Biogas, Biomethane and Digestate Potential of By-Products from Green Biorefinery Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Biorefinery Residual Co-Products (Grass Press Cake, Grass Whey and De-FOS Whey) Preparation
2.2. Biomethane Potential (BMP) Assays
2.3. Compositional Analysis of Press Cake
2.4. Analytical and Chemical Methods
2.4.1. Chemical Characterization of Biorefinery Co-Product Substrates and Digestate
2.4.2. Biogas Production Potential
3. Results
3.1. Biomass Composition of the Green Biorefinery Press Cake, Grass Whey and De-FOS Whey
3.2. Biogas and Biomethane Potential of Biorefinery Residual Co-Products (Grass Press Cake, De-FOS and Grass Whey)
3.3. Digestate Analysis to Determine the Fertilizer Potential of Biorefinery Residual Co-Products after Anaerobic Digestion
4. Discussion
4.1. Biomass Composition of the Green Biorefinery Press Cake, Grass Whey and De-FOS Whey
4.2. Biogas and Biomethane Potential of Biorefinery Residual Co-Products (Grass Press Cake, De-FOS and Grass Whey)
4.3. Digestate Analysis to Determine the Fertilizer Potential of Biorefinery Residual Co-Products after Anaerobic Digestion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mann, M.E. Radical reform and the Green New Deal. Nat. Cell Biol. 2019, 573, 340–341. [Google Scholar] [CrossRef] [Green Version]
- European Parliament. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0028 (accessed on 16 August 2021).
- Holland, M.H.D.D.M. (Ed.) Renewable Energy in Ireland, S.E.A.o. Ireland. Available online: https://www.seai.ie/publications/2020-Renewable-Energy-in-Ireland-Report.pdf (accessed on 13 August 2021).
- O’Neill, A. Ireland: Distribution of Gross Domestic Product (GDP) Across Economic Sectors from 2010 to 2020. 2021, Statista. Available online: https://www.statista.com/statistics/375575/ireland-gdp-distribution-across-economic-sectors/ (accessed on 16 August 2021).
- Agriculture and Food Development Authority. Agricultural Emissions-Greenhouse Gases and Ammonia. In Virtual Beef Week. Available online: https://www.teagasc.ie/publications/2020/agricultural-emissions-greenhouse-gases-and-ammonia.php (accessed on 16 August 2021).
- Walther, C.A.; García, C.; Dwyer, N.; Gault, J. Climate Status Report for Ireland. Available online: https://www.epa.ie/publications/research/climate-change/Research_Report_386.pdf (accessed on 13 August 2021).
- Díaz-Vázquez, D.; Alvarado-Cummings, S.C.; Meza-Rodríguez, D.; Senés-Guerrero, C.; de Anda, J.; Gradilla-Hernández, M.S. Evaluation of Biogas Potential from Livestock Manures and Multicriteria Site Selection for Centralized Anaerobic Di-gester Systems: The Case of Jalisco, México. Sustainability 2020, 12, 3527. [Google Scholar] [CrossRef]
- Association, E.B. About Biogas and Biomethane. 2021, European Biogas Association. Available online: https://www.europeanbiogas.eu/about-biogas-and-biomethane (accessed on 16 August 2021).
- Central Statistics Office Ireland. Farm Structure Survey 2013. Available online: https://www.cso.ie/en/methods/agricultureandfishing/farmstructuresurvey/ (accessed on 13 August 2021).
