Next Issue
Volume 6, December
Previous Issue
Volume 6, June
 
 

Clean Technol., Volume 6, Issue 3 (September 2024) – 20 articles

Cover Story (view full-size image): This study uses the HOMER Pro energy modeling tool to model an optimized grid-connected renewable energy system for a community in southern Alberta, Canada. The study’s goal is to identify the best renewable energy technology combinations that can provide electricity at the lowest levelized cost of energy (LCOE) and has lower greenhouse gas emissions as compared to the electricity produced by traditional fossil fuel. Gleichen is a small town in southern Alberta that is close to numerous commercial wind and solar projects given the region’s high quality renewable resources. “Tri-brid” systems consisting of wind turbines, solar photovoltaics, and battery energy storage systems (BESS) are considered and compared based on electricity prices, net present cost, and greenhouse gas emissions savings. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 3358 KiB  
Article
The Influence of Pyrolysis Temperature and Feedstocks on the Characteristics of Biochar-Derived Dissolved Organic Matter: A Systematic Assessment
by Yaru Li, Weipeng Chen, Shu Fang, Zhihua Xu, Haifeng Weng and Xiaodong Zhang
Clean Technol. 2024, 6(3), 1314-1325; https://doi.org/10.3390/cleantechnol6030062 - 19 Sep 2024
Viewed by 1112
Abstract
Biochar is a carbon-rich product obtained by pyrolyzing biomass under oxygen-limited conditions and has a wide range of potential for environmental applications. In particular, dissolved organic matter (DOM) released from biochar has an important impact on the fate of pollutants. The study aimed [...] Read more.
Biochar is a carbon-rich product obtained by pyrolyzing biomass under oxygen-limited conditions and has a wide range of potential for environmental applications. In particular, dissolved organic matter (DOM) released from biochar has an important impact on the fate of pollutants. The study aimed to systematically assess how varying pyrolysis temperatures and biomass feedstocks influence the characteristics of biochar-derived DOM. DOM samples were comprehensively characterized utilizing UV-vis spectroscopy and excitation–emission matrix (EEM) fluorescence spectroscopy, coupled with parallel factor (PARAFAC) analysis. The study discovered that pyrolysis temperature significantly affects DOM characteristics more than feedstock type. An increase in pyrolysis temperature correlated with a notable decrease in dissolved organic carbon content, aromaticity, and fluorescence intensity, alongside a marked increase in pH and hydrophilicity. PARAFAC analysis identified three distinct DOM components: two humic-like substances (C1 and C2) and one protein-like substance (C3). The proportion of protein-like substances increased with higher pyrolysis temperatures, while the humic-like substances’ proportion declined. The compositional shifts in DOM with pyrolysis temperature may significantly influence its environmental behavior and functionality. Further research is necessary to explore the long-term environmental impact and potential applications of biochar-derived DOM. Full article
Show Figures

Figure 1

54 pages, 8541 KiB  
Review
Hydrogen Production, Transporting and Storage Processes—A Brief Review
by José Pereira, Reinaldo Souza, Jeferson Oliveira and Ana Moita
Clean Technol. 2024, 6(3), 1260-1313; https://doi.org/10.3390/cleantechnol6030061 - 18 Sep 2024
Viewed by 3516
Abstract
This review aims to enhance the understanding of the fundamentals, applications, and future directions in hydrogen production techniques. It highlights that the hydrogen economy depends on abundant non-dispatchable renewable energy from wind and solar to produce green hydrogen using excess electricity. The approach [...] Read more.
This review aims to enhance the understanding of the fundamentals, applications, and future directions in hydrogen production techniques. It highlights that the hydrogen economy depends on abundant non-dispatchable renewable energy from wind and solar to produce green hydrogen using excess electricity. The approach is not limited solely to existing methodologies but also explores the latest innovations in this dynamic field. It explores parameters that influence hydrogen production, highlighting the importance of adequately controlling the temperature and concentration of the electrolytic medium to optimize the chemical reactions involved and ensure more efficient production. Additionally, a synthesis of the means of transport and materials used for the efficient storage of hydrogen is conducted. These factors are essential for the practical feasibility and successful deployment of technologies utilizing this energy resource. Finally, the technological innovations that are shaping the future of sustainable use of this energy resource are emphasized, presenting a more efficient alternative compared to the fossil fuels currently used by society. In this context, concrete examples that illustrate the application of hydrogen in emerging technologies are highlighted, encompassing sectors such as transportation and the harnessing of renewable energy for green hydrogen production. Full article
Show Figures

