bhaduri, D.; Sihi, D.; Bhowmik, A.; Verma, B.C.; Munda, S.; Dari, B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front. Microbiol. 2022, 13, 938481. [Google Scholar] [CrossRef]
- Liu, C.-A.; Zhou, L.-M. Soil organic carbon sequestration and fertility response to newly-built terraces with organic manure and mineral fertilizer in a semi-arid environment. Soil Tillage Res. 2017, 172, 39–47. [Google Scholar] [CrossRef]
- Massenssini, A.M.; Bonduki, V.H.A.; Melo, C.A.D.; Tótola, M.R.; Ferreira, F.A.; Costa, M.D. Relative importance of soil physico-chemical characteristics and plant species identity to the determination of soil microbial community structure. Appl. Soil Ecol. 2015, 91, 8–15. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Masto, R.E.; Cerdà, A.; Ram, L.C. Rhizosphere soil indicators for carbon sequestration in a reclaimed coal mine spoil. Catena 2016, 141, 100–108. [Google Scholar] [CrossRef]
- Sobucki, L.; Ramos, R.F.; Meireles, L.A.; Antoniolli, Z.I.; Jacques, R.J.S. Contribution of enzymes to soil quality and the evolution of research in Brazil. Rev. Bras. Cienc. Solo 2021, 45, e0210109. [Google Scholar] [CrossRef]
- Uwituze, Y.; Nyiraneza, J.; Fraser, T.D.; Dessureaut-Rompré, J.; Ziadi, N.; Lafond, J. Carbon, Nitrogen, Phosphorus, and Extracellular Soil Enzyme Responses to Different Land Use. Front. Soil Sci. 2022, 2, 814554. [Google Scholar] [CrossRef]
- Brown, S.L.; Chaney, R.L. Use of Amendments to Restore Ecosystem Function to Metal Mining-Impacted Sites: Tools to Evaluate Efficacy. Curr. Pollut. Rep. 2016, 2, 91–102. [Google Scholar] [CrossRef]
- Rüdisser, J.; Tasser, E.; Peham, T.; Meyer, E.; Tappeiner, U. The dark side of biodiversity: Spatial application of the biological soil quality indicator (BSQ). Ecol. Indic. 2015, 53, 240–246. [Google Scholar] [CrossRef]
- Júnior, M.M.; Melo, W.J. Carbono, carbono da biomassa microbiana e atividade enzimática em um solo sob mata natural, pastagem e cultura do algodoeiro. Rev. Bras. Cienc. Solo 1999, 23, 257–263. [Google Scholar] [CrossRef]
- Roldán, A.; Salinas-García, J.R.; Alguacil, M.M.; Díaz, E.; Caravaca, F. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma 2005, 129, 178–185. [Google Scholar] [CrossRef]
- Hungria, M.; Franchini, J.C.; Brandão-Junior, O.; Kaschuk, G.; Souza, R.A. Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Appl. Soil Ecol. 2009, 42, 288–296. [Google Scholar] [CrossRef]
- Santos, J.V.; Bento, L.R.; Bresolin, J.D.; Mitsuyuki, M.C.; Oliveira, P.P.A.; Pezzopane, J.R.M.; Bernardi, A.C.d.C.; Mendes, I.C.; Martin-Neto, L. The long-term effects of intensive grazing and silvopastoral systems on soil physicochemical properties, enzymatic activity, and microbial biomass. Catena 2022, 219, 106619. [Google Scholar] [CrossRef]
- Ross, D.J. Effects of air-dry, refrigerated and frozen storage on activities of enzymes hydrolysing sucrose and starch in soils. Eur. J. Soil Sci. 1966, 16, 86–94. [Google Scholar] [CrossRef]
- Pancholy, S.K.; Rice, E.L. Soil Enzymes in Relation to Old Field Succession: Amylase, Cellulase, Invertase, Dehydrogenase, and Urease. Soil Sci. Soc. Am. J. 1973, 37, 47–50. [Google Scholar] [CrossRef]
- Köppen, W. Das Geographische System der Klimatologie; Verlag Gebrüder Borntrager: Berlin, Germany, 1936; 44p. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2022; 410p.