- Biernacki, P.; Steinigeweg, S.; Borchert, A.; Uhlenhut, F. Application of Anaerobic Digestion Model No. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine. Bioresour. Technol. 2013, 127, 188–194. [Google Scholar] [CrossRef]
- Lehtomäki, A.; Huttunen, S.; Lehtinen, T.; Rintala, J. Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresour. Technol. 2008, 99, 3267–3278. [Google Scholar] [CrossRef] [PubMed]
- McEniry, J.; Allen, E.; Murphy, J.; O’Kiely, P. Grass for biogas production: The impact of silage fermentation charac-teristics on methane yield in two contrasting biomethane potential test systems. Renew. Energy. 2014, 63, 524–530. [Google Scholar] [CrossRef]
- Wall, D.M.; Allen, E.; Straccialini, B.; O’Kiely, P.; Murphy, J.D. Optimisation of digester performance with increasing organic loading rate for mono- and co-digestion of grass silage and dairy slurry. Bioresour. Technol. 2014, 173, 422–428. [Google Scholar] [CrossRef]
- Attard, J.; McMahon, H.; Doody, P.; Belfrage, J.; Clark, C.; Anda Ugarte, J.; Pérez-Camacho, M.N.; Cuenca Martín, M.d.S.; Giráldez Morales, A.J.; Gaffey, J. Mapping and Analysis of Biomass Supply Chains in Andalusia and the Republic of Ireland. Sustainability 2020, 12, 4595. [Google Scholar] [CrossRef]
- McEniry, J.; Crosson, P.; Finneran, E.; McGee, M.; Keady, T.; O’Kiely, P. How much grassland biomass is available in Ireland in excess of livestock requirements? Ir. J. Agric. Food Res. 2013, 68, 67–80. [Google Scholar]
- Xie, S. Evaluation of Biogas Production from Anaerobic Digestion of Pig Manure and Grass Silage. Available online: http://hdl.handle.net/10379/3023 (accessed on 23 August 2021).
- Himanshu, H.; Murphy, J.D.; Lenehan, J.J.; O’Kiely, P. Impacts of characteristics of grass silage and cattle slurry feedstocks on the cost of methane production. Biofuels Bioprod. Biorefining 2018, 13, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Beausang, C.; McDonnell, K.; Murphy, F. Assessing the environmental sustainability of grass silage and cattle slurry for biogas production. J. Clean. Prod. 2021, 298, 126838. [Google Scholar] [CrossRef]
- Gas Networks Ireland. The Future of Renewable Gas in Ireland. 2021. Available online: https://www.gasnetworks.ie/corporate/company/our-commitment/environment/renewable-gas/ (accessed on 13 August 2021).
- Alagarsamy, A. Ervia-Decarbonising Domestic Heating in Ireland. Available online: http://www.ervia.ie/decarbonising-domestic-he/ (accessed on 16 August 2021).
- O’Connor, S.; Ehimen, E.; Pillai, S.C.; Power, N.; Lyons, G.A.; Bartlett, J. An Investigation of the Potential Adoption of Anaerobic Digestion for Energy Production in Irish Farms. Environments 2021, 8, 8. [Google Scholar] [CrossRef]
- Xiu, S.; Shahbazi, A. Development of Green Biorefinery for Biomass Utilization: A Review. Trends Renew. Energy 2015, 1, 4–15. [Google Scholar] [CrossRef]
- Schwinn, V. Biowert Grass Biorefinery. Available online: https://www.ieabioenergy.com/blog/publications/new-publication-biowert-grass-biorefinery-biobased-plastics-germany/ (accessed on 13 August 2021).