Figure 1

31 pages, 21025 KiB  
Article
A Methodology to Optimize PMSM Driven Solar Water Pumps Using a Hybrid MPPT Approach in Partially Shaded Conditions
by Divya Shetty, Jayalakshmi N. Sabhahit and Ganesh Kudva
Clean Technol. 2024, 6(3), 1229-1259; https://doi.org/10.3390/cleantechnol6030060 - 18 Sep 2024
Viewed by 1162
Abstract
Solar water pumps are crucial for farmers, significantly reducing energy costs and providing independence from conventional fuels. Their adoption is further incentivized by government subsidies, making them a practical choice that aligns with sustainable agricultural practices. However, the cost of the required solar [...] Read more.
Solar water pumps are crucial for farmers, significantly reducing energy costs and providing independence from conventional fuels. Their adoption is further incentivized by government subsidies, making them a practical choice that aligns with sustainable agricultural practices. However, the cost of the required solar panels for the chosen power makes it essential to optimize solar water pumping systems (SWPS) for economic viability. This study enhances the efficiency and reliability of permanent magnet synchronous motor (PMSM)-driven SWPS in rural areas using hybrid maximum power point tracking (MPPT) algorithms and voltage-to-frequency (V/f) control strategy. It investigates the sensorless scalar control method for PMSM-based water pumps and evaluates various MPPT algorithms, including grey wolf optimization (GWO), particle swarm optimization (PSO), perturb and observe (PO), and incremental conductance (INC), along with hybrid combinations. The study, conducted using MATLAB Simulink, assesses these algorithms on convergence time, MPPT accuracy, torque ripple, and system efficiency under different partial shading conditions. Findings reveal that INC-GWO excels, providing higher accuracy, faster convergence, and reduced steady-state oscillations, thus boosting system efficiency. The V/f control strategy simplifies control mechanisms and enhances performance. Considering system non-idealities and maximum duty cycle limitations, PMSM-based SWPS achieve superior efficiency and stability, making them viable for off-grid water pumping applications. Full article
Show Figures

Figure 1

26 pages, 4534 KiB  
Article
Direct-Coupled Improvement of a Solar-Powered Proton Exchange Membrane Electrolyzer by a Reconfigurable Source
by Amedeo Di Caro and Gianpaolo Vitale
Clean Technol. 2024, 6(3), 1203-1228; https://doi.org/10.3390/cleantechnol6030059 - 12 Sep 2024
Viewed by 897
Abstract
This paper deals with proton exchange membrane (PEM) electrolyzers directly coupled with a photovoltaic source. It proposes a method to increase the energy delivered to the electrolyzer by reconfiguring the electrical connection of the arrays according to solar radiation. Unlike the design criterion [...] Read more.
This paper deals with proton exchange membrane (PEM) electrolyzers directly coupled with a photovoltaic source. It proposes a method to increase the energy delivered to the electrolyzer by reconfiguring the electrical connection of the arrays according to solar radiation. Unlike the design criterion proposed by the literature, the suggested approach considers a source obtained by connecting arrays in parallel depending on solar radiation based on a fixed photovoltaic configuration. This method allows for the optimization of the operating point at medium or low solar radiation, where the fixed configuration gives poor results. The analysis is performed on a low-power plant (400 W). It is based on a commercial photovoltaic cell whose equivalent model is retrieved from data provided by the manufacturer. An equivalent model of the PEM electrolyzer is also derived. Two comparisons are proposed: the former considers a photovoltaic source designed according to the traditional approach, i.e., a fixed configuration; in the latter, a DC/DC converter as interface is adopted. The role of the converter is discussed to highlight the pros and cons. The optimal set point of the converter is calculated using an analytical equation that takes into account the electrolyzer model. In the proposed study, an increase of 17%, 62%, and 93% of the delivered energy has been obtained in three characteristic days, summer, spring/autumn, and winter, respectively, compared to the fixed PV configuration. These results are also better than those achieved using the converter. Results show that the proposed direct coupling technique applied to PEM electrolyzers in low-power plants is a good trade-off between a fixed photovoltaic source configuration and the use of a DC/DC converter. Full article
(This article belongs to the Collection Brilliant Young Researchers in Clean Technologies)
Show Figures

Figure 1

22 pages, 6029 KiB  
Article
The Development of a High-Efficiency Small Induction Furnace for a Glass Souvenir Production Process Using Multiphysics
by Jatuporn Thongsri, Piyawong Poopanya, Sanguansak Sriphalang and Sorathorn Pattanapichai
Clean Technol. 2024, 6(3), 1181-1202; https://doi.org/10.3390/cleantechnol6030058 - 9 Sep 2024
Viewed by 861
Abstract
A small induction furnace (SIF), which has the important components of copper coils, a ceramic jig, and a graphite crucible, employed for a glass souvenir production process, has been developed as a form of clean technology for multiphysics, consisting of electromagnetics analysis (EA) [...] Read more.
A small induction furnace (SIF), which has the important components of copper coils, a ceramic jig, and a graphite crucible, employed for a glass souvenir production process, has been developed as a form of clean technology for multiphysics, consisting of electromagnetics analysis (EA) and thermal analysis (TA). First, two experiments were established to measure parameters for multiphysics results validation and boundary condition settings. Then, the parameters were applied to multiphysics, in which the EA revealed magnetic flux density (B) and ohmic losses, and the TA reported a temperature consistent with the experimental results, confirming the multiphysics credibility. Next, a ferrite flux concentrator was added to the SIF during development. Multiphysics revealed that PC40 ferrite, as a flux concentrator with a suitable design, could increase B by about 159% compared to the conventional SIF at the power of 1000 W. As expected, the B increases alongside the increase in power applied to the coils, and is more densely concentrated in the flux concentrator than in other regions, enhancing the production process efficacy. Lastly, the developed SIF was employed in the actual process and received good feedback from users. The novel research findings are the developed SIF and methodology, exclusively designed for this research and practically employed for a glass souvenir production process. Full article
Show Figures

