Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review
Abstract
:1. Introduction
1.1. Definitions and Aims of Decoupling
1.2. Adverse Impact of Carbon Emission on Environment and the Way Out
2. Overview of Decoupling Techniques
2.1. Decoupling Methods for Separating Energy Use from Economic Growth
2.2. Theoretical Foundations for Decoupling Economic Growth and Carbon Emissions
2.2.1. Kuznets Curve
2.2.2. Tapio Model
2.2.3. Log Mean Divisia Index (LMDI)
3. Factors Limiting/Contributing to Decoupling Activities
3.1. Protectionism
3.2. Effect of Energy Transiting on Energy Uses and Economic Growth
4. Climate Economics and Policy Implications
4.1. Emission Scenarios and Options for Greenhouse Gas Emission Reduction
4.2. Costs of Greenhouse Gas Emission Reduction
5. Policy Instruments for Greenhouse Gas Emission Reduction
5.1. Impacts of and Adaptation to Climate Change
5.2. Economic Impacts of Climate and the Social Cost of Carbon
5.3. Optimal Climate Policy and the Social Discount Rate
6. The Possibility of Decarbonization and Dematerialization without Global Economic Growth Decline
7. Decarbonization Strategies
7.1. Building Transmission Renewable Energy
7.2. Developing Grid-Integration Strategies to Match Loads to Variable Renewable Energy
7.3. Protecting and Expanding Policies That Encourage Renewable Growth
7.4. Capitalizing on the Renewable Energy Sector
7.5. The Relationship between Decarbonizing the Electricity Grid and the Transportation Sector
8. Biobased Fuel for Marine, Aviation, and Long-Distance Freight to Achieve Low-Carbon Emission
8.1. Interconnection of Building Energy Efficiency and Electric Vehicles
8.2. Carbon Emissions, Energy Use, and Economic Activity
9. Pathways to a Low-Carbon Energy Sector
9.1. Reducing the Carbon Intensity of Energy
9.2. Energy Intensity of GDP Reduction
10. The Influence of Energy Decarbonization on Economic Growth
11. Low-Carbon Energy Systems
11.1. New Developments
11.2. Challenges and Constraints
12. Future Projections/Aspects
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
GHG | Greenhouse gas emissions. |
GDP | Gross domestic product. |
CE | Carbon emission. |
OECD | Organization for Economic Cooperation and Development. |
DEG | Decouple economic growth. |
UNEP | United Nations Environment Programme. |
EG | Economic growth. |
UNFCCC | United Nations Framework Convention on Climate Change. |
CDE | Carbon dioxide emissions. |
EKC | Environmental Kuznets curve. |
DOLS | Dynamic ordinary least squares. |
FMOLS | Fully modified ordinary least squares. |
MINLP | Mixed-Integer Non-Linear model. |
AMG | Augmented mean group. |
LMDI | Log Mean Divisia Index. |
IDA | Index decomposition. |
INDCs | Nationally determined contributions. |
EU | European Union. |
IPCC | Intergovernmental Panel on Climate Change. |
CMIP6 | Model Intercomparison Project Phase 6. |
SSPs | Shared Socio-Economic Pathways. |
RE | Renewable energy. |
USA | United States of America. |
IWG | Interagency Working Group. |
IAMs | Integrated assessment models. |
DICE | Dynamic integrated climate–economy model. |
PAGE | Policy analysis of the greenhouse effect model. |
FUND | Framework for Uncertainty, Negotiation, and Distribution Model. |
SDRs | Special Drawing Rights. |
DDPs | Deep Decarbonization Pathways. |
IRP | International Resource Panel. |
SDGs | Sustainable Development Goals. |
VRE | Variable renewable energy. |
PA | Paris Agreement. |
EVs | Electric vehicles. |
EVCS | Electric vehicle charging station. |
V2G | Vehicle-to-grid. |
ERDF | European Regional Development Fund. |
IEA | International Energy Agency. |
CETP | Clean Energy Transitions Programme. |
PV | Photovoltaics. |
PPP | Purchasing power parity. |
EN | Energy efficiency. |
DCO2 | Decarbonization of Carbon Monoxide. |
INDCs | Intended nationally determined contributions. |
IDA | Index decomposition techniques. |
References
- Majeed, M.T.; Mumtaz, S. Happiness and environmental degradation: A global analysis. Pak. J. Commer. Soc. Sci. 2017, 11, 753–772. [Google Scholar]
- Leal, P.A.; Marques, A.C.; Fuinhas, J.A. Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia. Econ. Anal. Policy 2018, 62, 12–26. [Google Scholar] [CrossRef]
- USAID. Greenhouse Gas Emissions in Pakistan; USAID: Islamabad, Pakistan, 2016.
- Shuai, C.; Chen, X.; Wu, Y.; Zhang, Y.; Tan, Y. A three-step strategy for decoupling economic growth from carbon emission: Empirical evidences from 133 countries. Sci. Total. Environ. 2018, 646, 524–543. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Decoupling Natural Resource Use and Environmental Impacts Fromeconomic Growth; A Report of theWorking Group on Decoupling to the International Resource Panel; United Nations Environment Programme: Nairobi, Kenya, 2011. [Google Scholar]
- OECD. Sustainable Development: Indicators to Measure Decoupling of Environmental Pressure from Economic Growth; OECD: Paris, France, 2002. [Google Scholar]
- Juknys, R.E. Indicators to measure decoupling of environmental pressure from economic growth. Sustain. Dev. 2002, 4, 4–9. [Google Scholar]
- Gielen, D.; Durrant, P.; Wagner, N. China: Decoupling GDP Growth from Rising Emissions. Available online: https://energypost.eu/china-decoupling-gdp-growth-from-rising-emissions/ (accessed on 23 October 2023).
- Chen, B.; Yang, Q.; Li, J.; Chen, G. Decoupling analysis on energy consumption, embodied GHG emissions and economic growth—The case study of Macao. Renew. Sust. Energy Rev. 2017, 67, 662–672. [Google Scholar] [CrossRef]
- OECD. OECD Environmental Strategy for the First Decade of the 21st Century; OECD: Paris, France, 2002. [Google Scholar]
- Csereklyei, Z.; Stern, D.I. Global energy use: Decoupling or convergence? Energy Econ. 2015, 51, 633–641. [Google Scholar] [CrossRef]
- Guevara, Z.; Domingos, T. Three-level decoupling of energy use in Portugal 1995–2010. Energy Policy 2017, 108, 134–142. [Google Scholar] [CrossRef]
- Román-Collado, R.; Cansino, J.M.; Botia, C. How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes. Energy 2018, 148, 687–700. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, D.; Zhu, B.; Hu, S. Eco-efficiency trends in China, 1978–2010:Decoupling environmental pressure from economic growth. Ecol. Indic. 2013, 24, 177–184. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, L.; Zhou, W.; Ren, H.; Kharrazi, A.; Ma, T.; Zhu, B. Decoupling environmental pressure fromeconomic growth on city level: The Case Study of Chongqing in China. Ecol. Indic. 2017, 75, 27–35. [Google Scholar] [CrossRef]
- Luderer, G.; Vrontisi, Z.; Bertram, C.; Edelenbosch, O.Y.; Pietzcker, R.C.; Rogelj, J.; De Boer, H.S.; Drouet, L.; Emmerling, J.; Fricko, O.; et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 2018, 8, 626–633. [Google Scholar] [CrossRef]
- Mikayilov, J.I.; Hasanov, F.J.; Galeotti, M. Decoupling of CO2 emissions and GDP: A time-varying cointegration approach. Ecol. Indic. 2018, 95, 615–628. [Google Scholar] [CrossRef]
- Piłatowska, M.; Włodarczyk, A. Decoupling Economic Growth from Carbon Dioxide Emissions in the E.U. Countries. Montenegrin J. Econ. 2018, 14, 7–26. [Google Scholar] [CrossRef]
- Schröder, E.; Storm, S. Economic Growth and Carbon Emissions: The Road to ‘Hothouse Earth’ is Paved with Good Intentions; Delft University of Technology: Delft, The Netherlands, 2018; Volume 20, Issue No. 2. [Google Scholar]
- Hilmi, N.; Acar, S.; Safa, A.; Bonnemaison, G. Decoupling Economic Growth and CO2 Emissions in the MENA: Can It Really Happen? Proc. Middle East Econ. Assoc. 2018, 20. [Google Scholar]
- Jiborn, M.; Kander, A.; Kulionis, V.; Nielsen, H.; Moran, D.D. Decoupling or delusion? Measuring emissions displacement in foreign trade. Glob. Environ. Change 2018, 49, 27–34. [Google Scholar] [CrossRef]
- UNFCCC. Aggregate Effect of the Intended Nationally Determined Contributions: An Update. 2016. Available online: https://unfccc.int/resource/docs/2016/cop22/eng/02.pdf (accessed on 16 October 2023).
- UNFCCC. The Paris Agreement. 2016. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 23 July 2023).