- Stødkilde, L.; Ambye-Jensen, M.; Jensen, S.K. Biorefined organic grass-clover protein concentrate for growing pigs: Effect on growth performance and meat fatty acid profile. Anim. Feed. Sci. Technol. 2021, 276, 114943. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Domingues, J.P.; Dima, A.M. Mapping the Sustainable Development Goals Relationships. Sustainability 2020, 12, 3359. [Google Scholar] [CrossRef] [Green Version]
- Santamaría-Fernández, M.; Molinuevo-Salces, B.; Lübeck, M.; Uellendahl, H. Biogas potential of green biomass after protein extraction in an organic biorefinery concept for feed, fuel and fertilizer production. Renew. Energy 2018, 129, 769–775. [Google Scholar] [CrossRef]
- Feng, L.; Ward, A.J.; Ambye-Jensen, M.; Møller, H.B. Pilot-scale anaerobic digestion of by-product liquid (brown juice) from grass protein extraction using an un-heated anaerobic filter. Process. Saf. Environ. Prot. 2021, 146, 886–892. [Google Scholar] [CrossRef]
- Patterson, T.; Massanet-Nicolau, J.; Jones, R.; Boldrin, A.; Valentino, F.; Dinsdale, R.; Guwy, A. Utilizing grass for the biological production of polyhydroxyalkanoates (PHAs) via green biorefining: Material and energy flows. J. Ind. Ecol. 2021, 25, 802–815. [Google Scholar] [CrossRef]
- Souza, M.F.; Devriendt, N.; Willems, B.; Guisson, R.; Biswas, J.K.; Meers, E. Techno-economic Feasibility of Extrusion as a Pretreatment Step for Biogas Production from Grass. BioEnergy Res. 2021, 1–8. [Google Scholar] [CrossRef]
- Feeney, F.; Buckley, E.; Gaffey, J.; Hayes, D.; Gottumukkala, L. Report on the Potential of Recirculated Grass Whey as a Nutrient Fertilizer and Opportunities for Grass Whey in Biogas Production. Biorefinery Glas Project. Available online: https://biorefineryglas.eu/wp-content/uploads/2021/03/Biorefinery-Glas-D2.6.pdf (accessed on 1 December 2021).
- Wall, D.M. Biomethane Production from Grass Silage: Laboratory Assessment to Maximise Yields. UCC. Available online: https://cora.ucc.ie/handle/10468/2103 (accessed on 1 December 2021).
- Murphy, J.D.; Korres, N.E.; Singh, A.; Smyth, B.; Nizami, A.; Thamsiriroj, T. The Potential for Grass Biomethane as a Biofuel: Compressed Biomethane Generated from Grass, Utilized as a Transport Biofuel. EPA. Available online: https://www.epa.ie/publications/research/climate-change/CCRP11-The-Potential-for-Grass-Biomethane-as-a-Biofuel.pdf (accessed on 1 December 2021).
- Wall, D.M.; O’Kiely, P.; Murphy, J.D. The potential for biomethane from grass and slurry to satisfy renewable energy targets. Bioresour. Technol. 2013, 149, 425–431. [Google Scholar] [CrossRef]
- Corona, A.; Ambye-Jensen, M.; Vega, G.C.; Hauschild, M.Z.; Birkved, M. Techno-environmental assessment of the green biorefinery concept: Combining process simulation and life cycle assessment at an early design stage. Sci. Total Environ. 2018, 635, 100–111. [Google Scholar] [CrossRef]
- Hermansen, J.E.; Jorgenson, U.; Laerke, P.E.; Manevski, K.; Boelt, B.; Jensen, S.K.; Weisbjerg, M.; Daalsgaard, T.K.; Danielsen, M.; Asp, T.; et al. Green Biomass Protein Production through Biorefining. Aarhus University. Available online: https://pure.au.dk/portal/files/110736531/DCArapport093.pdf (accessed on 1 December 2021).
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- ISO 16994:2015; Solid Biofuels-Determination of Total Content of Sulfur and Chlorine. NIST: Gaithersburg, MA, USA, 2015.
- EN, B. 2011; Determination of Major Elements-Al, Ca, Fe, Mg, P., K., Si, Na and Ti. British Standards Institution: London, UK, 2011.
- O’Dell, J. The Determination of Chemical Oxygen Demand by SEMI-Automated Colorimetry-Method 410; Environmental Monitoring Systems Laboratory: Cincinnati, OH, USA; Office of Research and Development, US Environmental Protection Agency: Washington, DC, USA, 1993. [Google Scholar]
- ISO/TC 238, S.b. 2015b; Solid Biofuels—Determination of Minor Elements. NIST: Gaithersburg, MA, USA, 2015.