- Raij, B.; Andrade, J.; Cantarella, H.; Quaggio, J.A. Análise Química para Avaliação da Fertilidade de Solos Tropicais; Boletim Técnico: Campinas, Brazil, 2001; 285p. [Google Scholar]
- Teixeira, P.C.; Fontana, G.K.D.A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa Solos: Recife, Brazil, 2017. [Google Scholar]
- Cantarella, H.; Quaggio, J.A.; Mattos, D., Jr.; Boaretto, R.M.; Raij, B. Boletim 100: Recomendações de Adubação e Calagem para o Estado de São Paulo; Instituto Agronômico de Campinas: Campinas, Brazil, 2022.
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Dabin, B. Méthode d’extraction et de fractionnement des matières humiques du sol Application à quelques études pédologiques et agronomiques dans les sols tropicaux. Cah Orston Ser. Pédol. 1976, 4, 287–297. [Google Scholar]
- Chen, Y.; Avnimelech, Y. (Eds.) The Role of Organic Matter in Modern Agriculture; Developments in Plant and Soil Sciences; Springer: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Morse, E.E. Anthrone in Estimating Low Concentrations of Sucrose. Anal. Chem. 1947, 19, 1012–1013. [Google Scholar] [CrossRef]
- Oser, B.L. Hawk’s Physiological Chemistry, 14th ed.; McGraw-Hill Book Co. Inc.: New York, NY, USA, 1965. [Google Scholar]
- Abreu, C.H., Jr.; Muraoka, T.; Lavorante, A.F. Relationship between acidity and chemical properties of brazilian soils. Sci. Agric. 2003, 60, 337–343. [Google Scholar] [CrossRef]
- Anselmo, J.L.; Bossolani, J.W.; Lazarini, E.; Leal, A.J.F.; Alvarez, R.C.F.; Arf, M.V. Maize productivity cultivated as first crop in succession to different cover crops. Aust. J. Crop Sci. 2018, 12, 967–974. [Google Scholar] [CrossRef]
- Allison, S.D.; Vitousek, P.M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 2005, 37, 937–944. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Belnap, J.; Findlay, S.G.; Shah, J.J.F.; Hill, B.H.; Kuehn, K.A.; Kuske, C.R.; Litvak, M.E.; Martinez, N.G.; Moorhead, D.L.; et al. Extracellular enzyme kinetics scale with resource availability. Biogeochemistry 2014, 121, 287–304. [Google Scholar] [CrossRef]
- Sainju, U.M.; Liptzin, D.; Dangi, S.M. Enzyme activities as soil health indicators in relation to soil characteristics and crop production. Agrosyst. Geosci. Environ. 2022, 5, e20297. [Google Scholar] [CrossRef]
- Johnson, A.M.; Hoyt, G.D. Changes to the Soil Environment under Conservation Tillage. HortTechnology 1999, 9, 380–393. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Aparna, K.; Dotaniya, C.K.; Singh, M.; Regar, K.L. Role of Soil Enzymes in Sustainable Crop Production. In Enzymes in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 569–589. ISBN 978-0-12-813280-7. [Google Scholar]
- Lucero, C.T.; Lorda, G.S.; Anzuay, M.S.; Ludueña, L.M.; Taurian, T. Peanut Endophytic Phosphate Solubilizing Bacteria Increase Growth and P Content of Soybean and Maize Plants. Curr. Microbiol. 2021, 78, 1961–1972. [Google Scholar] [CrossRef] [PubMed]