Figure 1

12 pages, 1735 KiB  
Article
Assessment of Influential Operational Parameters in the Mitigation of CO2 Emissions in a Power Plant: Case Study in Portugal
by Vítor Balanuta, Patrícia Baptista, Fernando Carreira, Gonçalo O. Duarte and Cláudia S.S.L. Casaca
Clean Technol. 2024, 6(3), 1169-1180; https://doi.org/10.3390/cleantechnol6030057 - 6 Sep 2024
Viewed by 761
Abstract
The European decarbonization goals and requirement for energy independence are mostly relying on intermittent renewable energy sources for electrification. A numerical model was developed to simulate the operation of a steam generator, allowing a study of the potential impacts of retrofitting existing coal-fired [...] Read more.
The European decarbonization goals and requirement for energy independence are mostly relying on intermittent renewable energy sources for electrification. A numerical model was developed to simulate the operation of a steam generator, allowing a study of the potential impacts of retrofitting existing coal-fired power plants to operate with biomass or coal–biomass mixtures on combustion parameters and CO2 emissions. The results obtained using the operational parameters of the Sines power plant indicate that a mixture of 25% coal and 75% pine sawdust allow operation at λ = 1.8, demonstrating that a small amount of coal allows operation near the coal combustion parameters (λ = 1.9). These conditions have the drawback of a reduction of 8.7% in adiabatic flame temperature but a significant reduction of 57.5% in CO2 emissions, considering the biomass as carbon-neutral. Full article
Show Figures

Figure 1

27 pages, 5251 KiB  
Article
Development and Analysis of a Global Floating Wind Levelised Cost of Energy Map
by Sergi Vilajuana Llorente, José Ignacio Rapha and José Luis Domínguez-García
Clean Technol. 2024, 6(3), 1142-1168; https://doi.org/10.3390/cleantechnol6030056 - 5 Sep 2024
Viewed by 1188
Abstract
Floating offshore wind (FOW) is rapidly gaining interest due to its large potential. In this regard, it is of special interest to determine the best locations for its installation. One of the main aspects when evaluating the feasibility of a project is the [...] Read more.
Floating offshore wind (FOW) is rapidly gaining interest due to its large potential. In this regard, it is of special interest to determine the best locations for its installation. One of the main aspects when evaluating the feasibility of a project is the levelised cost of energy (LCOE), but there are many variables to consider when calculating it for FOW, and plenty of them are hard to find when the scope is all the suitable areas worldwide. This paper presents the calculation and analysis of the global LCOE with particular focus on the best countries and territories from an economic point of view, considering four types of platforms: semi-submersible, barge, spar, and tension leg platform (TLP). The model takes into account, on the one hand, wind data, average significant wave height, and distance to shore for an accurate calculation of delivered energy to the onshore substation and, on the other hand, bathymetry, distances, and existing data from projects to find appropriate functions for each cost with regression models (e.g., manufacturing, installation, operation and maintenance (O&M), and decommissioning costs). Its results can be used to assess the potential areas around the world and identify the countries and territories with the greatest opportunities regarding FOW. The lowest LCOE values, i.e., the optimal results, correspond to areas where wind resources are more abundant and the main variables of the site affecting the costs (water depth, average significant wave height, distance to shore, and distance to port) are as low as possible. These areas include the border between Venezuela and Colombia, the Canary Islands, Peru, the border between Western Sahara and Mauritania, Egypt, and the southernmost part of Argentina, with LCOEs around 90 €/MWh. Moreover, there are many areas in the range of 100–130 €/MWh. Full article
Show Figures

Figure 1

28 pages, 2164 KiB  
Review
Systematic Literature Review of Heuristic-Optimized Microgrids and Energy-Flexible Factories
by Johannes Prior, Tobias Drees, Michael Miro and Bernd Kuhlenkötter
Clean Technol. 2024, 6(3), 1114-1141; https://doi.org/10.3390/cleantechnol6030055 - 22 Aug 2024
Viewed by 864
Abstract
Decentralized renewable energy generation and consumption through microgrids, coupled with short- and long-term storage systems and enhanced demand flexibility, represent a promising strategy for mitigating grid stress and reducing emissions in the industrial sector. However, transitioning into a sustainable industry often poses challenges [...] Read more.
Decentralized renewable energy generation and consumption through microgrids, coupled with short- and long-term storage systems and enhanced demand flexibility, represent a promising strategy for mitigating grid stress and reducing emissions in the industrial sector. However, transitioning into a sustainable industry often poses challenges in terms of economic feasibility. This review surveys current optimization approaches and simulation functionalities to enhance feasibility. It follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, covering 1066 studies from 2016 to 2023 across three research areas: optimal system sizing of microgrids (OSS), optimization of electrical energy distribution to storage systems and consumers (EED), and energy flexibilization of factories (EF). As a result, 24 filtered sources from these areas were analyzed. Quantitative analysis indicated that evolutionary and swarm-inspired metaheuristics are predominantly applied in OSS, whereas exact linear problem solvers are favored for EED and EF optimization. A range of functionalities is available, and approaches often prioritize individual functionalities, such as load forecasting, dynamic electricity pricing, and statistical representation of energy generation, rather than comprehensively integrating them. Furthermore, no current approach simultaneously integrates optimization and simulation models across all three research areas. Full article
Show Figures