- Prochnow, A.; Heiermann, M.; Drenckhan, A.; Schelle, H. Seasonal pattern of biomethanisation of grass from landscape management. Int. J. Agric. Eng. 2005, 7, 1–17. [Google Scholar]
- Li, J.; Zhang, R.; Siddhu, M.A.H.; He, Y.; Wang, W.; Li, Y.; Chen, C.; Liu, G. Enhancing methane production of corn stover through a novel way: Sequent pretreatment of potassium hydroxide and steam explosion. Bioresour. Technol. 2015, 181, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Duan, X.; Chen, J.; Fang, K.; Feng, L.; Yan, Y.; Zhou, Q. Enhancing anaerobic digestion of waste activated sludge by pretreatment: Effect of volatile to total solids. Environ. Technol. 2016, 37, 1520–1529. [Google Scholar] [CrossRef]
- Escalante, H.; Castro, L.; Amaya, M.P.; Jaimes, L.; Jaimes-Estévez, J. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Manag. 2018, 71, 711–718. [Google Scholar] [CrossRef]
- Yan, Z.; Song, Z.; Li, D.; Yuan, Y.; Liu, X.; Zheng, T. The effects of initial substrate concentration, C/N ratio, and tem-perature on solid-state anaerobic digestion from composting rice straw. Bioresour. Technol. 2015, 177, 266–273. [Google Scholar] [CrossRef]
- Peu, P.; Picard, S.; Diara, A.; Girault, R.; Béline, F.; Bridoux, G.; Dabert, P. Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates. Bioresour. Technol. 2012, 121, 419–424. [Google Scholar] [CrossRef]
- Fang, C.; Boe, K.; Angelidaki, I. Anaerobic co-digestion of desugared molasses with cow manure; focusing on sodium and potassium inhibition. Bioresour. Technol. 2011, 102, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Mancipe-Jiménez, D.C.; Costa, C.; Márquez, M.C. Methanogenesis inhibition by phosphorus in anaerobic liquid waste treatment. Waste Treat. Recover. 2017, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Donkor, K.O.; Gottumukkala, L.D.; Diedericks, D.; Görgens, J.F. An advanced approach towards sustainable paper industries through simultaneous recovery of energy and trapped water from paper sludge. J. Environ. Chem. Eng. 2021, 9, 105471. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Zhang, Y.; Yuan, Z.; He, M.; Liang, C.; Zhuang, X.; Xie, J. Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF. Energy 2015, 90, 1199–1205. [Google Scholar] [CrossRef]
- Waldron, K.W. Handbook of Waste Management and Co-Product Recovery in Food Processing; Woodhead Publishing: Sawston, UK, 2009. [Google Scholar]
- Vertes, A.A.; Qureshi, N.; Yukawa, H.; Blaschek, H.P. Biomass to Biofuels: Strategies for Global Industries, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Boyd, C.E. Carbon: Nitrogen Ratio Management. Global Aquaculture Advocate. Available online: https://www.aquaculturealliance.org/advocate/carbon-nitrogen-ratio-management/ (accessed on 16 August 2021).