- Asghar, W.; Kataoka, R. Green manure incorporation accelerates enzyme activity, plant growth, and changes in the fungal community of soil. Arch. Microbiol. 2022, 204, 7. [Google Scholar] [CrossRef] [PubMed]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. Environmental Factors Affecting the Mineralization of Crop Residues. Agronomy 2020, 10, 1951. [Google Scholar] [CrossRef]
- Abreu Junior, C.H.; Muraoka, T.; Oliveira, F.C. Carbono, nitrogênio, fósforo e enxofre em solos tratados com composto de lixo urbano. Rev. Bras. Cienc. Solo 2002, 26, 769–780. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Courcelles, V.d.R.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Fontaine, S.; Mariotti, A.; Abbadie, L. The priming effect of organic matter: A question of microbial competition? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Gualberto, A.V.S.; Souza, H.A.; Sagrilo, E.; Araujo, A.S.F.; Mendes, L.W.; Medeiros, E.V.; Pereira, A.P.A.; Costa, D.P.; Vogado, R.F.; Cunha, J.R.; et al. Organic C Fractions in Topsoil under Different Management Systems in Northeastern Brazil. Soil Syst. 2023, 7, 11. [Google Scholar] [CrossRef]
- Marschner, B.; Brodowski, S.; Dreves, A.; Gleixner, G.; Gude, A.; Grootes, P.M.; Hamer, U.; Heim, A.; Jandl, G.; Ji, R.; et al. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 2008, 171, 91–110. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Lavallee, J.M. Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Adv. Agron. 2022, 172, 1–66. [Google Scholar] [CrossRef]
- Pfleger, P.; Cassol, P.C.; Mafra, Á.L. Substâncias húmicas em Cambissolo sob vegetação natural e plantios de pinus em diferentes idades. Ciênc Florest. 2017, 27, 807–817. [Google Scholar] [CrossRef]
- Souza, W.J.O.; Melo, W.J. Teores de nitrogênio no solo e nas frações da matéria orgânica sob diferentes sistemas de produção de milho. Rev. Bras. Cienc. Solo 2000, 24, 885–896. [Google Scholar] [CrossRef]
- Balota, E.L.; Yada, I.F.U.; Amaral, H.F.; Nakatani, A.S.; Hungria, M.; Dick, R.P.; Coyne, M.S. Soil quality in relation to forest conversion to perennial or annual cropping in southern brazil. Rev. Bras. Cienc. Solo 2015, 39, 1003–1014. [Google Scholar] [CrossRef]
- Zhang, K.; Maltais-Landry, G.; Liao, H.-L. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biol. Biochem. 2021, 156, 108219. [Google Scholar] [CrossRef]
- Villanueva, F.C.A.; Boaretto, A.E.; Firme, L.P.; Muraoka, T.; Franco Filho, V.N.; Abreu Junior, C.H. Mudanças químicas e fitodisponibilidade de zinco estimada por método isotópico, em solo tratado com lodo de esgoto. Quim Nova 2012, 35, 1348–1354. [Google Scholar] [CrossRef]
- Vargas, L.K.; Scholles, D. Nitrogênio da biomassa microbiana, em solo sob diferentes sistemas de manejo, estimado por métodos de fumigação. Rev. Bras. Cienc. Solo 1998, 22, 411–417. [Google Scholar] [CrossRef]
Sampling Occasion | Resin-P | OC | pH | K+ | Ca2+ | Mg2+ | H+ + Al3+ | CEC | BS% |
---|---|---|---|---|---|---|---|---|---|
mg dm−3 | g dm−3 | CaCl2 | ------------- mmolc dm−3 ------------- | - % - | |||||
One month before liming | 21 ± 3 | 11.3 ± 1.5 | 4.6 ± 0.3 | 1.7 ± 0.2 | 10.3 ± 0.9 | 5.7 ± 0.3 | 47 ± 3 | 65 ± 5 | 27 ± 3 |