Figure 1

38 pages, 2233 KiB  
Review
Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review
by Oluwatoyin J. Gbadeyan, Joseph Muthivhi, Linda Z. Linganiso and Nirmala Deenadayalu
Clean Technol. 2024, 6(3), 1076-1113; https://doi.org/10.3390/cleantechnol6030054 - 19 Aug 2024
Cited by 3 | Viewed by 3440
Abstract
Climate change has become a global nightmare, and the awareness of the causes of carbon emissions has resulted in rigorous studies. These studies linked the increase in global warming with booming economic growth. Since global warming has become more apparent, researchers have explored [...] Read more.
Climate change has become a global nightmare, and the awareness of the causes of carbon emissions has resulted in rigorous studies. These studies linked the increase in global warming with booming economic growth. Since global warming has become more apparent, researchers have explored ways to decouple economic activities from carbon growth. Economic and carbon growth must be decoupled to achieve a low-carbon economy to support the carbon-growth plan or emission-reduction strategy. The world is transitioning toward a carbon-neutral and green ecosystem, so finding ways to decouple carbon emissions from economic activities is an exciting topic to explore. This study reviews current information on the importance of decoupling energy from economic growth innovative techniques that thoroughly examine the challenges and constraints of low-carbon energy systems. In order to examine the detrimental effects of carbon emissions on ecosystems and the ways in which economic expansion contributes to carbon footprints, more than three hundred research papers were gathered using several search engines, including Elsevier and Google Scholar. This review revealed that decarbonization and dematerialization had been achieved without declining global economic growth. It also provides information on energy use and economic activities leading to global carbon emissions and alternative solutions to the global challenge of climate change. The decoupling methods commonly used to determine the impact of energy decarbonization on economic growth are explored. All the results suggest that economic growth is a primary mover of global carbon emission increase and must be separated to achieve a carbon environment. Full article
Show Figures

Figure 1

19 pages, 6017 KiB  
Article
The Effect of CaO in the Immobilization of Cd2+ and Pb2+ in Fly Ash-Based Geopolymer
by Xupicheng Ren, Fan Wang, Xiang He and Xiaomin Hu
Clean Technol. 2024, 6(3), 1057-1075; https://doi.org/10.3390/cleantechnol6030053 - 14 Aug 2024
Viewed by 964
Abstract
The use of geopolymers for the solidification/stabilization (S/S) of municipal solid waste incineration fly ash (MSWI FA) is promising because the Cao in MSWI FA can provide an alkaline environment to facilitate geopolymer reactions and help to form the gel phase in the [...] Read more.
The use of geopolymers for the solidification/stabilization (S/S) of municipal solid waste incineration fly ash (MSWI FA) is promising because the Cao in MSWI FA can provide an alkaline environment to facilitate geopolymer reactions and help to form the gel phase in the solidified body. This study investigated the role of CaO in MSWI FA in immobilizing common heavy metals, especially Cd2+ and Pb2+. Tests were performed to evaluate the effect of CaO on the unconfined compressive strength (UCS) of the polymer and the leaching of heavy metals. The findings revealed that as the CaO content increased, the UCS of the geopolymer samples also rose, reaching a maximum 28-day UCS of 24.8 MPa at a CaO content of 31.5%. Additionally, higher CaO levels resulted in lower leaching concentrations of heavy metals in the stabilized material. When the CaO level is 32%, the levels of heavy metals that leach out are very low, with Pb2+ at 0. 02 mg/L and Cd2+ at 0. 01 mg/L, achieving a stabilization rate of over 93.6% for these ions. Moreover, the geopolymer’s characteristics were analyzed by XRD, FTIR, and SEM, and the immobilization mechanisms of Cd2+ and Pb2+ were identified as gelation, physical encapsulation, and chemical substitution. Full article
Show Figures

Figure 1

19 pages, 6875 KiB  
Article
Implementing Tri-Brid Energy Systems for Renewable Integration in Southern Alberta, Canada
by Mohammad Adnan Aftab, James Byrne, Paul Hazendonk, Dan Johnson, Locke Spencer and Tim Weis
Clean Technol. 2024, 6(3), 1038-1056; https://doi.org/10.3390/cleantechnol6030052 - 13 Aug 2024
Viewed by 1138
Abstract
The steep decline in the price of wind turbines and solar photovoltaics provides a possibility to decarbonize electricity deeply and affordably. This study uses the HOMER Pro energy modeling tool to model an optimized grid-connected renewable energy system for a community in southern [...] Read more.
The steep decline in the price of wind turbines and solar photovoltaics provides a possibility to decarbonize electricity deeply and affordably. This study uses the HOMER Pro energy modeling tool to model an optimized grid-connected renewable energy system for a community in southern Alberta, Canada. The study’s goal is to identify the best renewable energy technology combinations that can provide electricity at the lowest levelized cost of energy (LCOE) and has lower greenhouse gas emissions as compared to the electricity produced by traditional fossil fuel. Gleichen is a small town in southern Alberta that is close to numerous commercial wind and solar projects given the region’s high quality renewable resources. “Tri-brid” systems consisting of wind turbines, solar photovoltaics, and battery energy storage systems (BESS) are considered and compared based on electricity prices, net present cost, and greenhouse gas emissions savings. This tri-brid system is connected to the grid to sell excess generated electricity or buy electricity when there is less or no availability of solar and wind energy. The tri-brid energy system has an estimated LCOE of 0.0705 CAD/kWh, which is competitive with the price of electricity generated by natural gas and coal, which is 0.127 CAD/kWh. Full article
Show Figures