- Clapp, C.E.; Hayes, M.H.B.; Simpson, A.J.; Kingery, W.L. Chemistry of Soil Organic Matter. In SSSA Book Series; John Wiley&Sons: Hoboken, NJ, USA, 2018; pp. 1–150. [Google Scholar]
- Liang, C.; Balser, T.C. Microbial production of recalcitrant organic matter in global soils: Implications for productivity and climate policy. Nat. Rev. Genet. 2010, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brust, G.E. Management strategies for organic vegetable fertility. In Safety and Practice for Organic Food; Biswas, D., Shirley, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 193–212. [Google Scholar]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Baraza, X.; Sáez-Navarrete, C.; Torres-Castillo, R. Anaerobic biodegradability of leachate from MSW intermediate landfill. Afinidad 2019, 76, 585. [Google Scholar]
- Zhang, M.; Wang, Z.; Zhang, X.; Qian, X.; Shen, G. Biogas and quality fertilizer production from dry anaerobic digestion of rice straw with nitrogen addition. Bioresour. Technol. Rep. 2020, 11, 100509. [Google Scholar] [CrossRef]
Analysis | Reference Method | Units | Grass Press Cake | Grass Whey # | De-FOS Whey |
---|---|---|---|---|---|
Moisture | EN 14774-1:2009 (STANDARD, 2010) | % | 61.00 * | 97.97 * | 91.33 * |
Total Solids | Calculated | % | 39.00 * | 2.03 * | 8.67 * |
Ash | EN 14775:2009 (Standard, 2009) | % | 4.67 | 20.99 | 19.94 |
Volatile Solids | Calculated | % | 95.33 | 79.01 | 80.06 |
NPK | 14:1:7.5 | 2.9:1:11.8 | 4.3:1:7.3 | ||
Carbon | EN 15104:2011 (EN, 2011 b) (ISO/TC 238, 2015 a) | % | 47.81 | 37.73 | 40.70 |
Hydrogen | EN 15104:2011 | % | 5.73 | 5.09 | 4.76 |
Nitrogen | EN 15104:2011 | % | 2.74 | 2.18 | 4.34 |
Sulphur | EN 15289:2011(ISO/TC 238, 2015 a) | % | 0.22 | 0.37 | 0.35 |
Oxygen | By Difference | % | 38.84 | 33.64 | 29.90 |
Aluminium | EN ISO 16967:2015 (EN, 2011 a) | ppm | 224 (87) * | 313 (27) * | |
Calcium | EN ISO 16967:2015 | ppm | 4254 (1659) * | 7977 (692) * | |
Iron | EN ISO 16967:2015 | ppm | 413 (161) * | 387 (34) * | |
Magnesium | EN ISO 16967:2015 | ppm | 1100 (429) * | 4973 (431) * | |
Sodium | EN ISO 16967:2015 | ppm | 2379 (928) * | 2750 (238) * | |
Phosphorus | EN ISO 16967:2015 | ppm | 1960 (764) * | 7434 | 10063 (872) * |
Potassium | EN ISO 16967:2015 | ppm | 15159 (5912) * | 87057 | 72877 (6318) * |
Silicon | EN ISO 16967:2015 | ppm | 2434 (949) * | 1821 (158) * | |
Titanium | EN ISO 16967:2015 | ppm | 12 (5) * | 11 (1) * | |
COD | Modified EPA 410.4 (O’Dell, 1993) | g/kg | 1143 | 968 | 984 |
BOD | In-House | g/kg | 924 | 798 | 837 |
Ammonia | In-House | g/kg | 1.54 * | 1.62 * |
Analysis | Units | Grass Press Cake | De-FOS Whey |
---|---|---|---|
Arsenic | ppm | <1 | - |
Cadmium | ppm | <1 | <1 |
Cobalt | ppm | 2 | <1 |
Chromium | ppm | 41 | <1 |
Copper | ppm | 10 | 10 |
Mercury | ppm | 18 | <1 |
Manganese | ppm | 35 | 169 |
Molybdenum | ppm | 2 | 2 |
Nickel | ppm | 54 | 8 |
Lead | ppm | <1 | 3 |
Antimony | ppm | <1 | <1 |
Vanadium | ppm | <1 | <1 |
Zinc | ppm | 47 | 88 |