Six months after liming | 31 ± 5 | 12.4 ± 1.6 | 5.4 ± 0.4 | 1.7 ± 0.3 | 32.0 ± 2,5 | 11.0 ± 0.5 | 28 ± 2 | 73 ± 6 | 62 ± 5 |
Management | Before the Experiment | First Green Manure Crop (C0) | First Maize Cycle (C1) | Second Maize Cycle (C2) | Third Maize Cycle (C3) |
---|---|---|---|---|---|
Weed incorporation | August | - | - | - | |
Soil preparation | August | - | - | - | |
Manure seeding | - | April | April | April | |
Manure harvest and dry matter incorporation | - | September | August | September | |
Maize seeding | October | November | November | November | |
Leaf diagnosis and soil sampling | - | July | January | January | January |
Maize harvest and dry matter incorporation | March | March | April | April |
Treatments | Yield | OC | C-Hum | N-NO3− | C/N Ratio |
---|---|---|---|---|---|
---- kg ha−1 ---- | ------------- g kg−1 ------------- | ---- mg kg−1 ---- | - | ||
Green manure/fallow and maize crop succession | |||||
Sorghum | 8713 ± 1004 A | 13.0 ± 0.99 A | 10.7 ± 1.04 A | 7.74 ± 9.17 A | 12.0 ± 1.59 A |
Lablab | 8480 ± 1036 AB | 12.5 ± 0.89 A | 10.1 ± 0.92 A | 7.76 ± 8.08 A | 11.6 ± 1.67 A |
Fallow | 7732 ± 1003 B | 12.3 ± 1.08 A | 9.9 ± 1.03 A | 7.22 ± 6.75 A | 12.0 ± 1.75 A |
Succession cycle | |||||
C0 | - | 12.6 ± 0.94 ab | 10.3 ± 0.86 a | 1.4 ± 1.0 c | 11.3 ± 1.18 b |
C1 | 8665 ± 650 a | 13.0 ± 0.66 a | 10.4 ± 0.80 a | 5.8 ± 3.3 b | 12.7 ± 0.54 a |
C2 | 8511 ± 923 ab | 12.8 ± 1.44 a | 10.5 ± 1.58 a | 3.1 ± 1.9 bc | 13.4 ± 1.36 a |
C3 | 7732 ± 446 b | 11.9 ± 0.50 b | 9.8 ± 0.50 a | 20.0 ± 4.7 a | 10.0 ± 0.86 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu-Junior, C.H.; Melo, W.J.d.; Oliveira, R.A.d.; Cardoso, P.H.S.; Dantas, R.d.A.; Sousa, R.N.d.; Silva, D.L.d.; Nogueira, T.A.R.; Jani, A.D.; Capra, G.F.; et al. Soil Dynamics in Carbon, Nitrogen, and Enzyme Activity Under Maize–Green Manure Cropping Sequences. Soil Syst. 2024, 8, 115. https://doi.org/10.3390/soilsystems8040115
Abreu-Junior CH, Melo WJd, Oliveira RAd, Cardoso PHS, Dantas RdA, Sousa RNd, Silva DLd, Nogueira TAR, Jani AD, Capra GF, et al. Soil Dynamics in Carbon, Nitrogen, and Enzyme Activity Under Maize–Green Manure Cropping Sequences. Soil Systems. 2024; 8(4):115. https://doi.org/10.3390/soilsystems8040115
Chicago/Turabian StyleAbreu-Junior, Cassio Hamilton, Wanderley José de Melo, Roberto Alves de Oliveira, Paulo Henrique Silveira Cardoso, Raíssa de Araujo Dantas, Rodrigo Nogueira de Sousa, Dalila Lopes da Silva, Thiago Assis Rodrigues Nogueira, Arun Dilipkumar Jani, Gian Franco Capra, and et al. 2024. "Soil Dynamics in Carbon, Nitrogen, and Enzyme Activity Under Maize–Green Manure Cropping Sequences" Soil Systems 8, no. 4: 115. https://doi.org/10.3390/soilsystems8040115
APA StyleAbreu-Junior, C. H., Melo, W. J. d., Oliveira, R. A. d., Cardoso, P. H. S., Dantas, R. d. A., Sousa, R. N. d., Silva, D. L. d., Nogueira, T. A. R., Jani, A. D., Capra, G. F., & Melo, G. M. P. d. (2024). Soil Dynamics in Carbon, Nitrogen, and Enzyme Activity Under Maize–Green Manure Cropping Sequences. Soil Systems, 8(4), 115. https://doi.org/10.3390/soilsystems8040115