Figure 1

28 pages, 4001 KiB  
Review
Grid Forming Inverter as an Advanced Smart Inverter for Augmented Ancillary Services in a Low Inertia and a Weak Grid System Towards Grid Modernization
by Shriram S. Rangarajan, E. Randolph Collins and Tomonobu Senjyu
Clean Technol. 2024, 6(3), 1011-1037; https://doi.org/10.3390/cleantechnol6030051 - 8 Aug 2024
Viewed by 1531
Abstract
Grid dynamics and control mechanisms have improved as smart grids have used more inverter-based renewable energy resources (IBRs). Modern converter technologies try to improve converters’ capacities to compensate for grid assistance, but their inertia still makes them heavily dependent on synchronous generators (SGs). [...] Read more.
Grid dynamics and control mechanisms have improved as smart grids have used more inverter-based renewable energy resources (IBRs). Modern converter technologies try to improve converters’ capacities to compensate for grid assistance, but their inertia still makes them heavily dependent on synchronous generators (SGs). Grid-following (GFL) converters ensure grid reliability. As RES penetration increases, the GFL converter efficiency falls, limiting integration and causing stability difficulties in low-inertia systems. A full review of grid converter technologies, grid codes, and controller mechanisms is needed to determine the current and future needs. A more advanced converter is needed for integration with more renewable energy sources (RESs) and to support weak grids without SGs and with low inertia. Grid-forming (GFM) inverters could change the electrical business by addressing these difficulties. GFM technology is used in hybrid, solar photovoltaic (PV), battery energy storage systems (BESSs), and wind energy systems to improve these energy systems and grid stability. GFM inverters based on BESSs are becoming important internationally. Research on GFM controllers is new, but the early results suggest they could boost the power grid’s efficiency. GFM inverters, sophisticated smart inverters, help maintain a reliable grid, energy storage, and renewable power generation. Although papers in the literature have compared GFM and GFL, none of them have examined them in terms of their performance in a low-SCR system. This paper shows how GFM outperforms GFL in low-inertia and weak grid systems in the form of a review. In addition, a suitable comparison of the results considering the performance of GFM and GFL in a system with varying SCRs has been depicted in the form of simulation using PSCAD/EMTDC for the first time. Full article
Show Figures

Figure 1

17 pages, 570 KiB  
Article
Comparative Analysis of CAZymes from Trichoderma longibrachiatum LMBC 172 Cultured with Three Different Carbon Sources: Sugarcane Bagasse, Tamarind Seeds, and Hemicellulose Simulation
by Alex Graça Contato, Tiago Cabral Borelli, Ana Karine Furtado de Carvalho, Heitor Buzetti Simões Bento, Marcos Silveira Buckeridge, Janet Rogers, Steven Hartson, Rolf Alexander Prade and Maria de Lourdes Teixeira de Moraes Polizeli
Clean Technol. 2024, 6(3), 994-1010; https://doi.org/10.3390/cleantechnol6030050 - 8 Aug 2024
Viewed by 818
Abstract
The examination of fungal secretomes has garnered attention for its potential to unveil the repertoire of secreted proteins, notably CAZymes (Carbohydrate-Active enzymes), across various microorganisms. This study presents findings on categorizing the secretome profile of CAZymes by their function and family, derived from [...] Read more.
The examination of fungal secretomes has garnered attention for its potential to unveil the repertoire of secreted proteins, notably CAZymes (Carbohydrate-Active enzymes), across various microorganisms. This study presents findings on categorizing the secretome profile of CAZymes by their function and family, derived from the filamentous fungus Trichoderma longibrachiatum LMBC 172. The cultivation was performed through submerged fermentation with three distinct carbon sources: sugarcane bagasse, tamarind seeds, and a control simulating hemicellulose containing 0.5% beechwood xylan plus 0.5% oat spelt xylan. The secretome analysis revealed 206 distinct CAZymes. Each carbon source showed particularities and differences. Of these, 89 proteins were produced simultaneously with all the carbon sources; specifically, 41 proteins using only the hemicellulose simulation, 29 proteins when sugarcane bagasse was used as a carbon source, and only 3 when tamarind seeds were used. However, in this last condition, there was a high intensity of xyloglucanase GH74 production, thus reaffirming the richness of xyloglucan in the constitution of these seeds. When evaluating the proteins found in two conditions, 18 proteins were shown between the simulation of hemicellulose and sugarcane bagasse, 11 proteins between the simulation of hemicellulose and tamarind seeds, and 15 proteins between sugarcane bagasse and tamarind seeds. Among the proteins found, there are representatives of different families such as glycosyl hydrolases (GHs) that cleave cellulose, hemicellulose, pectin, or other components; carbohydrate esterases (CEs); polysaccharide lyases (PLs); carbohydrate-binding modules (CBMs); and auxiliary activity enzymes (AAs). These results demonstrate the importance of analyzing CAZymes secreted by microorganisms under different culture conditions. Full article
Show Figures