Grass Press Cake | Grass Whey | De-FOS Whey | Grass Silage | Dairy Whey | ||
---|---|---|---|---|---|---|
C:N ratio | 19:1 | 17:1 | 9:1 | 17:1 | - | |
Biogas and biomethane production (L/kg) | VS | 510.7 (300.3) * | 895.8 (544.6) * | 597.4 (520.3) * | 808.1 (479.0) * | (510–600) * |
DM | 486.9 (286.2) * | 707.7 (430.3) * | 478.2 (416.5) * | 737.2 (436.9) * | (280–330) * | |
FM | 189.9 (111.6) * | 14.3 (8.7) * | 41.5 (36.1) * | 132.9 (78.8) * | - | |
Final weighted biogas composition | CH4 (%) | 58.8 | 60.8 | 87.1 | 59.3 | - |
CO2 (%) | 43 | 39.1 | 14.8 | 41.1 | - | |
O2 (%) | 0.1 | 0.2 | 0 | 0 | - | |
H2S (ppm) | 17.6 | 6.7 | 87.7 | 4.2 | - | |
NH3 (ppm) | 0 | 3.7 | 113.9 | 0 | - | |
Biodegradability | % | 55 | 70 | 63 | - | - |
Analysis | Units | Grass Press Cake | Grass Whey | De-FOS Whey |
---|---|---|---|---|
Moisture | % | 97.60 * | 98.99 * | 96.47 * |
Total Solids | % | 2.40 * | 1.01 * | 3.53 * |
Ash | % | 49.31 | 76.36 | 54.02 |
Volatile Solids | % | 50.69 | 23.64 | 45.98 |
C:N ratio | 8:1 | 8:1 | 9:1 | |
NPK ratio | 2:1.6:1 | 1.4:1:2 | 1:1.8:3 | |
Carbon | % | 33.06 | 12.35 | 26.10 |
Hydrogen | % | 3.88 | 1.66 | 4.31 |
Nitrogen | % | 3.86 | 1.61 | 3.20 |
Sulphur | % | 1.61 | 0.60 | 1.45 |
Oxygen | % | 8.28 | 7.42 | 10.93 |
Aluminium | ppm | 21,529 | 22,851 | |
Calcium | ppm | 47,502 | 56,109 | |
Iron | ppm | 30,548 | 31,798 | |
Magnesium | ppm | 6065 | 6277 | |
Sodium | ppm | 29,136 | 84,654 | |
Phosphorus | ppm | 31,838 | 11,788 | 59,756 |
Potassium | ppm | 19,458 | 23,339 | 101,207 |
Silicon | ppm | 9106 | 16,729 | |
Titanium | ppm | 383 | 620 | |
COD | g/kg | 833 | 906 | |
BOD | g/kg | 726 | 729 | |
Ammonia | g/kg | 0.52 * | 1.57 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravindran, R.; Donkor, K.; Gottumukkala, L.; Menon, A.; Guneratnam, A.J.; McMahon, H.; Koopmans, S.; Sanders, J.P.M.; Gaffey, J. Biogas, Biomethane and Digestate Potential of By-Products from Green Biorefinery Systems. Clean Technol. 2022, 4, 35-50. https://doi.org/10.3390/cleantechnol4010003
Ravindran R, Donkor K, Gottumukkala L, Menon A, Guneratnam AJ, McMahon H, Koopmans S, Sanders JPM, Gaffey J. Biogas, Biomethane and Digestate Potential of By-Products from Green Biorefinery Systems. Clean Technologies. 2022; 4(1):35-50. https://doi.org/10.3390/cleantechnol4010003
Chicago/Turabian StyleRavindran, Rajeev, Kwame Donkor, Lalitha Gottumukkala, Abhay Menon, Amita Jacob Guneratnam, Helena McMahon, Sybrandus Koopmans, Johan P. M. Sanders, and James Gaffey. 2022. "Biogas, Biomethane and Digestate Potential of By-Products from Green Biorefinery Systems" Clean Technologies 4, no. 1: 35-50. https://doi.org/10.3390/cleantechnol4010003
APA StyleRavindran, R., Donkor, K., Gottumukkala, L., Menon, A., Guneratnam, A. J., McMahon, H., Koopmans, S., Sanders, J. P. M., & Gaffey, J. (2022). Biogas, Biomethane and Digestate Potential of By-Products from Green Biorefinery Systems. Clean Technologies, 4(1), 35-50. https://doi.org/10.3390/cleantechnol4010003