Carbon-Dioxide-Assisted Gasification of Sunflower Husk: An Impact of Iron, Nickel, or Cobalt Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Matrials
2.2. Methods of Characterization
2.3. The Catalytic Characterization
2.4. Preparation of the Catalytic Materials
3. Results
3.1. Electron Microscopy
3.2. Diffraction Patterns
3.3. Catalytic Gasification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICDD | The International Center for Diffraction Data |
SAED | selected area electron diffraction |
XRD | X-ray diffraction |
SEM | scanning electron microcopy |
EDX | energy-dispersive spectroscopy |
TEM | transmission electron microcopy |
SFH | sunflower husk. |
References
- Nyambuu, U.; Semmler, W. Fossil Fuel Resource Depletion, Backstop Technology, and Renewable Energy. In Sustainable Macroeconomics, Climate Risks and Energy Transitions: Dynamic Modeling, Empirics, and Policies; Springer: Cham, Switzerland, 2023; pp. 71–85. [Google Scholar] [CrossRef]
- Medvedev, A.A.; Kustov, A.L.; Beldova, D.A.; Kravtsov, A.V.; Kalmykov, K.B.; Sarkar, B.; Kostyukhin, E.M.; Kustov, L.M. Gasification of hydrolysis lignin with CO2 in the presence of Fe and Co compounds. Mendeleev Commun. 2022, 32, 402–404. [Google Scholar] [CrossRef]
- Medvedev, A.A.; Kustov, A.L.; Beldova, D.A.; Kalmykov, K.B.; Mashkin, M.Y.; Shesterkina, A.A.; Dunaev, S.F.; Kustov, L.M. Influence of the Method of Fe Deposition on the Surface of Hydrolytic Lignin on the Activity in the Process of Its Conversion in the Presence of CO2. Int. J. Mol. Sci. 2023, 24, 1279. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, A.A.; Kustov, A.L.; Beldova, D.A.; Polikarpova, S.B.; Ponomarev, V.E.; Murashova, E.V.; Sokolovskiy, P.V.; Kustov, L.M. A Synergistic Effect of Potassium and Transition Metal Compounds on the Catalytic Behaviour of Hydrolysis Lignin in CO2-Assisted Gasification. Energies 2023, 16, 4335. [Google Scholar] [CrossRef]
- Beldova, D.A.; Medvedev, A.A.; Kustov, A.L.; Mashkin, M.Y.; Kirsanov, V.Y.; Vysotskaya, I.V.; Sokolovskiy, P.V.; Kustov, L.M. CO2-Assisted Sugar Cane Gasification Using Transition Metal Catalysis: An Impact of Metal Loading on the Catalytic Behavior. Materials 2023, 16, 5662. [Google Scholar] [CrossRef]
- Lopez, G.; Santamaria, L.; Lemonidou, A.; Zhang, S.; Wu, C.; Sipra, A.T.; Gao, N. Hydrogen generation from biomass by pyrolysis. Nat. Rev. Methods Prim. 2022, 2, 20. [Google Scholar] [CrossRef]
- Czerski, G.; Śpiewak, K.; Grzywacz, P.; Wierońska-Wiśniewska, F. Assessment of the catalytic effect of various biomass ashes on CO2 gasification of tire char. J. Energy Inst. 2021, 99, 170–177. [Google Scholar] [CrossRef]
- Ye, D.; Agnew, J.; Zhang, D. Gasification of a South Australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies. Fuel 1998, 77, 1209–1219. [Google Scholar] [CrossRef]
- Matsunami, J.; Yoshida, S.; Oku, Y.; Yokota, O.; Tamaura, Y.; Kitamura, M. Coal gasification by CO2 gas bubbling in molten salt for solar/fossil energy hybridization. Sol. Energy 2000, 68, 257–261. [Google Scholar] [CrossRef]
- Popa, T.; Fan, M.; Argyle, M.D.; Slimane, R.B.; Bell, D.A.; Towler, B.F. Catalytic gasification of a Powder River Basin coal. Fuel 2013, 103, 161–170. [Google Scholar] [CrossRef]
- Namkung, H.; Yuan, X.; Lee, G.; Kim, D.; Kang, T.-J.; Kim, H.-T. Reaction characteristics through catalytic steam gasification with ultra clean coal char and coal. J. Energy Inst. 2014, 87, 253–262. [Google Scholar] [CrossRef]
- Alam, M.; DebRoy, T. Reaction between CO2 and coke doped with NaCN. Carbon 1987, 25, 279–288. [Google Scholar] [CrossRef]
- Devi, T.G.; Kannan, M. Calcium catalysis in air gasification of cellulosic chars. Fuel 1998, 77, 1825–1830. [Google Scholar] [CrossRef]
- Chen, S.; Yang, R. Mechanism of alkali and alkaline earth catalyzed gasification of graphite by CO2 and H2O studied by electron microscopy. J. Catal. 1992, 138, 12–23. [Google Scholar] [CrossRef]
- Hengel, T.D.; Walker, P.L. Catalysis of lignite char gasification by exchangeable calcium and magnesium. Fuel 1984, 63, 1214–1220. [Google Scholar] [CrossRef]
- Kurbatova, N.A.; El’man, A.R.; Bukharkina, T.V. Application of catalysts to coal gasification with carbon dioxide. Kinet. Catal. 2011, 52, 739–748. [Google Scholar] [CrossRef]
- Kodama, T.; Funatoh, A.; Shimizu, K.; Kitayama, Y. Kinetics of metal oxide-catalyzed CO2 gasification of coal in a fluidized-bed reactor for solar thermochemical process. Energy Fuels 2001, 15, 1200–1206. [Google Scholar] [CrossRef]
- Furimsky, E.; Sears, P.; Suzuki, T. Iron-Catalyzed Gasification of Char in CO2. Energy Fuels 1988, 2, 634–639. [Google Scholar] [CrossRef]
- Figueiredo, J.; Rivera-Utrilla, J.; Ferro-Garcia, M. Gasification of active carbons of different texture impregnated with nickel, cobalt and iron. Carbon 1987, 25, 703–708. [Google Scholar] [CrossRef]
- Gokon, N.; Hasegawa, N.; Kaneko, H.; Aoki, H.; Tamaura, Y.; Kitamura, M. Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry. Sol. Energy Mater. Sol. Cells 2003, 80, 335–341. [Google Scholar] [CrossRef]
- Kuchinskaya, T.; Mamian, L.; Knyazeva, M.; Maximov, A. Hydrodeoxygenation of lignin-derived diphenyl ether on in situ prepared NiMoS catalyst: The effect of sulfur addition on catalyst formation. Appl. Catal. A Gen. 2023, 663, 119303. [Google Scholar] [CrossRef]
- Koklin, A.E.; Bobrova, N.A.; Bogdan, T.V.; Mishanin, I.I.; Bogdan, V.I. Conversion of Phenol and Lignin as Components of Renewable Raw Materials on Pt and Ru-Supported Catalysts. Molecules 2022, 27, 1494. [Google Scholar] [CrossRef] [PubMed]
- Bazhenova, M.A.; Kulikov, L.A.; Makeeva, D.A.; Maximov, A.L.; Karakhanov, E.A. Hydrodeoxygenation of Lignin-Based Compounds over Ruthenium Catalysts Based on Sulfonated Porous Aromatic Frameworks. Polymers 2023, 15, 4618. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wu, Z.; Chen, G. Catalytic gasification characteristics of cellulose, hemicellulose and lignin. Renew. Energy 2018, 121, 559–567. [Google Scholar] [CrossRef]
- Pan, Y.; Tursun, Y.; Abduhani, H.; Turap, Y.; Abulizi, A.; Talifua, D. Chemical looping gasification of cotton stalk with bimetallic Cu/Ni/olivine as oxygen carrier. Int. J. Energy Res. 2020, 44, 7268–7282. [Google Scholar] [CrossRef]
- Ruiz, M.; Schnitzer, A.; Courson, C.; Mauviel, G. Fe-doped olivine and char for in-bed elimination of gasification tars in an air-blown fluidised bed reactor coupled with oxidative hot gas filtration. Carbon Resour. Convers. 2022, 5, 271–288. [Google Scholar] [CrossRef]
- Mastuli, M.; Kamarulzaman, N.; Kasim, M.; Sivasangar, S.; Saiman, M.; Taufiq-Yap, Y. Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production. Int. J. Hydrogen Energy 2017, 42, 11215–11228. [Google Scholar] [CrossRef]
- Irfan, M.; Li, A.; Zhang, L.; Ji, G.; Gao, Y.; Khushk, S. Hydrogen-rich syngas from wet municipal solid waste gasification using Ni/Waste marble powder catalyst promoted by transition metals. Waste Manag. 2021, 132, 96–104. [Google Scholar] [CrossRef]
- Irfan, M.; Li, A.; Zhang, L.; Wang, M.; Chen, C.; Khushk, S. Production of hydrogen enriched syngas from municipal solid waste gasification with waste marble powder as a catalyst. Int. J. Hydrogen Energy 2019, 44, 8051–8061. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Biswas, A.B. Catalytic pyrolysis of rice husk with SnCl2, Al2O3.4SiO2.H2O, and MoS2 for improving the chemical composition of pyrolysis oil and gas. J. Indian Chem. Soc. 2022, 99, 100728. [Google Scholar] [CrossRef]
- Anisimova, O.S.; Kolomytsa, V.A. Biofuel productuin from sunflower husk. IOP Conf. Ser. Earth Environ. Sci. 2021, 659, 012115. [Google Scholar] [CrossRef]
- Cui, X.; Yang, J.; Shi, X.; Lei, W.; Huang, T.; Bai, C. Pelletization of Sunflower Seed Husks: Evaluating and Optimizing Energy Consumption and Physical Properties by Response Surface Methodology (RSM). Processes 2019, 7, 591. [Google Scholar] [CrossRef]
- Kanatli, T.K.; Ayas, N. Gasification of sunflower seed pulp for the synthesis of hydrogen-rich products. Int. J. Smart Grid Clean Energy 2019, 8, 226–230. [Google Scholar] [CrossRef]
- Chun, D.D.; Ni, D.; Simson, A. The effect of inherent inorganics and CO2 co-pyrolysis on biochar production from biowastes and their gasification reactivity. Biomass Bioenergy 2022, 158, 106361. [Google Scholar] [CrossRef]
- Lobo, L.S.; Carabineiro, S.A. Kinetics and mechanism of catalytic carbon gasification. Fuel 2016, 183, 457–469. [Google Scholar] [CrossRef]
Element | C | H | N | S |
---|---|---|---|---|
Content, wt. % | 47.60 ± 0.08 | 6.05 ± 0.12 | 0.63 ± 0.06 | <0.1 |
Sample | Element Content, wt. % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Mg | Si | P | S | K | Ca | Fe | Co | Ni | |
5 Fe/SFH | 59.5 | 14.2 | 0.4 | — | 0.06 | 0.3 | 2.9 | 1.1 | 21.7 | — | — |
5 Fe/SFH spent | 56.9 | 15.5 | 0.5 | — | 0.04 | 0.3 | 2.4 | 1.3 | 23.2 | — | — |
5 Co/SFH | 47.2 | 13.7 | 1.3 | — | — | 0.4 | 3.8 | 2.0 | — | 31.6 | — |
5 Co/SFH spent | 66.0 | 9.4 | 0.3 | — | 0.12 | 0.3 | 1.7 | 0.9 | — | 21.3 | — |
5 Ni/SFH | 41.9 | 10.2 | 0.8 | — | — | 0.3 | 4.2 | 1.5 | 1.0 | — | 40.2 |
5 Ni/SFH spent | 35.4 | 11.9 | 0.5 | 0.2 | — | 2.1 | 7.0 | 1.0 | — | — | 42.0 |
SFH | 54.5 | 43.2 | 0.4 | 0.1 | — | 0.1 | 0.4 | 1.6 | — | — | — |
SFH spent | 59.6 | 33.9 | 2.1 | 0.2 | 0.1 | 0.8 | 2.3 | 1.2 | — | — | — |
Sample | w(C), wt. % | w(H), wt. % | w(N), wt. % |
---|---|---|---|
SFH | 29.6 | 5.4 | 5.3 |
1 Fe/SFH | 60.6 | 6.2 | 2.1 |
1 Co/SFH | 59.6 | 6.1 | 1.5 |
1 Ni/SFH | 58.8 | 6.1 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medvedev, A.A.; Beldova, D.A.; Kustov, L.M.; Mashkin, M.Y.; Polikarpova, S.B.; Dobrokhotova, V.Z.; Murashova, E.V.; Tedeeva, M.A.; Sokolovskiy, P.V.; Kustov, A.L. Carbon-Dioxide-Assisted Gasification of Sunflower Husk: An Impact of Iron, Nickel, or Cobalt Addition. Clean Technol. 2024, 6, 1579-1593. https://doi.org/10.3390/cleantechnol6040076
Medvedev AA, Beldova DA, Kustov LM, Mashkin MY, Polikarpova SB, Dobrokhotova VZ, Murashova EV, Tedeeva MA, Sokolovskiy PV, Kustov AL. Carbon-Dioxide-Assisted Gasification of Sunflower Husk: An Impact of Iron, Nickel, or Cobalt Addition. Clean Technologies. 2024; 6(4):1579-1593. https://doi.org/10.3390/cleantechnol6040076
Chicago/Turabian StyleMedvedev, Artem A., Daria A. Beldova, Leonid M. Kustov, Mikhail Yu. Mashkin, Svetlana B. Polikarpova, Valentina Z. Dobrokhotova, Elena V. Murashova, Marina A. Tedeeva, Pavel V. Sokolovskiy, and Alexander L. Kustov. 2024. "Carbon-Dioxide-Assisted Gasification of Sunflower Husk: An Impact of Iron, Nickel, or Cobalt Addition" Clean Technologies 6, no. 4: 1579-1593. https://doi.org/10.3390/cleantechnol6040076
APA StyleMedvedev, A. A., Beldova, D. A., Kustov, L. M., Mashkin, M. Y., Polikarpova, S. B., Dobrokhotova, V. Z., Murashova, E. V., Tedeeva, M. A., Sokolovskiy, P. V., & Kustov, A. L. (2024). Carbon-Dioxide-Assisted Gasification of Sunflower Husk: An Impact of Iron, Nickel, or Cobalt Addition. Clean Technologies, 6(4), 1579-1593. https://doi.org/10.3390/cleantechnol6040076