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ma, Z.; Kang, J. A regional analysis of carbon intensities of electricity generation in China. Energy Econ. 2017, 67, 268–277. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Zhang, X.; Tang, K. Whether China’s industrial sectors make efforts to reduce CO2 emissions from production?-A decomposed decoupling analysis. Energy 2018, 160, 796–809. [Google Scholar] [CrossRef]
- Montgomery, H. Preventing the progression of climate change: One drug or polypill? Biofuel Res. J. 2017, 4, 536. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Berry, H.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; et al. The 2018 report of the Lancet Countdown on health and climate change: Shaping the health of nations for centuries to come. Lancet 2018, 392, 2479–2514. [Google Scholar] [CrossRef] [PubMed]
- Watts, N.; Amann, M.; Ayeb-Karlsson, S.; Belesova, K.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Chambers, J.; et al. The Lancet Countdown on health and climate change: From 25 years of inaction to a global transformation for public health. Lancet 2018, 391, 581–630. [Google Scholar] [CrossRef] [PubMed]
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M.; et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Decoupling China’s Carbon Emissions Increase from Economic Growth: An Economic Analysis and Policy Implications. World Dev. 2000, 28, 739–752. [Google Scholar] [CrossRef]
- Juknys, R. Transition period in Lithuania e do we move to sustainability? Environ. Res. Eng. Manag. 2003, 4, 4–9. [Google Scholar]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the E.U. and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Erdogan, S.; Okumus, I.; Guzel, A.E. Revisiting the Environmental Kuznets Curve hypothesis in OECD countries: The role of renewable, non-renewable energy, and oil prices. Environ. Sci. Pollut. Res. 2020, 27, 23655–23663. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, T.; Li, R. Does income inequality reshape the environmental Kuznets curve (EKC) hypothesis? A nonlinear panel data analysis. Environ. Res. 2022, 216, 114575. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, X.; Li, R. Does urbanization redefine the environmental Kuznets curve? An empirical analysis of 134 Countries. Sustain. Cities Soc. 2022, 76, 103382. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Li, R. Trade protectionism jeopardizes carbon neutrality—Decoupling and breakpoints roles of trade openness. Sustain. Prod. Consum. 2023, 35, 201–215. [Google Scholar] [CrossRef]
- Climent, F.; Pardo, A. Decoupling factors on the energyting the changing composition of U+. Energy Policy 2007, 35, 522–528. [Google Scholar] [CrossRef]
- Correa, L.I.B.; Steinberger, J.K. A framework for decoupling human need satisfaction from energy use. Ecol. Econ. 2017, 141, 43–52. [Google Scholar] [CrossRef]
- Luken, R.A.; Piras, S. A critical overview of industrial energy decoupling programs in six developing countries in Asia. Energy Policy 2011, 39, 3869–3872. [Google Scholar] [CrossRef]
- Sorrell, S.; Lehtonen, M.; Stapleton, L.; Pujol, J.; Champion, T. Decoupling of road freight energy use from economic growth in the United Kingdom. Energy Policy 2012, 41, 84–97. [Google Scholar] [CrossRef]
- Enevoldsen, M.K.; Ryelund, A.V.; Andersen, M.S. Decoupling of industrial energy consumption and CO2-emissions in energy-intensive industries in Scandinavia. Energy Econ. 2007, 29, 665–692. [Google Scholar] [CrossRef]
- Moreau, V.; Vuille, F. Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade. Appl. Energy 2018, 215, 54–62. [Google Scholar] [CrossRef]
- Schandl, H.; Hatfield-Dodds, S.; Wiedmann, T.; Geschke, A.; Cai, Y.; West, J.; Newth, D.; Baynes, T.; Lenzen, M.; Owen, A. Decoupling global environmental pressure and economic growth: Scenarios for energy use, materials use and carbon emissions. J. Clean. Prod. 2016, 132, 45–56. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, X.-T.; Li, R. Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China. Energy 2017, 127, 78–88. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Zhu, L.; Zhang, F.; Zhang, Y. Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions. Energies 2018, 11, 1157. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Zheng, W. Decomposition Analysis of Energy-Related CO2 Emissions and Decoupling Status in China’s Logistics Industry. Sustainability 2018, 10, 1340. [Google Scholar] [CrossRef]
- Freitas, L.C.; Kaneko, S. Decomposing the decoupling of CO2 emissions and economic growth in Brazil. Ecol. Econ. 2011, 70, 1459–1469. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.W. Decouple indicators on the CO2 emission-economic growth linkage: The Jiangsu Province case. Ecol. Indic. 2013, 32, 239–244. [Google Scholar] [CrossRef]
- Jiang, R.; Zhou, Y.; Li, R. Moving to a Low-Carbon Economy in China: Decoupling and Decomposition Analysis of Emission and Economy from a Sector Perspective. Sustainability 2018, 10, 3251. [Google Scholar] [CrossRef]
- Wang, T.; Riti, J.S.; Shu, Y. Decoupling emissions of greenhouse gas, urbanization, energy and income: Analysis from the economy of China. Environ. Sci. Pollut. Res. 2018, 25, 19845–19858. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Bai, C. Exploring the influencing factors and decoupling state of residential energy consumption in Shandong. J. Clean. Prod. 2018, 194, 253–262. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, R.; Li, R. Decoupling analysis of economic growth from water use in City: A case study of Beijing, Shanghai, and Guangzhou of China. Sustain. Cities Soc. 2018, 41, 86–94. [Google Scholar] [CrossRef]
- Zhang, M.; Song, Y.; Su, B.; Sun, X. Decomposing the decoupling indicator between the economic growth and energy consumption in China. Energy Effic. 2015, 8, 1231–1239. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mandaraka, M. Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the E.U. manufacturing sector. Energy Econ. 2007, 29, 636–664. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.W. Decoupling analysis of electricity consumption from economic growth in China. J. Energy S. Afr. 2013, 24, 57–66. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Pepin, N.; Flugel, W.A.; Yan, Y.; Xu, Y.; Zhang, Y.; Huang, J. Changes in daily climate extremes in China and their connection to the large-scale atmospheric circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- Siping, J.; Wendai, L.; Liu, M.; Xiangjun, Y.; Hongjuan, Y.; Yongming, C.; Haiyun, C.; Hayat, T.; Alsaedi, A.; Ahmad, B. Decoupling environmental pressures from economic growth based on emissions monetization: Case in Yunnan, China. J. Clean. Prod. 2019, 208, 1563–1576. [Google Scholar] [CrossRef]
- Jiang, J.J.; Ye, B.; Zhou, N.; Zhang, X.L. Decoupling analysis and environmental Kuznets curve modelling of provincial-level CO2 emissions and economic growth in China: A case study. J. Clean. Prod. 2019, 212, 1242–1255. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M.; Li, R. Toward to economic growth without emission growth: The role of urbanization and industrialization in China and India. J. Clean. Prod. 2018, 205, 499–511. [Google Scholar] [CrossRef]
- Xie, P.; Gao, S.; Sun, F. An analysis of the decoupling relationship between CO2 emission in power industry and GDP in China based on LMDI method. J. Clean. Prod. 2019, 211, 598–606. [Google Scholar] [CrossRef]
- Li, H.; Qin, Q. Challenges for China’s carbon emissions peaking in 2030: A decomposition and decoupling analysis. J. Clean. Prod. 2019, 207, 857–865. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, R. Is China’s economic growth decoupled from carbon emissions? J. Clean. Prod. 2019, 225, 1194–1208. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, M.; Mu, H.; Su, X. Study on decoupling analysis between energy consumption and economic growth in Liaoning Province. Energy Policy 2016, 97, 414–420. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Li, N.; Shao, S.; Geng, Y. Decoupling economic growth from carbon dioxide emissions in China: A sectoral factor decomposition analysis. J. Clean. Prod. 2017, 142, 3500–3516. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, H.; Huang, X.; Chuai, X.; Wu, C. Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China. Energy 2015, 82, 414–425. [Google Scholar] [CrossRef]
- Madaleno, M.; Moutinho, V. Effects decomposition: Separation of carbon emissions decoupling and decoupling effort in aggregated EU-15. Environ. Dev. Sustain. 2018, 20, 181–198. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Da, Y.-B. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sustain. Energy Rev. 2015, 41, 1255–1266. [Google Scholar] [CrossRef]
- Jiang, R.; Li, R. Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector. Sustainability 2017, 9, 793. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F. The effects of trade openness on decoupling carbon emissions from economic growth—Evidence from 182 countries. J. Clean. Prod. 2020, 279, 123838. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, S. Is energy transition promoting the decoupling economic growth from emission growth? Evidence from the 186 countries. J. Clean. Prod. 2020, 260, 120768. [Google Scholar] [CrossRef]
- Kempton, W. How the public views climate change. Environment 1997, 39, 12–21. [Google Scholar] [CrossRef]
- Stamm, K.R.; Clark, F.; Eblacas, P.R. Mass communication and public understanding of environmental problems: The case of global warming. Public Underst. Sci. 2000, 9, 219–237. [Google Scholar] [CrossRef]
- Bostrom, A.; Morgan, M.G.; Fischhoff, B.; Read, D. What Do People Know About Global Climate Change? 1. Mental Models. Risk Anal. 1994, 14, 959–970. [Google Scholar] [CrossRef]
- Moser, S.C.; Dilling, L. Making climate hot: Communicating the urgency and challenge of global climate change. Environment 2004, 46, 32–46. [Google Scholar]
- DoE. Climate Change: The U.K. Programme; HMSO: London, UK, 1994. [Google Scholar]
- DETR. Climate Change: The U.K. Programme; HMSO: London, UK, 2000. [Google Scholar]
- His Majesty’s Government. Climate Change: The U.K. Programme 2006; HMSO: London, UK, 2006.