Figure 1

21 pages, 6509 KiB  
Article
NO2 Adsorption on Biochar Derived from Wood Shaving Litter: Understanding Surface Chemistry and Adsorption Mechanisms
by Mohamed Zbair, Méghane Drané and Lionel Limousy
Clean Technol. 2024, 6(3), 973-993; https://doi.org/10.3390/cleantechnol6030049 - 30 Jul 2024
Cited by 2 | Viewed by 1051
Abstract
This study investigates the production of biochar from fresh wood shavings (B-WSF) and used wood shavings (B-WSU–animal litter) biomass through pyrolysis at 450 °C and explores its potential for NO2 adsorption at different temperatures from 22 °C to 250 °C. The biochars’ [...] Read more.
This study investigates the production of biochar from fresh wood shavings (B-WSF) and used wood shavings (B-WSU–animal litter) biomass through pyrolysis at 450 °C and explores its potential for NO2 adsorption at different temperatures from 22 °C to 250 °C. The biochars’ thermal stability, elemental composition, mineral content, textural properties, and surface chemistry were comprehensively analyzed using various techniques, including thermogravimetric analysis (TGA), ultimate analysis, proximate analysis, mineral composition analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and NO2 adsorption experiments. The results indicate that biochars derived from WSF and WSU biomass possess high stability and exhibit significant changes in their elemental composition, surface functional groups, and textural properties compared to the raw biomass. The biochars demonstrated substantial NO2 adsorption capacities and reduction, with B-WSU biochar exhibiting higher adsorption capacity attributed to its higher specific surface area, mineral content, and functional groups. In addition, the results reveal distinct patterns in NO2 adsorption and NO release, with temperature playing a pivotal role in the process. At lower temperatures, NO2 adsorption on both biochars exhibits gradual increases, while higher temperatures facilitate immediate adsorption and subsequent reduction to NO. The adsorption of NO2 increased with increasing adsorption temperature, with B-WSU biochar achieving a maximum adsorption capacity of 43.54 mg/g at 250 °C, compared to 9.62 mg/g for B-WSF biochar. Moreover, XPS analysis revealed alterations in surface functional groups upon NO2 exposure, indicating enhanced surface oxidation and formation of nitrogen-containing species. In addition, differences in surface heterogeneity and mineral content influence NO2 adsorption behavior between the biochar samples. These findings highlight the potential of WSF biomass-derived biochar as an effective adsorbent for NO2 removal, offering insights into its application in air pollution mitigation strategies. The mechanism of NO2 adsorption involves chemisorption on oxygen-containing functional groups and physical adsorption, facilitated by the high specific surface area and pore volume of the biochar. Furthermore, the rich mineral content in B-WSU biochar explains its high adsorption capacity, demonstrating the potential for valorization of waste materials in the circular economy. Full article
Show Figures

Figure 1

19 pages, 5492 KiB  
Article
Development and Performance Assessment of Sensor-Mounted Solar Dryer for Micro-Climatic Modeling and Optimization of Dried Fish Quality in Cambodia
by Lyhour Hin, Chan Makara Mean, Meng Chhay Kim, Chhengven Chhoem, Borarin Bunthong, Lytour Lor, Taingaun Sourn and P. V. Vara Prasad
Clean Technol. 2024, 6(3), 954-972; https://doi.org/10.3390/cleantechnol6030048 - 26 Jul 2024
Viewed by 1582
Abstract
Fish are one of the main sources of protein in Cambodia but they are highly perishable. This requires immediate consumption or processing for later use. In processing, fish drying is very common, but most processors practice traditional drying methods although solar dryers have [...] Read more.
Fish are one of the main sources of protein in Cambodia but they are highly perishable. This requires immediate consumption or processing for later use. In processing, fish drying is very common, but most processors practice traditional drying methods although solar dryers have been introduced, or gradually used, in Cambodia. There is a large variation in terms of drying efficiency due to large differences in solar radiation, temperature, and humidity conditions in traditional drying methods and solar dryers. However, there is limited information on the actual variation in these two systems, which should be documented in Cambodia. Using sensors to monitor micro-climatic changes inside the drying chamber will be useful to improve efficiency and performance. Therefore, the objectives of this research were to (1) design a fish dryer from locally available inputs; (2) determine changes in solar radiation over time; (3) compare relative humidity and temperatures between traditional sun-drying and the solar dryer; (4) determine the relationship among the climatic parameters; and (5) compare some physical, chemical, and biological properties of dried fish in both drying techniques with the Cambodian dried fish standards. The study was conducted in collaboration with a fish processor in the Siem Reap Province between December 2023 and January 2024 using a sensor-mounted solar dryer fabricated by the Royal University of Agriculture to dry fish and compared with traditional sun-drying. Three experiments were carried out from 8:00 to 16:00 following the common drying practices in Cambodia. In each experiment, 80–100 kg of raw giant snakehead, or 56–70 kg of prepared fish (1.04 ± 0.05 kg each fish), was prepared for drying. Data on environmental conditions were measured and analyzed. The results show that the solar dryer had higher temperatures (almost 60 °C) and lower relative humidity (about 20%) during peak hours when compared with traditional sun-drying (36.8 °C and 40%, respectively). In all cases, relative humidity decreased with rising solar radiation and temperatures. The final weight and moisture of dried fish in the solar dryer were lower than those in traditional sun-drying in eight hours. Salmonella was detected with traditional sun-drying but E. coli was not. Bacterial presence may be harmful to human health. Nevertheless, the time spent for drying in both techniques was the same, so future studies should focus on improving ventilation to remove moisture faster out of the solar dryer, which can help with faster drying and more time saving. Hybrid solar dryers should also be considered to maintain high temperatures at night, while bacteria should be counted for safety reasons. Full article
Show Figures