- EU Commission. Regulation (E.U.) 2018/842 of the European Parliament and of the Council of 30 May 2018 on Binding Annual Greenhouse Gas Emission Reductions by Member States from 2021 to 2030 Contributing to Climate Action to Meet Commitments under the Paris Agreement and amending Regulation (EU) No 525/2013. Available online: https://eur-lex.europa.eu/eli/reg/2018/842/oj (accessed on 11 June 2023).
- Purcel, A.-A. New insights into the environmental Kuznets curve hypothesis in developing and transition economies: A literature survey. Environ. Econ. Policy Stud. 2020, 22, 585–631. [Google Scholar] [CrossRef]
- Conde, C.; Estrada, F.; Martínez, B.; Sánchez, O.; Gay, C. Regional climate change scenarios for México. Atmósfera 2011, 24, 125–140. [Google Scholar]
- Ruosteenoja, K.; Carter, T.R.; Jylhä, K.; Tuomenvirta, H. Future Climate in World Regions: An Intercomparison of Model-Based Projections for the New IPCC Emissions Scenarios; Finnish Environment Institute: Helsinki, Finland, 2003. [Google Scholar]
- Guimberteau, M.; Ciais, P.; Ducharne, A.; Boisier, J.P.; Aguiar, A.P.D.; Biemans, H.; De Deurwaerder, H.; Galbraith, D.; Kruijt, B.; Langerwisch, F.; et al. Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: A multi-model analysis with a new set of land-cover change scenarios. Hydrol. Earth Syst. Sci. 2017, 21, 1455–1475. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 2011, 109, 33–57. [Google Scholar] [CrossRef]
- McJeon, H.; Edmonds, J.; Bauer, N.; Clarke, L.; Fisher, B.; Flannery, B.P.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; et al. Limited impact on decadal-scale climate change from increased use of natural gas. Nature 2014, 514, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Zanobetti, A.; Peters, A. Disentangling interactions between atmospheric pollution and weather. J. Epidemiol. Community Health 2015, 69, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Keyßer, L.T.; Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 2021, 12, 2676. [Google Scholar] [CrossRef] [PubMed]
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J.; Hasegawa, T.; Marangoni, G.; et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 2018, 8, 325–332. [Google Scholar] [CrossRef]
- Jiang, K.; He, C.; Dai, H.; Liu, J.; Xu, X. Emission scenario analysis for China under the global 1.5° C target. Carbon Manag. 2018, 9, 481–491. [Google Scholar] [CrossRef]
- Tokarska, K.B.; Arora, V.K.; Gillett, N.P.; Lehner, F.; Rogelj, J.; Schleussner, C.F.; Knutti, R. Uncertainty in carbon budget estimates due to internal climate variability. Environ. Res. Lett. 2020, 15, 104064. [Google Scholar] [CrossRef]
- Chini, L.; Hurtt, G.; Sahajpal, R.; Frolking, S.; Goldewijk, K.K.; Sitch, S.; Ganzenmüller, R.; Ma, L.; Ott, L.; Pongratz, J.; et al. Land-use harmonization datasets for annual global carbon budgets. Earth Syst. Sci. Data 2021, 13, 4175–4189. [Google Scholar] [CrossRef]
- Gillingham, K.; Stock, J.H. The Cost of Reducing Greenhouse Gas Emissions. J. Econ. Perspect. 2018, 32, 53–72. [Google Scholar] [CrossRef]
- Timilsina, G.R. Demystifying the Costs of Electricity Generation Technologies; The World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Hare, B.; Meinshausen, M. How much warming are we committed to and how much can be avoided? Clim. Change 2006, 75, 111–149. [Google Scholar] [CrossRef]
- Edenhofer, O.; Knopf, B.; Barker, T.; Baumstark, L.; Bellevrat, E.; Chateau, B.; Criqui, P.; Isaac, M.; Kitous, A.; Kypreos, S.; et al. The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs. Energy J. 2010, 31, 11–48. [Google Scholar] [CrossRef]
- Schmidt, J.; Leduc, S.; Dotzauer, E.; Schmid, E. Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria. Energy Policy 2011, 39, 3261–3280. [Google Scholar] [CrossRef]
- Moser, S.C.; Ekstrom, J.A. A framework to diagnose barriers to climate change adaptation. Proc. Natl. Acad. Sci. USA 2010, 107, 22026–22031. [Google Scholar] [CrossRef] [PubMed]
- Crane-Droesch, A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environ. Res. Lett. 2018, 13, 114003. [Google Scholar] [CrossRef]
- Travis, W.R.; Huisenga, M.T. The effect of rate of change, variability, and extreme events on the pace of adaptation to a changing climate. Clim. Change 2013, 121, 209–222. [Google Scholar] [CrossRef]
- Berkhout, F. Adaptation to climate change by organizations. Wiley Interdiscip. Rev. Clim. Change 2012, 3, 91–106. [Google Scholar] [CrossRef]
- Dupuis, J.; Biesbroek, R. Comparing apples and oranges: The dependent variable problem in comparing and evaluating climate change adaptation policies. Glob. Environ. Change 2013, 23, 1476–1487. [Google Scholar] [CrossRef]
- Creutzig, F.; Roy, J.; Lamb, W.F.; Azevedo, I.M.; De Bruin, W.B.; Dalkmann, H.; Edelenbosch, O.Y.; Geels, F.W.; Grubler, A.; Hepburn, C.; et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 2018, 8, 260–263. [Google Scholar] [CrossRef]
- Hazen, E.L.; Jorgensen, S.; Rykaczewski, R.R.; Bograd, S.J.; Foley, D.G.; Jonsen, I.D.; Shaffer, S.A.; Dunne, J.P.; Costa, D.P.; Crowder, L.B.; et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Change 2012, 3, 234–238. [Google Scholar] [CrossRef]
- Weart, S.R. The Discovery of Global Warming; Harvard University Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Tol, R.S.J. Correction and Update: The Economic Effects of Climate Change. J. Econ. Perspect. 2014, 28, 221–226. [Google Scholar] [CrossRef]
- Adano, W.R.; Dietz, T.; Witsenburg, K.; Zaal, F. Climate change, violent conflict and local institutions in Kenya’s drylands. J. Peace Res. 2012, 49, 65–80. [Google Scholar] [CrossRef]
- Groom, B.; Drupp, M.A.; Freeman, M.C.; Nesje, F. The future, now: A review of social discounting. Annu. Rev. Resour. Econ. 2022, 14, 467–491. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2014, Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Minx, J., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Baum, S., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Penuelas, J.; Sardans, J.; Filella, I.; Estiarte, M.; Llusià, J.; Ogaya, R.; Carnicer, J.; Bartrons, M.; Rivas-Ubach, A.; Grau, O.; et al. Impacts of Global Change on Mediterranean Forests and Their Services. Forests 2017, 8, 463. [Google Scholar] [CrossRef]
- Arrow, K.; Cropper, M.; Gollier, C.; Groom, B.; Heal, G.; Newell, R.; Nordhaus, W.; Pindyck, R.; Pizer, W.; Portney, P.; et al. Determining Benefits and Costs for Future Generations. Science 2013, 341, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Giglio, S.; Maggiori, M.; Stroebel, J. Very long-run discount rates. Q. J. Econ. 2015, 130, 1–53. [Google Scholar] [CrossRef]
- Gollier, C. Pricing the Planet’s Future: The Economics of Discounting in An Uncertain World; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Groom, B.; Maddison, D. New Estimates of the Elasticity of Marginal Utility for the UK. Environ. Resour. Econ. 2018, 72, 1155–1182. [Google Scholar] [CrossRef]
- Burgess, D.F.; Zerbe, R.O. The most appropriate discount rate. J. Benefit-Cost Anal. 2013, 4, 391–400. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, Z.; Li, R.; Wang, L. Renewable energy and economic growth: New insight from country risks. Energy 2022, 238, 122018. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Pisarenko, Z. Heterogeneous effects of energy efficiency, oil price, environmental pressure, R&D investment, and policy on renewable energy—Evidence from the G20 countries. Energy 2020, 209, 118322. [Google Scholar]
- Wei, W.; Cai, W.; Guo, Y.; Bai, C.; Yang, L. Decoupling relationship between energy consumption and economic growth in China’s provinces from the perspective of resource security. Resour. Policy 2020, 68, 101693. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, M.; Yang, R.; Li, X.; Zhang, L.; Li, M. Decoupling water environment pressures from economic growth in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 122, 107314. [Google Scholar] [CrossRef]
- Barcker, T.; Crawford-Brown, D. Decarbonising the World’s Economy. In Assessing the Feasibility of Policies to Reduce Greenhouse Gas Emissions; Imperial College Press: London, UK, 2015. [Google Scholar]
- Deep Decarbonization Pathways Project (DDPP). Pathways to Deep Decarbonization 2015: Synthesis Report & Executive Summary; SDSN: New York, NY, USA; IDDRI: Paris, France, 2015. [Google Scholar]
- Allwood, J.M.; Ashby, M.F.; Gutowski, T.G.; Worrell, E. Material efficiency: A white paper. Resour. Conserv. Recycl. 2011, 55, 362–381. [Google Scholar] [CrossRef]
- Scott, K.; Giesekam, J.; Barrett, J.; Owen, A. Bridging the climate mitigation gap with economy-wide material productivity. J. Ind. Ecol. 2018, 23, 918–931. [Google Scholar] [CrossRef]
- Hernandez, G. Site-Level Resource Efficiency Analysis. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2018. Available online: https://www.repository.cam.ac.uk/handle/1810/284771 (accessed on 25 November 2020). [CrossRef]
- Barrett, J.; Taylor, P.; Norman, J.; Giesekam, J. Industry, materials and products (Chapter 3). In Shifting the Focus: Energy Demand in a Net-Zero Carbons U.K; Eyre, N., Killip, G., Eds.; Centre for Research into Energy Demand Solutions, University of Oxford: Oxford, UK, 2019; ISBN 978-1-913299-00-2. [Google Scholar]
- Flachenecker, F.; Kornejew, M. The causal impact of material productivity on microeconomic competitiveness and environmental performance in the Euro- pean Union. Environ. Econ. Policy Stud. 2019, 21, 87–122. [Google Scholar] [CrossRef]
- IRP. Global Resources Outlook 2019: Natural Resources for the Future We Want; A Report of the International Resource Panel; United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar]
- Hertwich, E. The Carbon Footprint of Material Production Rises to 23% of Global Greenhouse Gas Emissions; Center for Open Science: Charlottesville, VA, USA, 2019. [Google Scholar] [CrossRef]
- Pollitt, H.; Neuhoff, K.; Lin, X. The impact of implementing a consumption charge on carbon-intensive materials in Europe. Clim. Policy 2019, 20, S74–S89. [Google Scholar] [CrossRef]
- Buhl, J.; Liedtke, C.; Teubler, J.; Bienge, K. The Material Footprint of private households in Germany: Linking the natural resource use and socioeconomic characteristics of users from an online footprint calculator in Germany. Sustain. Prod. Consum. 2019, 20, 74–83. [Google Scholar] [CrossRef]
- Afionis, S.; Sakai, M.; Scott, K.; Barrett, J.; Gouldson, A. Consumption-based carbon accounting: Does it have a future? Wiley Interdisciplinary Reviews. Clim. Change 2017, 8, 438. [Google Scholar]
- Karakaya, E.; Yılmaz, B.; Alataş, S. How production-based and consumption-based emissions accounting systems change climate policy analysis: The case of CO2 convergence. Environ. Sci. Pollut. Res. 2019, 26, 16682–16694. [Google Scholar] [CrossRef] [PubMed]
- Haberl, H.; Wiedenhofer, D.; Virág, D.; Kalt, G.; Plank, B.; Brockway, P.; Fishman, T.; Hausknost, D.; Krausmann, F.; Leon-Gruchalski, B.; et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: Synthesizing the insights. Environ. Res. Lett. 2020, 15, 065003. [Google Scholar] [CrossRef]
- Haberl, H.; Wiedenhofer, D.; Virág, D.; Kalt, G.; Plank, B.; Brockway, P.; Creutzig, F. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part I: Bibliometric and conceptual mapping. Environ. Res. Lett. 2020, 15, 063002. [Google Scholar] [CrossRef]
- Aktaş, C.B. Dematerialization: Needs and Challenges. In Handbook of Sustainability Science in the Future: Policies, Technologies, and Education by 2050; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–13. [Google Scholar]
- Kan, X.; Hedenus, F.; Reichenberg, L. The cost of a future low-carbon electricity system without nuclear power—The case of Sweden. Energy 2020, 195, 117015. [Google Scholar] [CrossRef]
- Sayed, M.A.; Ghafouri, M.; Atallah, R.; Debbabi, M.; Assi, C. Protecting the future grid: An electric vehicle robust mitigation scheme against load altering attacks on power grids. Appl. Energy 2023, 350, 121769. [Google Scholar] [CrossRef]
- Schlachtberger, D.P.; Brown, T.; Schramm, S.; Greiner, M. The benefits of cooperation in a highly renewable European electricity network. Energy 2017, 134, 469–481. [Google Scholar] [CrossRef]
- Statistics Sweden. Women and Men in Sweden: Facts and Figures; Statistics Sweden: Stockholm, Sweden, 1985. [Google Scholar]
- Chen, H.; Guo, W.; Feng, X.; Wei, W.; Liu, H.; Feng, Y.; Gong, W. The impact of low-carbon city pilot policy on the total factor productivity of listed enterprises in China. Resour. Conserv. Recycl. 2021, 169, 105457. [Google Scholar] [CrossRef]
- Hibbard, M.; Lurie, S. The New Natural Resource Economy: Environment and Economy in Transitional Rural Communities. Soc. Nat. Resour. 2013, 26, 827–844. [Google Scholar] [CrossRef]
- Niyazbekova, S.; Jazykbayeva, B.; Mottaeva, A.; Beloussova, E.; Suleimenova, B.; Zueva, A. The Growth of “Green” finance at the global level in the context of sustainable economic development. E3S Web Conf. 2021, 244, 10058. [Google Scholar] [CrossRef]
- Schröder, P.; Vergragt, P.; Brown, H.S.; Dendler, L.; Gorenflo, N.; Matus, K.; Quist, J.; Rupprecht, C.D.; Tukker, A.; Wennersten, R. Advancing sustainable consumption and production in cities—A transdisciplinary research and stakeholder engagement framework to address consumption-based emissions and impacts. J. Clean. Prod. 2018, 213, 114–125. [Google Scholar] [CrossRef]
- Er, B.; Guneysu, Y.; Ünal, H. Financing renewable energy projects: An empirical analysis for Turkey. Int. J. Energy Econ. Policy 2018, 8, 180. [Google Scholar]
- Chen, T.; Li, M.; Li, Y.; Lin, M.; Wang, N.; Wang, M.; Zhang, Z. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv 2015, arXiv:1512.01274. [Google Scholar]
- GTEx Consortium; Ardlie, K.G.; Deluca, D.S.; Segrè, A.V.; Sullivan, T.J.; Young, T.R.; Gelfand, E.T.; Trowbridge, C.A.; Maller, J.B.; Tukiainen, T.; et al. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 2015, 348, 648–660. [Google Scholar]
- Wang, J.; Li, Z.; Wu, T.; Wu, S.; Yin, T. The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector. Energy 2022, 255, 124488. [Google Scholar] [CrossRef]
- Gerbaulet, C.; von Hirschhausen, C.; Kemfert, C.; Lorenz, C.; Oei, P.-Y. European electricity sector decarbonization under different levels of foresight. Renew. Energy 2019, 141, 973–987. [Google Scholar] [CrossRef]
- Steblyanskaya, A.; Ai, M.; Denisov, A.; Efimova, O.; Rybachuk, M. Carbon dioxide emissions reduction efficiency and growth potential: Case of China. PSU Res. Rev. 2022. ahead of print. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, Z.; Chen, Y.; Gao, J.; Liu, W. Decomposition and decoupling analysis of carbon dioxide emissions from economic growth in the context of China and the ASEAN countries. Sci. Total. Environ. 2020, 714, 136649. [Google Scholar] [CrossRef] [PubMed]
- Simbi, C.H.; Lin, J.; Yang, D.; Ndayishimiye, J.C.; Liu, Y.; Li, H.; Xu, L.; Ma, W. Decomposition and decoupling analysis of carbon dioxide emissions in African countries during 1984–2014. J. Environ. Sci. 2020, 102, 85–98. [Google Scholar] [CrossRef]
- Jayanthakumaran, K.; Verma, R.; Liu, Y. CO2 emissions, energy consumption, trade and income: A comparative analysis of China and India. Energy Policy 2012, 42, 450–460. [Google Scholar] [CrossRef]
- Acaravci, A.; Ozturk, I. On the relationship between energy consumption, CO2 emissions and economic growth in Europe. Energy 2010, 35, 5412–5420. [Google Scholar] [CrossRef]
- Akbostancı, E.; Türüt-Aşık, S.; Tunç, G.İ. The relationship between income and environment in Turkey: Is there an environmental Kuznets curve? Energy 2009, 37, 861–867. [Google Scholar] [CrossRef]
- Managi, S.; Jena, P.R. Environmental productivity and Kuznets curve in India. Ecol. Econ. 2008, 65, 432–440. [Google Scholar] [CrossRef]
- Pao, H.T.; Tsai, C. CO2 emissions, energy consumption and economic growth in BRIC countries. Energy Policy 2010, 38, 7850–7860. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. Energy consumption, pollutant emissions and economic growth in South Africa. Energy Econ. 2010, 32, 1374–1382. [Google Scholar] [CrossRef]
- Ziramba, E. Disaggregate energy consumption and industrial production in South Africa. Energy Policy 2009, 37, 2214–2220. [Google Scholar] [CrossRef]
- Nain, M.Z.; Ahmad, W.; Kamaiah, B. Economic growth, energy consumption and CO2 emissions in India: A disaggregated causal analysis. Int. J. Sustain. Energy 2015, 36, 807–824. [Google Scholar] [CrossRef]
- Ang, J.B. CO2 emissions, energy consumption, and output in France. Energy Policy 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Ang, J.B. Economic development, pollutant emissions and energy consumption in Malaysia. J. Policy Model. 2008, 30, 271–278. [Google Scholar] [CrossRef]
- Shahbaz, M.; Lean, H.H.; Shabbir, M.S. Environmental Kuznets curvehypothesis in Pakistan: Cointegration and granger causality. Renew. Sustain. Energy Rev. 2012, 16, 2947–2953. [Google Scholar] [CrossRef]
- Kanjilal, K.; Ghosh, S. Environmental Kuznet’s curve for India: Evidence fromtests for cointegration with unknown structural breaks. Energy Policy 2013, 56, 509–515. [Google Scholar] [CrossRef]
- Ghosh, S. Examining carbon emissions economic growth nexus for India: Amultivariate cointegration approach. Energy Policy 2010, 38, 3008–3014. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. CO2 emissions, energy usage, and output in Central America. Energy Policy 2009, 37, 3282–3286. [Google Scholar] [CrossRef]
- Olarinde, M.; Martins, I.; Abdulsalam, S. An empirical analysis of the relationship between CO2 emissions and economic growth in West Africa. Am. J. Econ. 2014, 4, 1–17. [Google Scholar]
- Shuaibu, M.I.; Oyinlola, M.A. Energy Consumption, CO2 Emissions and Economic Growth in Nigeria. In Proceedings of the 2013 NAEE International Conference, Lagos, Nigeria, 22–23 April 2013. [Google Scholar]
- Warner, M. The carbon Kuznet scurve: A cloudy picture emitted by bad econometrics? Resour. Energy Econ. 2008, 30, 388–408. [Google Scholar]
- Selden, T.M.; Song, D. Environmental quality and development: Is there a Kuznets Curve for air pollution emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Wang, Q. The impact of energy efficiency on carbon emissions: Evidence from the transportation sector in Chinese 30 provinces. Sustain. Cities Soc. 2022, 82, 103880. [Google Scholar] [CrossRef]
- Lean, H.H.; Smyth, R. CO2 emissions, electricity consumption and output in ASEAN. Appl. Energy 2010, 87, 1858–1864. [Google Scholar] [CrossRef]
- Baek, J.; Kim, H.S. Is economic growth good or bad for the environment? Empir. Evid. Korea Energy Econ. 2013, 36, 744–749. [Google Scholar]
- Holtz-Eakin, D.; Selden, T.M. Stoking and fires? CO2 emissions and economic growth. J. Public Econ. 1995, 57, 85–101. [Google Scholar] [CrossRef]
- De Bruyn, S.M.; van den Bergh, J.C.; Opschoor, J.B. Economic growth and emissions: Reconsidering the empirical basis of environmental Kuznets curves. Ecol. Econ. 1998, 25, 161–175. [Google Scholar] [CrossRef]
- Omri, A. CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Econ. 2013, 40, 657–664. [Google Scholar] [CrossRef]
- Shafik, N. Economic Development and Environmental Quality: An Econometric Analysis. Oxf. Econ. Pap. 1994, 46, 757–773. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravci, A. CO2 emissions, energy consumption and economic growth in Turkey. Renew. Sustain. Energy Rev. 2010, 14, 3220–3225. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2006, 62, 482–489. [Google Scholar] [CrossRef]
- Zhang, X.P.; Cheng, X.M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 2009, 68, 2706–2712. [Google Scholar] [CrossRef]
- Lotfalipour, M.R.; Falahi, M.A.; Ashena, M. Economic growth, CO2 emissions, and fossil fuels consumption in Iran. Energy 2010, 35, 5115–5120. [Google Scholar] [CrossRef]
- Saboori, B.; Sapri, M.; bin Baba, M. Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)’s transport sector: A fully modified bi-directional relationship approach. Energy 2014, 66, 150–161. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Ben Youssef, A.; M’Henni, H.; Rault, C. Energy consumption: Economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef]
- Esteve, V.; Tamarit, C. Is there an environmental Kuznets curve for Spain? Fresh evidence from old data. Econ. Model. 2012, 29, 2696–2703. [Google Scholar] [CrossRef]
- Fodha, M.; Zaghdoud, O. Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve. Energy Policy 2010, 38, 1150–1156. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Fereidouni, H.G.; Lee, J.Y.; Sab, C.N.B.C. Examining the bi-directional long run relationship between renewable energy consumption and GDP growth. Renew. Sustain. Energy Rev. 2013, 22, 209–222. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Sab, C.N.C. Energy consumption, pollution and economic development in 16 emerging countries. J. Econ. Stud. 2013, 40, 686–698. [Google Scholar] [CrossRef]
- Onafowora, O.A.; Owoye, O. Bounds testing approach to analysis of the environment Kuznets curve hypothesis. Energy Econ. 2014, 44, 47–62. [Google Scholar] [CrossRef]
- Lau, L.S.; Choong, C.K.; Eng, Y.K. Investigation of the environmental Kuznets curve for carbon emissions in Malaysia: Do foreign direct investment and trade matter? Energy Policy 2014, 68, 490–497. [Google Scholar] [CrossRef]
- Li, R.; Wang, Q.; Liu, Y.; Jiang, R. Per-capita carbon emissions in 147 countries: The effect of economic, energy, social, and trade structural changes. Sustain. Prod. Consum. 2021, 27, 1149–1164. [Google Scholar] [CrossRef]
- Yang, J.; Hao, Y.; Feng, C. A race between economic growth and carbon emissions: What play important roles towards global low-carbon development? Energy Econ. 2021, 100, 105327. [Google Scholar] [CrossRef]
- Li, G.; Wei, W. Financial development, openness, innovation, carbon emissions, and economic growth in China. Energy Econ. 2021, 97, 105194. [Google Scholar] [CrossRef]
- Hu, M.; Li, R.; You, W.; Liu, Y.; Lee, C.-C. Spatiotemporal evolution of decoupling and driving forces of CO2 emissions on economic growth along the Belt and Road. J. Clean. Prod. 2020, 277, 123272. [Google Scholar] [CrossRef]
- Nathaniel, S.P.; Alam, S.; Murshed, M.; Mahmood, H.; Ahmad, P. The roles of nuclear energy, renewable energy, and economic growth in the abatement of carbon dioxide emissions in the G7 countries. Environ. Sci. Pollut. Res. 2021, 28, 47957–47972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, S. A comparison of decomposition the decoupling carbon emissions from economic growth in transport sector of selected provinces in eastern, central and western China. J. Clean. Prod. 2019, 229, 570–581. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L. The effects of population aging, life expectancy, unemployment rate, population density, per capita GDP, urbanization on per capita carbon emissions. Sustain. Prod. Consum. 2021, 28, 760–774. [Google Scholar] [CrossRef]
- Fankhauser, S.; Stern, N. Climate Change, Development, Poverty and Economics. In The State of Economics, the State of the World; Basu, K., Rosenblatt, D., Sepulveda, C., Eds.; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Carbon Tracker 2013. Unburnable Carbon 2013; Wasted Capital and Stranded Assets: London, UK, 2013. [Google Scholar]
- Jakob, M. Feasible mitigation actions in developing countries. Nat. Clim. Change 2014, 4, 961–968. [Google Scholar] [CrossRef]
- Magrin, G. 2007 Climate Change 2007: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Parry, M., Canziani, O., Palutikof, J., Van Der Linden, P., Hanson, C., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 581–615. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf (accessed on 7 December 2022).
- McKinsey and Company. Pathways to a Low-Carbon Economy: Version 2 of the Global Greenhouse Abatement Cost Curve. 2009. Available online: http://mckinsey.com/client_service/sustainability/latest_thinking/pathways_to_a_low_carbon_economy (accessed on 23 October 2023).
- Olbrisch, S.; Haites, E.; Savage, M.; Dadhich, P.; Shrivastava, M.K. Estimates of incremental investment for and cost of mitigation measures in developing countries. Clim. Policy 2011, 11, 970–986. [Google Scholar] [CrossRef]
- Foxon, T.J.; Hammond, G.P.; Pearson, P.J. Developing transition pathways for a low carbon electricity system in the U.K. Technol. Forecast. Soc. Change 2010, 77, 1203–1213. [Google Scholar] [CrossRef]
- Blanford, G.J.; Kriegler, E.; Tavoni, M. Harmonization vs. fragmentation: Overview of climate policy scenarios in EMF27. Clim. Change 2014, 123, 383–396. [Google Scholar] [CrossRef]
- Kriegler, E.; Tavoni, M.; Riahi, K.; VAN Vuuren, D.P. Introducing the limits special issue. Clim. Change Econ. 2013, 4, 1302002. [Google Scholar] [CrossRef]
- Calvin, K.; Clarke, L.; Krey, V.; Blanford, G.; Jiang, K.; Kainuma, M.; Kriegler, E.; Luderer, G.; Shukla, P. The role of Asia in mitigating climate change: Results from the Asia modeling exercise. Energy Econ. 2012, 34, S251–S260. [Google Scholar] [CrossRef]
- Edenhofer, O.; Knopf, B.; Leimbach, M.; Bauer, N. ADAM’s Modeling Comparison Project—Intentions and Prospects. Energy J. 2010, 31, 7–10. [Google Scholar] [CrossRef]
- Foxon, T.J. A coevolutionary framework for analyzing a transition to a sustainable low carbon economy. Ecol. Econ. 2011, 70, 2258–2267. [Google Scholar] [CrossRef]
- Geels, F.W. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef]
- Geels, F.W. Technological Transitions and System Innovations: A Coevolutionary and Socio-Technical Analysis; Edward Elgar: Cheltenham, UK, 2005. [Google Scholar]
- Geels, F.W. The multi-level perspective on sustainability transitions: Responses to seven criticisms. Environ. Innov. Soc. Transit. 2011, 1, 24–40. [Google Scholar] [CrossRef]
- La Viña, A.G.M.; Tan, J.M.; Guanzon, T.I.M.; Caleda, M.J.; Ang, L. Navigating a trilemma: Energy security, equity, and sustainability in the Philippines’ low carbon transition. Energy Res. Soc. Sci. 2018, 35, 37–47. [Google Scholar] [CrossRef]
- International Energy Agency. 2019. Available online: https://www.iea.org/cetp/ (accessed on 15 November 2023).
- Grin, J.; Rotmans, J.; Schot, J.; Geels, F.; Loorbach, D. Transitions to Sustainable Development: New Directions in the Study of Long-Term Transformative Change; Routledge: New York, NY, USA; Oxford, UK, 2010. [Google Scholar]
- Bayulgen, O. Localizing the energy transition: Town-level political and socio-economic drivers of clean energy in the United States. Energy Res. Soc. Sci. 2020, 62, 101376. [Google Scholar] [CrossRef]
- Bataille, C.; Waisman, H.; Colombier, M.; Segafredo, L.; Williams, J.; Jotzo, F. The need for national deep decarbonization pathways for effective climate policy. Clim. Policy 2016, 16, S7–S26. [Google Scholar] [CrossRef]
- Obama, B. The irreversible momentum of clean energy. Science 2017, 355, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Su, M. Drivers of decoupling economic growth from carbon emission e an empirical analysis of 192 countries using decoupling model and decomposition method. Environ. Impact Assess. Rev. 2020, 81, 106356. [Google Scholar] [CrossRef]
- Le Quéré, C.; Korsbakken, J.I.; Wilson, C.; Tosun, J.; Andrew, R.; Andres, R.J.; Canadell, J.G.; Jordan, A.; Peters, G.P.; van Vuuren, D.P. Drivers of declining CO2 emissions in 18 developed economies. Nat. Clim. Change 2019, 9, 213–217. [Google Scholar] [CrossRef]
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.; Faisal, S.; Ahmed, I.A.; Munir, M.; Cipolatti, E.P.; Manoel, E.A.; Pastore, C.; di Bitonto, L.; Hanelt, D.; Nitbani, F.O.; et al. Has the time finally come for green oleochemicals and biodiesel production using large-scale enzyme technologies? Current status and new developments. Biotechnol. Adv. 2023, 69, 108275. [Google Scholar] [CrossRef]
- Gbadeyan, J.; Sibiya, L.; Linganiso, L.Z.; Deenadayalu, N. Waste-to-energy: The recycling and reuse of sugar industry waste for different value-added products such as bioenegy in selected countries–a critical review. Biofuels Bioprod. Biorefining 2024. early view. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- IEA. Projected Costs of Generating Electricity, 2015th ed.; International Energy Agency: Paris, France, 2015. [Google Scholar]
- Jarbandhan, V.D.B.; Komendantova, N.; Xavier, R.; Nkoana, E. Transformation of the South African energy system: Towards participatory governance. In Systems Analysis Approach for Complex Global Challenges; Mensah, P., Katerere, D., Hachigonta, S., Roodt, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 139–158. [Google Scholar]
- Ruiz-Mercado, G.J.; Segovia-Hernández, J.G.; Castro-Montoya, A.J. Transformation towards sustainable bioenergy systems. Clean Technol. Environ. Policy 2018, 20, 1385. [Google Scholar] [CrossRef]
- Grubler, A.; Wilson, C.; Bento, N.; Boza-Kiss, B.; Krey, V.; McCollum, D.L.; Rao, N.D.; Riahi, K.; Rogelj, J.; De Stercke, S.; et al. A low energy demand scenario for meeting the 1.5 _C target and sustainable development goals without negative emission technologies. Nat. Energy 2018, 3, 515–527. [Google Scholar] [CrossRef]
- Sachs, J.; Tubiana, L.; Guerin, E.; Waisman, H.; Mas, C.; Colombier, M.; Schmidt-Traub, G.; Pathways to Deep Decarbonization. IDDRI/SDSN. 2014 Report. Available online: https://www.iddri.org/en/publications-and-events/report/pathways-deep-decarbonization-2014-report (accessed on 10 November 2023).
- Ribera, T.; Colombier, M.; Waisman, H.; Bataille, C.; Pierfederici, R.; Sachs, J.; Schmidt-Traub, G.; Williams, J.; Segafredo, L.; Hamburg Coplan, J.; et al. Pathways to Deep Decarbonization—2015 Report. IDDRI/SDSN. 2015. Available online: https://www.iddri.org/en/publications-and-events/report/pathways-deep-decarbonization-2015-synthesis-report (accessed on 10 November 2023).
- CCC. Power Sector Scenarios for the Fifth Carbon Budget; Committee on Climate Change: London, UK, 2015; Available online: https://documents.theccc.org.uk/wp-content/uploads/2015/10/Power-sector-scenarios-for-the-fifth-carbon-budget.pdf (accessed on 16 December 2023).
- Adewuyi, A.O.; Awodumi, O.B. Biomass energy consumption, economic growth and carbon emissions: Fresh evidence from West Africa using a simultaneous equation model. Energy 2017, 119, 453–471. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; van Soest, H.; Riahi, K.; Clarke, L.; Krey, V.; Kriegler, E.; Rogelj, J.; Schaeffer, M.; Tavoni, M. Carbon budgets and energy transition pathways. Environ. Res. Lett. 2016, 11, 075002. [Google Scholar] [CrossRef]
- Deutch, J. Decoupling Economic Growth and Carbon Emissions. Joule 2017, 1, 3–5. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L. Delinking indicators on regional industry development and carbon emissions: Beijinge-Tianjine-Hebei economic band case. Ecol. Indicat. 2015, 48, 41–48. [Google Scholar] [CrossRef]
- Bashir, M.A.; Sheng, B.; Dogan, B.; Sarwar, S.; Shahzad, U. Export product diversification and energy efficiency: Empirical evidence from OECD countries. Struct. Change Econom. Dyn. 2020, 55, 232–243. [Google Scholar] [CrossRef]
- Lacey-Barnacle, M.; Bird, C. Intermediating energy justice? The role of intermediaries in the civic energy sector in a time of austerity. Appl. Energy 2018, 226, 71–81. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2019; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Stern, D.I.; Jotzo, F. How ambitious are China and India’s emissions intensity targets? Energy Policy 2010, 38, 6776–6783. [Google Scholar] [CrossRef]
- IEA (International Energy Agency). World Energy Outlook 2013; International Energy Agency: Paris, France, 2013. [Google Scholar]
- Doda, L.B. How to price carbon in good times… and bad! Wiley Interdiscip. Rev. Clim. Change 2016, 7, 135–144. [Google Scholar] [CrossRef]
- Allcott, H.; Greenstone, M. Is there an energy efficiency gap? J. Econ. Perspect. 2012, 26, 3–28. [Google Scholar] [CrossRef]
- Howells, M.I. The targeting of industrial energy audits for DSM planning. J. Energy S. Afr. 2006, 17, 58–65. [Google Scholar] [CrossRef]
- Hughes, A.; Howells, M.I.; Trikam, A.; Kenny, A.R.; Van Es, D. A study of demand side management potential in South African industries. Wood Wood Prod. 2006, 5, 8–18. [Google Scholar]
- IIASA. Global Energy Assessment—Toward a Sustainable Future; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- McNeil, M.A.; Iyer, M.; Meyers, S.; Letschert, V.E.; McMahon, J.E. Potential benefits from improved energy efficiency of key electrical products: The case of India. Energy Policy 2008, 36, 3467–3476. [Google Scholar] [CrossRef]
- Spalding-Fecher, R.; Clark, A.; Davis, M.; Simmonds, G. The economics of energy efficiency for the poor—A South African case study. Energy 2002, 27, 1099–1117. [Google Scholar] [CrossRef]
- Winkler, H.; Spalding-Fecher, R.; Tyani, L.; Matibe, K. Cost-benefit analysis of energy efficiency in urban low-cost housing. Dev. S. Afr. 2002, 19, 593–614. [Google Scholar] [CrossRef]
- Dimitropoulos, J. Energy productivity improvements and the rebound effect: An overview of the state of knowledge. Energy Policy 2007, 35, 6354–6363. [Google Scholar] [CrossRef]
- Raupach, M.R.; Marland, G.; Ciais, P.; Le Quéré, C.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed]
- Ang, B.W. Is the energy intensity a less useful indicator than the carbon factor in the study of climate change? Energy Policy 1999, 27, 943–946. [Google Scholar] [CrossRef]
- Alcántara, V.; Padilla, E. Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo. Rev. Econ. Crítica 2005, 4, 17–37. [Google Scholar]
- Alcantara, V.; Duro, J.A. Inequality of energy intensities across OECD countries: A note. Energy Policy 2003, 32, 1257–1260. [Google Scholar] [CrossRef]
- Sun, J. The decrease in the difference of energy intensities between OECD countries from 1971 to 1998. Energy Policy 2002, 30, 631–635. [Google Scholar] [CrossRef]
- Hanif, I.; Gago-De-Santos, P. The importance of population control and macroeconomic stability to reducing environmental degradation: An empirical test of the environmental Kuznets curve for developing countries. Environ. Dev. 2017, 23, 1–9. [Google Scholar] [CrossRef]
- Pieloch-Babiarz, A.; Misztal, A.; Kowalska, M. An impact of macroeconomic stabilization on the sustainable development of manufacturing enterprises: The case of Central and Eastern European Countries. Environ. Dev. Sustain. 2021, 23, 8669–8698. [Google Scholar] [CrossRef]
- Sirimaneetham, V.; Temple, J.R. Macroeconomic Stability and the Distribution of Growth Rates. World Bank Econ. Rev. 2009, 23, 443–479. [Google Scholar] [CrossRef]
- Vo, A.T.; Van, L.T.-H.; Vo, D.H.; Mcaleer, M. Financial inclusion and macroeconomic stability in emerging and frontier markets. Ann. Financ. Econ. 2019, 14, 1950008. [Google Scholar] [CrossRef]
- Franke, R.; Westerhoff, F. Different compositions of aggregate sentiment and their impact on macroeconomic stability. Econ. Model. 2019, 76, 117–127. [Google Scholar] [CrossRef]
- De Mendonça, H.F.; Cunha Nascimento, N. Monetary policy efficiency and macroeconomic stability: Do financial openness and economic globalization matter? N. Am. J. Econ. Financ. 2020, 51, 100870. [Google Scholar] [CrossRef]
- Wójcik-Jurkiewicz, M.; Czarnecka, M.; Kinelski, G.; Sadowska, B.; Bilińska-Reformat, K. Determinants of Decarbonisation in the Transformation of the Energy Sector: The Case of Poland. Energies 2021, 14, 1217. [Google Scholar] [CrossRef]
- Udemba, E.N.; Güngör, H.; Bekun, F.V.; Kirikkaleli, D. Economic performance of India amidst high CO2 emissions. Sustain. Prod. Consum. 2021, 27, 52–60. [Google Scholar] [CrossRef]
- Månberger, A. Deep Decarbonization and Energy Security for Low-Carbon Societies. In Green Growth and Decarbonization of Energy Systems in a Changing World; Rocamora, A.R., Ishikawa, T., Eds.; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2018; pp. 14–16. [Google Scholar]
- Dahlström, H. Decarbonizing Development: 3 Steps to Decarbonizing Development for a Zero-Carbon Future; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Afonso, A.; Blanco-Arana, C. Financial development and economic growth: A study for OECD countries in the context of crisis. In Proceedings of the MIRDEC-8th International Academic Conference on Social Sciences, Economics, Business and Finances Studies, Lisbon, Portugal, 29–31 May 2018. REMWorking Paper 046-2018. [Google Scholar]
- Wang, Q.; Jiang, R.; Zhan, L. Is decoupling economic growth from fuel consumption possible in developing countries?—A comparison of China and India. J. Clean. Prod. 2019, 229, 806–817. [Google Scholar] [CrossRef]
- Duffield, J.S. South Korea’s National Energy Plan Six Years On. Asian Politi-Policy 2014, 6, 433–454. [Google Scholar] [CrossRef]
- Choi, W.; Dobbs, R.; Suh, D.; Mischke, J.; Chon, E.; Cho, H.; Kim, H. Beyond Korean Style: Shaping a New Growth Formula. McKinsey & Company. 2013. Available online: http://www.mckinsey.com/insights/asia-pacific/beyond_korean_style (accessed on 4 September 2023).
- Park, D.; Shin, K. Performance of the Services Sector in Korea: An Empirical Investigation (Working Paper); Peterson Institute for International Economics: Washington, DC, USA, 2012; Available online: http://2005.www.iie.com/publications/wp/wp12-20.pdf (accessed on 6 September 2023).
- Adebayo, T.S.; Kirikkaleli, D. Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: Application of wavelet tools. Environ. Dev. Sustain. 2021, 23, 16057–16082. [Google Scholar] [CrossRef]
- Papadopoulou, C.-A.; Papadopoulou, M.P.; Laspidou, C.; Munaretto, S.; Brouwer, F. Towards a Low-Carbon Economy: A Nexus-Oriented Policy Coherence Analysis in Greece. Sustainability 2020, 12, 373. [Google Scholar] [CrossRef]
- Komarnicka, A.; Murawska, A. Comparison of Consumption and Renewable Sources of Energy in European Union Countries—617 Sectoral Indicators, Economic Conditions and Environmental Impacts. Energies 2021, 14, 3714. [Google Scholar] [CrossRef]
- Tvaronavičienė, M.; Prakapienė, D.; Garškaitė-Milvydienė, K.; Prakapas, R.; Nawrot, L. Energy Efficiency in the Long-Run in the Selected European Countries. Econ. Sociol. 2018, 11, 245–254. [Google Scholar] [CrossRef]
- Simionescu, M.; Bilan, Y.; Zawadzki, P.; Wojciechowski, A.; Rabe, M. GHG Emissions Mitigation in the European Union Based on Labor Market Changes. Energies 2021, 14, 465. [Google Scholar] [CrossRef]
- Streimikiene, D. Ranking of Baltic States on progress towards the main energy security goals of European energy union strategy. J. Int. Stud. 2020, 13, 24–37. [Google Scholar] [CrossRef]
- Vaillancourt, K.; Bahn, O.; Levasseur, A. The role of bioenergy in low-carbon energy transition scenarios: A case study for Quebec (Canada). Renew. Sustain. Energy Rev. 2019, 102, 24–34. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Hamburg, S.P.; Melillo, J.; Chameides, W.; Havlik, P.; Kammen, D.M.; Likens, G.E.; Lubowski, R.N.; Obersteiner, M.; Oppenheimer, M.; et al. Fixing a Critical Climate Accounting Error. Science 2009, 326, 527–528. [Google Scholar] [CrossRef]
- Issah, M.; Antwi, S. Role of macroeconomic variables on firms’ performance: Evidence from the U.K. Cogent Econ. Financ. 2017, 5, 1405581. [Google Scholar] [CrossRef]
- Vo, H.D. Sustainable agriculture & energy in the U.S.: A link between ethanol production and the acreage for corn. Econ. Sociol. 2020, 13, 259–268. [Google Scholar]
- Stavytskyy, A.; Kharlamova, G.; Giedraitis, V.; Šumskis, V. Estimating the interrelation between energy security and macroeconomic factors in European countries. J. Int. Stud. 2018, 11, 217–238. [Google Scholar] [CrossRef]
- Norton, T.A.; Zacher, H.; Ashkanasy, N.M. Organisational sustainability policies and employee green behaviour: The mediating role of work climate perceptions. J. Environ. Psychol. 2014, 38, 49–54. [Google Scholar] [CrossRef]
- Maroušek, J.; Maroušková, A. Economic Considerations on Nutrient Utilization in Wastewater Management. Energies 2021, 14, 3468. [Google Scholar] [CrossRef]
- Byrne, R.; Ockwell, D. Low Carbon Development, Poverty Reduction and Innovation System Building. In Proceedings of the Globelics Seminar: Learning, Innovation and Low Carbon Development, Aalborg University, Copenhagen, Denmark, 4–5 April 2013. [Google Scholar]
- Byrne, R.; Smith, A.; Watson, J.; Ockwell, D. Energy Pathways in Low Carbon Development. In Low-Carbon Technology Transfer; Routledge: New York, NY, USA, 2012; pp. 123–142. [Google Scholar]
- Cherp, A.; Vinichenko, V.; Jewell, J.; Brutschin, E.; Sovacool, B. Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework. Energy Res. Soc. Sci. 2018, 37, 175–190. [Google Scholar] [CrossRef]
- European Commission. Available online: https://ec.europa.eu/energy/en/annual-citizens-energy-forums (accessed on 21 October 2018).
- Kaldellis, J.; Kapsali, M.; Kaldelli, E.; Katsanou, E. Comparing recent views of public attitude on wind energy, photovoltaic and small hydro applications. Renew. Energy 2012, 52, 197–208. [Google Scholar] [CrossRef]
- Bartiaux, F.; Vandeschrick, C.; Moezzi, M.; Frogneux, N. Energy justice, unequal access to affordable warmth, and capability deprivation: A quantitative analysis for Belgium. Appl. Energy 2018, 225, 1219–1233. [Google Scholar] [CrossRef]
- Willand, N.; Horne, R. “They are grinding us into the ground”—The lived experience of (in)energy justice amongst low-income older households. Appl. Energy 2018, 226, 61–70. [Google Scholar] [CrossRef]
- Broto, V.C.; Baptista, I.; Kirshner, J.; Smith, S.; Alves, S.N. Energy justice and sustainability transitions in Mozambique. Appl. Energy 2018, 228, 645–655. [Google Scholar] [CrossRef]
- Gielen, D. Perspectives for the Energy Transition. Investment Needs for a Low-Carbon Energy System; International Energy Agency: Paris, France, 2017. [Google Scholar]
- XNA (Xinhua News Agency). China-U.S. Joint Statement on Climate Change. 2014. Available online: http://news.xinhuanet.com/energy/2014-11/13/c_127204771.htm (accessed on 2 January 2024). (In Chinese).
- Li, X. 25—Sustainable island energy systems: A case study of Tilos Island, Greece. In Energy Communities; Löbbe, S., Sioshansi, F., Robinson, D., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 435–448. [Google Scholar]
- NDRC (National Development and Reform Commission). Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions. 2015. Available online: http://qhs.ndrc.gov.cn/gwdt/201507/t20150701_710233.html (accessed on 4 June 2023).
- Kaldellis, J.K.; Ant, G.; Kaldelli, E.; Kapsali, M. Investigating the Energy Autonomy of Very Small Non-Interconnected Islands A Case Study: Agathonisi, Greece. Energy Sustain. Dev. 2012, 16, 476–485. [Google Scholar] [CrossRef]
- NBSC (National Bureau of Statistics of China). China Statistical Yearbook 2015; China Statistics Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- CEC (China Electricity Council). Electricity Industry Situation of 2014; CEC China: Beijing, China, 2015; Available online: http://www.cec.org.cn/guihuayutongji/gongxufenxi/dianliyunxingjiankuang/2015-0202/133565.html (accessed on 22 July 2023). (In Chinese)
- NBSC (National Bureau of Statistics of China). China Statistical Yearbook 2011; China Statistics Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Grubler, A.; Johansson, T.; Mundaca, L.; Nakicenovic, N.; Pachauri, S.; Riahi, K. Energy primer. In Global Energy Assessment: Toward a Sustainable Future; Johansson, T., Patwardhan, A., Nakicenovic, N., Gomez-Echeverri, L., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 99–150. [Google Scholar]
- Kunchornrat, J.; Phdungsilp, A. Multi-Level Governance of Low-Carbon Energy Systems in Thailand. Energies 2012, 5, 531–544. [Google Scholar] [CrossRef]
- Wang, H.K.H. Climate Change and Clean Energy Management Challenges and Growth Strategies, 1st ed.; Routledge: London, UK, 2019; Volume 192, pp. 11–42. Available online: https://www.taylorfrancis.com/books/mono/10.4324/9781351050715/climatechange-clean-energy-management-henry-wang (accessed on 15 August 2023).
- Lenhart, S.; Fox, D. Structural Power in Sustainability Transitions: Case Studies of Energy Storage Integration Into Regional Transmission Organization Decision Processes. Front. Clim. 2021, 3, 749021. [Google Scholar] [CrossRef]
- Kaygusuz, K. Energy for sustainable development: A case of developing countries. Renew. Sustain. Energy Rev. 2012, 16, 1116–1126. [Google Scholar] [CrossRef]
- Dufour, F. The Costs and Implications of Our Demand for Energy: A Comparative and Comprehensive Analysis of the Available Energy Resources. 2018 ACADEMIA; Volume 88, pp. 245–252. Available online: https://www.academia.edu/36768579/ (accessed on 12 September 2023). [CrossRef]
- WB (World Bank). World Development Indicators; World Bank: Washington, DC, USA, 2014; Available online: http://data.worldbank.org/data-catalog/worlddevelopment-indicators/ (accessed on 2 September 2023).
- B.P. (British Petroleum). B.P. Statistical Review of World Energy. 2014. Available online: http://www.bp.com/statisticalreview (accessed on 12 September 2023).
- Liu, Q.; Chen, Y.; Tian, C.; Zheng, X.Q.; Li, J.F. Strategic deliberation on development of low-carbon energy system in China. Adv. Clim. Change Res. 2016, 7, 26–34. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Zou, J. Decomposition of energy-related CO2 emission in China: 1957–2000. Energy 2005, 30, 73–83. [Google Scholar] [CrossRef]
- Samaras, C.; Nuttall, W.J.; Bazilian, M. Energy and the military: Convergence of security, economic, and environmental decision-making. Energy Strat. Rev. 2019, 26, 100409. [Google Scholar] [CrossRef]
Study Zone | Researchers | Techniques | Decomposed Features |
---|---|---|---|
National levels and energy consumption | Chen et al. [9] | The difference-in-difference based on propensity score-matching (PSM-DID) method | Innovation drive and development of cities through low-carbon goals and low-carbon city pilot policy on the total factor productivity of listed enterprises [9] |
Wang et al. [45] | Tapio, C-D function, and MRIO model | Energy efficiency and advancing technology [44] | |
Moreau and Vuille [42] | Threshold model to empirically analyze panel data | Economic growth, energy efficiency, and structural changes [42] | |
Wang et al. [117] | Index decomposition analysis | The renewable energy consumption and economic growth [109] | |
Wang et al. [118] | Multiple co-integration estimation approaches | Energy efficiency, oil price, environmental pressure, research and development, and policy relationship | |
Wei et al. [119] | Multi-regional input–output (MRIO) and LMDI model | Types of energy and economic growth [121] | |
Zhang [120] | Multiregional input–output and Tapio decoupling model | Population, affluence, and technology [125] | |
National levels and CO2 emission | Dong et al. [65] | LMDI, Energy Alternatives Planning system (LEAP), and Tapio decoupling model | Different industrial sectors, effect of industrial sectors [68] |
Zhang et al. [151] | Data-driven selection | Energy efficiency, market conditions, and environmental compliance [180] | |
Wang et al. [148] | LMDI model | Decoupling index between CO2 emissions and across provinces [148] | |
Steblyanskaya et al. [150] | Input and output (IO) table’s data | Understanding carbon dioxide (CO2) emission and carbon neutrality status [150] | |
Li, Rongrong et al. [190] | Fully modified ordinary least squares regression analysis and Granger causality test | Impact of structural changes on per capita carbon emissions from the four aspects of energy, trade, society and economy [190] | |
Wang, Q., and Li [191] | Linear panel data analysis and panel threshold regression approach | Effects of population aging, life expectancy, population density, unemployment rate, per capita GDP, and urbanization on per capita CO2 | |
Regional CO2 emission | Zhang et al. [151] | LMDI Model | Energy intensity, decarburization, and the per capita GPD effect [151]. |
Yang et al. [192] | Tapio, LMDI and DEA model | Factors of decoupling carbon emissions from global economic growth [192] | |
Li and Wei [193] | Panel Smooth Transition Regression (PSTR) Models | Financial development and innovation [193] | |
Hu et al. [194] | Kaya-LMDI model | Statuses of higher-income countries and lower-income countries, economic growth, energy intensity, and energy exports [194] | |
Nathaniel et al. [195] | Environmental Kuznets curve model | Promotion of nuclear and renewable energy consumption and the abating role of nuclear energy [195] | |
Wang, Qiang, and Shasha Wang [196] | Tapio decoupling model and Log Mean Divisia Index | The increase in carbon emissions and separation of carbon emission and economic growth in transport sectors [196] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbadeyan, O.J.; Muthivhi, J.; Linganiso, L.Z.; Deenadayalu, N. Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review. Clean Technol. 2024, 6, 1076-1113. https://doi.org/10.3390/cleantechnol6030054
Gbadeyan OJ, Muthivhi J, Linganiso LZ, Deenadayalu N. Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review. Clean Technologies. 2024; 6(3):1076-1113. https://doi.org/10.3390/cleantechnol6030054
Chicago/Turabian StyleGbadeyan, Oluwatoyin J., Joseph Muthivhi, Linda Z. Linganiso, and Nirmala Deenadayalu. 2024. "Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review" Clean Technologies 6, no. 3: 1076-1113. https://doi.org/10.3390/cleantechnol6030054
APA StyleGbadeyan, O. J., Muthivhi, J., Linganiso, L. Z., & Deenadayalu, N. (2024). Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review. Clean Technologies, 6(3), 1076-1113. https://doi.org/10.3390/cleantechnol6030054