Figure 1

33 pages, 3209 KiB  
Review
Advances in the Design of Renewable Energy Power Supply for Rural Health Clinics, Case Studies, and Future Directions
by Abubakar Abdulkarim, Nasir Faruk, Emmanuel Alozie, Hawau Olagunju, Ruqayyah Yusuf Aliyu, Agbotiname Lucky Imoize, Kayode S. Adewole, Yusuf Olayinka Imam-Fulani, Salisu Garba, Bashir Abdullahi Baba, Mustapha Hussaini, Abdulkarim A. Oloyede, Aminu Abdullahi, Rislan Abdulazeez Kanya and Dahiru Jafaru Usman
Clean Technol. 2024, 6(3), 921-953; https://doi.org/10.3390/cleantechnol6030047 - 15 Jul 2024
Cited by 1 | Viewed by 1301
Abstract
Globally, effective and efficient healthcare is critical to the wellbeing and standard of living of any society. Unfortunately, several distant communities far from the national grid do not have access to reliable power supply, owing to economic, environmental, and technical challenges. Furthermore, unreliable, [...] Read more.
Globally, effective and efficient healthcare is critical to the wellbeing and standard of living of any society. Unfortunately, several distant communities far from the national grid do not have access to reliable power supply, owing to economic, environmental, and technical challenges. Furthermore, unreliable, unavailable, and uneconomical power supply to these communities contributes significantly to the delivery of substandard or absence of qualitative healthcare services, resulting in higher mortality rates and associated difficulty in attracting qualified healthcare workers to the affected communities. Given these circumstances, this paper aims to conduct a comprehensive review of the status of renewable energy available to rural healthcare clinics around the globe, emphasizing its potential, analysis, procedures, modeling techniques, and case studies. In this light, several renewable energy modeling techniques were reviewed to examine the optimum power supply to the referenced healthcare centers in remote communities. To this end, analytical techniques and standard indices for reliable power supply to the isolated healthcare centers are suggested. Specifically, different battery storage systems that are suitable for rural healthcare systems are examined, and the most economical and realistic procedure for the maintenance of microgrid power systems for sustainable healthcare delivery is defined. Finally, this paper will serve as a valuable resource for policymakers, researchers, and experts in rural power supply to remote healthcare centers globally. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

14 pages, 10353 KiB  
Article
Energy Harvester Based on Mechanical Impacts of an Oscillating Rod on Piezoelectric Transducers
by Marco Antonio Islas-Herrera, David Sánchez-Luna, Jorge Miguel Jaimes-Ponce, Daniel Andrés Córdova-Córdova, Christopher Iván Lorenzo-Alfaro and Daniel Hernández-Rivera
Clean Technol. 2024, 6(3), 907-920; https://doi.org/10.3390/cleantechnol6030046 - 10 Jul 2024
Cited by 1 | Viewed by 931
Abstract
Energy harvesting is a clean technique for obtaining electrical energy from environmental energy. Mechanical vibrations are an energy source that can be used to produce electricity using piezoelectric energy harvesters. Vibrations and wind in bridges have the potential to produce clean energy that [...] Read more.
Energy harvesting is a clean technique for obtaining electrical energy from environmental energy. Mechanical vibrations are an energy source that can be used to produce electricity using piezoelectric energy harvesters. Vibrations and wind in bridges have the potential to produce clean energy that can be employed to supply energy to electronic devices with low consumption. The purpose of this paper was to validate the functioning of an energy harvester and test the electrical power generation potential of a system based on the oscillation of a rod with a tip mass to stimulate piezoelectric transducers by impact. The obtained results showed the electric energy productions for different test conditions. Experimentally, the proposed structure produced 0.337 µJ of energy after 14 s of testing. In addition, after one hour of operation, an estimated production of 10.4 mJ was obtained, considering four stacks of 25 piezoelectric disks each when periodic impacts of 50 N at 5.7 Hz stimulated the transducers. In future work, we will focus on taking advantage of the vibrations produced in the proposed structure induced by the mechanical vibration of bridges and vortex-induced vibration (VIV) through interaction with wind to produce clean energy that is useful for low-power applications. Full article
(This article belongs to the Collection Brilliant Young Researchers in Clean Technologies)
Show Figures

Figure 1

21 pages, 2577 KiB  
Review
Biodiesel Sustainability: Review of Progress and Challenges of Biodiesel as Sustainable Biofuel
by Ade Suhara, Karyadi, Safarudin Gazali Herawan, Andy Tirta, Muhammad Idris, Muhammad Faizullizam Roslan, Nicky Rahmana Putra, April Lia Hananto and Ibham Veza
Clean Technol. 2024, 6(3), 886-906; https://doi.org/10.3390/cleantechnol6030045 - 9 Jul 2024
Cited by 6 | Viewed by 5995
Abstract
Biodiesel, an environmentally degradable and renewable biofuel derived from organic matter, has exhibited its capacity as a viable and sustainable substitute for traditional diesel fuel. Numerous comprehensive investigations have been conducted to assess the effects of biodiesel on internal combustion engines (ICEs), with [...] Read more.
Biodiesel, an environmentally degradable and renewable biofuel derived from organic matter, has exhibited its capacity as a viable and sustainable substitute for traditional diesel fuel. Numerous comprehensive investigations have been conducted to assess the effects of biodiesel on internal combustion engines (ICEs), with particular emphasis on diesel engine performance metrics, combustion dynamics, and emission profiles. Biodiesel demonstrates a significant decrease in emissions of particulate matter (PM), hydrocarbon (HC), and carbon monoxide (CO) in diesel engines. The addition of biodiesel has shown a minor decrease in power output and a slight increase in fuel consumption and nitrogen oxide (NOx) emissions. Nevertheless, the extensive implementation of biodiesel, despite its potential to effectively reduce detrimental emissions, has encountered obstacles stemming from external influences including restricted availability of feedstock, volatile petroleum oil prices, and inadequate governmental backing. This review presents a concise summary of significant advancements in the global adoption of biodiesel from a sustainability perspective. This review provides valuable insights into the challenges and opportunities associated with the advancement of sustainable biofuel technologies by synthesizing the current state of palm biodiesel and examining global trends in biodiesel implementation. The wider adoption of biodiesel can be facilitated by addressing concerns pertaining to feedstock availability, price stability, and policy support. This would allow for the realization of significant environmental advantages and contribute to a more environmentally friendly and sustainable biofuel. Full article
Show Figures

Figure 1

34 pages, 434 KiB  
Review
Co-Treatment of Food Waste and Municipal Sewage Sludge: Technical and Environmental Review of Biological and Thermal Technologies
by Giovanni Gadaleta, Francesco Todaro, Annamaria Giuliano, Sabino De Gisi and Michele Notarnicola
Clean Technol. 2024, 6(3), 852-885; https://doi.org/10.3390/cleantechnol6030044 - 5 Jul 2024
Cited by 1 | Viewed by 1612
Abstract
To face the ongoing issues related to global warming, a circular economy approach should be pursued, rethinking the waste management system and the recovery of organic waste. The main organic waste streams are Food Waste (FW) and municipal Sewage Sludge (SS). In the [...] Read more.
To face the ongoing issues related to global warming, a circular economy approach should be pursued, rethinking the waste management system and the recovery of organic waste. The main organic waste streams are Food Waste (FW) and municipal Sewage Sludge (SS). In the spirit of circularity, a commingled treatment of FW and SS could be a viable solution. To this end, the present work aims to review the technical and environmental aspects of the co-treatment of FW and SS through biological and thermal processes. Firstly, a detailed characterization of the two substrates is presented as well as the current and future treatment technologies. Then, the technical feasibility and the environmental impacts of conventional biological co-treatments of FW and SS (i.e., composting, anaerobic digestion, and a combination of them), as well as innovative thermal ones (i.e., incineration, gasification, pyrolysis, and hydrothermal carbonization), is summarized. The outcomes of this work could contribute to achieving a more sustainable way to approach organic waste treatment and to help policy-making authorities move toward sustainable planning. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
26 pages, 3043 KiB  
Article
Energy and Exergy Analyses of an Innovative Heat Recovery System from the LNG Regasification Process in Green Ships
by Roberto Bruno, Vittorio Ferraro, Piofrancesco Barone and Piero Bevilacqua
Clean Technol. 2024, 6(3), 826-851; https://doi.org/10.3390/cleantechnol6030043 - 4 Jul 2024
Viewed by 1805
Abstract
Despite being stored at 113 K and at atmospheric pressure, LNG cold potential is not exploited to reduce green ships’ energy needs. An innovative system based on three organic Rankine cycles integrated into the regasification equipment is proposed to produce additional power and [...] Read more.
Despite being stored at 113 K and at atmospheric pressure, LNG cold potential is not exploited to reduce green ships’ energy needs. An innovative system based on three organic Rankine cycles integrated into the regasification equipment is proposed to produce additional power and recover cooling energy from condensers. A first-law analysis identified ethylene and ethane as suitable working fluids for the first and the second ORC, making freshwater and ice available. Propane, ammonia and propylene could be arbitrarily employed in the third ORC for air conditioning. An environmental analysis that combines exergy efficiency, ecological indices and hazard aspects for the marine environment and ship passengers indicated propylene as safer and more environmentally friendly. Exergy analysis confirmed that more than 20% of the LNG potential can be recovered from every cycle to produce a net clean power of 76 kW, whereas 270 kW can be saved by recovering condensers’ cooling power to satisfy some ship needs. Assuming the sailing mode, a limitation of 162 kg in LNG consumptions was determined, avoiding the emission of 1584 kg of CO2 per day. Marine thermal pollution is reduced by 3.5 times by recovering the working fluids’ condensation heat for the LNG pre-heating. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop