Some Notes on the Gini Index and New Inequality Measures: The nth Gini Index
Abstract
:1. Introduction
2. The Gini Index
3. The nth Gini Index
- The nth Gini index exists for any non-negative random variable with . This property is of major significance because if X is an income distribution with , then the nth Gini index can always be calculated even if some of its conventional moments do not exist.
- .
- for all (from Proposition 1 and inequality (4)).
- for any , that is, the nth Gini index is not affected by ratio-scale changes of the X variable.
- if is a non-negative random variable (translation-scale changes). Therefore, transforming X into with diminishes the nth Gini index.
- , that is, the nth Gini index is the covariance between X and a transformation of X.
- The sequence is non-increasing and . (straightforward from Proposition 2).
3.1. The Extended Gini Index, the Lorenz Family, and the -Gini Index
3.2. The nth Gini Index in Terms of the Lorenz Curve
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gini, C. Sulla misura della concentrazione e della variabilità dei caratteri. Atti Del R. Ist. Veneto Sci. Lett. Arti 1914, 73, 1203–1248, Reprinted in: Gini, C. On the measurement of concentration and variability of characters. Metron Int. J. Stat. 2005, 63, 3–38. [Google Scholar]
- Gini, C. Measurement of inequality of incomes. Econ. J. 1921, 31, 124–126. [Google Scholar] [CrossRef]
- Karsu, Ö.; Morton, A. Inequity averse optimization in operational research. Eur. J. Oper. Res. 2015, 173, 343–359. [Google Scholar] [CrossRef]
- Giorgi, G.; Gigliarano, C. The Gini concentration index: A review of the inference literature. J. Econ. Surv. 2016, 31, 1130–1148. [Google Scholar] [CrossRef]
- Wu, W.C.; Chang, Y.T. Income inequality, distributive unfairness, and support for democracy: Evidence from East Asia and Latin America. Democratization 2019, 26, 1475–1492. [Google Scholar] [CrossRef]
- Giorgi, G. Gini Coefficient. In SAGE Research Methods Foundations; Atkinson, P., Delamont, S., Cernat, A., Sakshaug, J.W., Williams, R.A., Eds.; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2020. [Google Scholar] [CrossRef]
- Atkinson, A. Inequality; Harvard University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Liu, Y.; Gastwirth, J. On the capacity of the Gini index to represent income distributions. Metron 2020, 78, 61–69. [Google Scholar] [CrossRef]
- Xu, K. How Has the Literature on Gini’s Index Evolved in the Past 80 Years? Economics working paper; Dalhousie University: Halifax, NS, Canada, 2004. [Google Scholar]
- Farris, F. The Gini Index and Measures of Inequality. Am. Math. Mon. 2010, 117, 851–864. [Google Scholar] [CrossRef]
- Eliazar, I. Harnessing inequality. Phys. Rep. 2016, 649, 1–29. [Google Scholar] [CrossRef]
- Eliazar, I. A tour of inequality. Ann. Phys. 2018, 389, 306–332. [Google Scholar] [CrossRef]
- Eliazar, I.; Giorgi, G. From Gini to Bonferroni to Tsallis: An inequality-indices trek. Metron 2020, 78, 119–153. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Sengupta, P.P. Gini Inequality Index: Methods and Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Sadras, V.; Bongiovanni, R. Use of Lorenz curves and Gini coefficients to assess yield inequality within paddocks. Field Crop. Res. 2004, 90, 303–310. [Google Scholar] [CrossRef]
- Hammel, E. Demographic dynamics and kinship in anthropological populations. Proc. Natl. Acad. Sci. USA 2005, 102, 2248–2253. [Google Scholar] [CrossRef] [PubMed]
- Abraham, R.; Bergh, S.; Nair, P. A New Approach to Galaxy Morphology: I. Analysis of the Sloan Digital Sky Survey Early Data Release. Astrophys. J. 2003, 588, 218. [Google Scholar] [CrossRef]
- Karmakar, A.; Banerjee, P.; De, D.; Bandyopadhyay, S.; Ghosh, P. MedGini: Gini index based sustainable health monitoring system using dew computing. Med. Nov. Technol. Devices 2022, 16, 100145. [Google Scholar] [CrossRef]
- Pernot, P.; Savin, A. Using the Gini coefficient to characterize the shape of computational chemistry error distributions. Theor. Chem. Acc. 2021, 140, 1–11. [Google Scholar] [CrossRef]
- Hasisi, B.; Perry, S.; Ilan, Y.; Wolfowicz, M. Concentrated and Close to Home: The Spatial Clustering and Distance Decay of Lone Terrorist Vehicular Attacks. J. Quant. Criminol. 2020, 36, 607–645. [Google Scholar] [CrossRef]
- Wittebolle, L.; Marzorati, M.; Clement, L.; Balloi, A.; Daffonchio, D.; Heylen, K.; De Vos, P.; Verstraete, W.; Boon, N. Initial community evenness favours functionality under selective stress. Nature 2009, 458, 623–626. [Google Scholar] [CrossRef]
- Naeem, S. Ecology: Gini in the bottle. Nature 2009, 458, 579–580. [Google Scholar] [CrossRef]
- Ho, K.; Chow, F.; Chau, H. Study of the Wealth Inequality in the Minority Game. Phys. Rev. Stat. Nonlinear Soft Matter Phys. 2004, 70, 066110. [Google Scholar] [CrossRef]
- Beaugrand, G.; Edwards, M.; Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. Proc. Natl. Acad. Sci. USA 2010, 107, 10120–10124. [Google Scholar] [CrossRef]
- Arbel, Y.; Fialkoff, C.; Kerner, A.; Kerner, M. Do Population Density, Socio-Economic Ranking and Gini Index of Cities Influence Infection Rates from Coronavirus? Israel as a case Study. Ann. Reg. Sci. 2020, 68, 181–206. [Google Scholar] [CrossRef] [PubMed]
- Cima, E.; Uribe Opazo, M.; Bombacini, M.; Rocha, W.; Pagliosa Carvalho Guedes, L. Spatial Analysis: A Socioeconomic View on the Incidence of the New Coronavirus in Paraná-Brazil. Stats 2022, 5, 1029–1043. [Google Scholar] [CrossRef]
- Sazuka, N.; Inoue, J.-i. Fluctuations in time intervals of financial data from the view point of the Gini index. Phys. A Stat. Mech. Its Appl. 2007, 383, 49–53. [Google Scholar] [CrossRef]
- Sazuka, N.; Inoue, J.i.; Scalas, E. The distribution of first-passage times and durations in FOREX and future markets. Phys. A Stat. Mech. Its Appl. 2009, 388, 2839–2853. [Google Scholar] [CrossRef]
- Tu, J.; Sui, H.; Feng, W.; Sun, K.; Xu, C.; Han, Q. Detecting building façade damage from oblique aerial images using local symmetry feature and the Gini Index. Remote Sens. Lett. 2017, 8, 676–685. [Google Scholar] [CrossRef]
- Lechthaler, B.; Pauly, C.; Mücklich, F. Objective homogeneity quantification of a periodic surface using the Gini coefficient. Sci. Rep. 2020, 10, 14516. [Google Scholar] [CrossRef]
- Graczyk, P. Gini Coefficient: A New Way To Express Selectivity of Kinase Inhibitors against a Family of Kinases †. J. Med. Chem. 2007, 50, 5773–5779. [Google Scholar] [CrossRef]
- O’Hagan, S.; Wright Muelas, M.; Day, P.; Lundberg, E.; Kell, D. GeneGini: Assessment via the Gini Coefficient of Reference “Housekeeping” Genes and Diverse Human Transporter Expression Profiles. Cell Syst. 2018, 6, 230–244. [Google Scholar] [CrossRef]
- Woolhouse, M.; Dye, C.; Etard, J.F.; Smith, T.; Charlwood, J.; Garnett, G.; Hagan, P.; Hii, J.; Ndhlovu, P.; Quinnell, R.; et al. Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proc. Natl. Acad. Sci. USA 1997, 94, 338–342. [Google Scholar] [CrossRef]
- Rindfuss, R.; Walsh, S.; Turner, B.; Fox, J.; Mishra, V. Developing a Science of Land Change: Challenges and Methodological Issues. Proc. Natl. Acad. Sci. USA 2004, 101, 13976–13981. [Google Scholar] [CrossRef]
- Hörcher, D.; Graham, D. The Gini index of demand imbalances in public transport. Transportation 2021, 48, 2521–2544. [Google Scholar] [CrossRef]
- Eliazar, I.; Sokolov, I. Measuring statistical evenness: A panoramic overview. Phys. A Stat. Mech. Its Appl. 2012, 391, 1323–1353. [Google Scholar] [CrossRef]
- Kokko, H.; Mackenzie, A.; Reynolds, J.; Lindström, J.; Sutherland, W. Measures of Inequality Are Not Equal. Am. Nat. 1999, 154, 358–382. [Google Scholar] [CrossRef] [PubMed]
- Charles, V.; Gherman, T.; Paliza, J. The Gini Index: A Modern Measure of Inequality; Palgrave Macmillan: Cham, Switzerland, 2022; pp. 55–84. [Google Scholar] [CrossRef]
- Theil, H. Economics and Information Theory; North-Holland Publishing Company: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Dalton, H. Measurement of the Inequality of Income. Econ. J. 1920, 30, 348–361. [Google Scholar] [CrossRef]
- Allison, P.D. Measures of Inequality. Am. Sociol. Rev. 1978, 43, 865–880. [Google Scholar] [CrossRef]
- Stefanescu, S. About the Accuracy of Gini Index for Measuring the Poverty. Rom. J. Econ. Forecast. 2011, 43, 255–266. [Google Scholar]
- Pyatt, G. On the intepretation and disaggragation of Gini coefficient. Econ. J. 1976, 86, 243–255. [Google Scholar]
- Xu, K.; Osberg, L. The social welfare implications, decomposability, and geometry of the Sen family of poverty indices. Can. J. Econ. 2002, 35, 138–152. [Google Scholar] [CrossRef]
- Osberg, L. On the Limitations of Some Current Usages of the Gini Index. Rev. Income Wealth 2017, 63, 574–584. [Google Scholar] [CrossRef]
- Liao, T. Measuring and Analyzing Class Inequality with the Gini Index Informed by Model-Based Clustering. Sociol. Methodol. 2006, 36, 201–224. [Google Scholar] [CrossRef]
- Furman, E.; Kye, Y.; Su, J. Computing the Gini index: A note. Econ. Lett. 2019, 185, 108753. [Google Scholar] [CrossRef]
- Ceriani, L.; Verme, P. Individual Diversity and the Gini Decomposition. Soc. Indic. Res. 2015, 121, 637–646. [Google Scholar] [CrossRef]
- Eliazar, I.I.; Sokolov, I.M. Gini characterization of extreme-value statistics. Phys. A Stat. Mech. Its Appl. 2010, 389, 4462–4472. [Google Scholar] [CrossRef]
- Eliazar, I. Beautiful Gini. Metron 2024, 1–21. [Google Scholar] [CrossRef]
- Lunetta, G. Sulla concentrazione delle distribuzioni doppie. In Atti della XXVII Riunione Scientifica della Società Italiana di Statistica, Vol. II, Palermo; Palermo, Italy, 1972; pp. 127–150. [Google Scholar]
- Taguchi, T. On the two-dimensional concentration surface and extensions of concentration coefficient and pareto distribution to the two dimensional. Case I. Ann. Inst. Stat. Math. 1972, 24, 355–381. [Google Scholar] [CrossRef]
- Taguchi, T. On the two-dimensional concentration surface and extensions of concentration coefficient and pareto distribution to the two dimensional. Case II. Ann. Inst. Stat. Math. 1972, 24, 599–619. [Google Scholar] [CrossRef]
- Taguchi, T. On the two-dimensional concentration surface and extensions of concentration coefficient and pareto distribution to the two dimensional. Case III Ann. Inst. Stat. Math. 1973, 25, 215–237. [Google Scholar] [CrossRef]
- Koshevoy, G.; Mosler, K. Multivariate Gini Indices. J. Multivar. Anal. 1997, 60, 252–276. [Google Scholar] [CrossRef]
- Arnold, B.C. Inequality measures for multivariate distributions. Metron—Int. J. Stat. 2005, LXIII, 317–327. [Google Scholar]
- Grothe, O.; Kächele, F.; Schmid, F. A multivariate extension of the Lorenz curve based on copulas and a related multivariate Gini coefficient. J. Econ. Inequal. 2022, 20, 727–748. [Google Scholar] [CrossRef]
- Pietra, G. Delle relazioni tra gli indici di variabilità (Nota I). Atti Del R. Ist. Veneto Sci. Lett. Arti 1915, LXXIV, 775–792, Reprinted in: Pietra, G. On the relationships between variability indices (Note I). Metron Int. J. Stat. 2014, 72, 5–16. [Google Scholar]
- Dorfman, R. A Formula for the Gini coefficient. Rev. Econ. Stat. 1979, 61, 146–149. [Google Scholar] [CrossRef]
- Yitzhaki, S.; Schechtman, E. The Properties of the Extended Gini Measures of Variability and Inequality. Technical Report, Social Science Research Network. 2005. Available online: http://ssrn.com/abstract=815564 (accessed on 25 October 2024).
- Fishburn, P. Stochastic dominance and moments of distributions. Math. Oper. Res. 1980, 5, 94–100. [Google Scholar] [CrossRef]
- Muliere, P.; Scarsini, M. A note on stochastic dominance and inequality measures. J. Econ. Theory 1989, 49, 314–323. [Google Scholar] [CrossRef]
- Gonzalez-Abril, L.; Velasco, F.; Gavilan, J.M.; Sanchez-Reyes, L.M. The Similarity between the Square of the Coeficient of Variation and the Gini Index of a General Random Variable. J. Quant. Methods Econ. Bus. Adm. 2010, 10, 5–18. [Google Scholar]
- Foster, J.; Wolfson, M. Polarization and the Decline of the Middle Class in Canada and the U.S. J. Econ. Inequal. 2010, 8, 247–273. [Google Scholar] [CrossRef]
- Kendall, M.; Stuart, A. The Advanced Theory of Statistics, Vol. 1, Distribution Theory; Hafner Publishing Company: Royal Oak, MI, USA, 1958. [Google Scholar]
- Gini, C. Variabilità e mutabilità: Contributo allo studio delle distribuzioni e delle relazioni statistiche. [Fasc. I.]; Studi economico-giuridici pubblicati per cura della facoltà di Giurisprudenza della R; Università di Cagliari, Tipogr. di P. Cuppini: Bologna, Italy, 1912. [Google Scholar]
- Yitzhaki, S. Stochastic Dominance, Mean Variance and Gini’s Mean Difference. Am. Econ. Rev. 1982, 72, 178–185. [Google Scholar]
- Yitzhaki, S.; Schechtman, E. The Gini Methodology: A Primer on a Statistical Methodology; Springer: New York, NY, USA, 2013. [Google Scholar]
- Lerman, R.; Yitzhaki, S. A Note on the Calculation and Interpretation of the Gini Index. Econ. Lett. 1984, 15, 363–368. [Google Scholar] [CrossRef]
- Forcina, A.; Giorgi, G. Early Gini’s Contributions to Inequality Measurement and Statistical Inference. Electron. J. Hist. Probab. Stat. 2005, 1, 1–15. [Google Scholar]
- Yitzhaki, S. On a Extension of Gini inequality index. Int. Econ. Rev. 1983, 24, 617–628. [Google Scholar] [CrossRef]
- Kotz, S.; Kleiber, C. A characterization of income distributions in terms of generalized Gini coefficients. Soc. Choice Welf. 2002, 19, 789–794. [Google Scholar]
- Kakwani, N. On a Class Poverty Measures. Econometrica 1980, 48, 437–446. [Google Scholar] [CrossRef]
- Donaldson, D.; Weymark, J. A Single Parameter Generalization of the Gini Indices of Inequality. J. Econ. Theory 1980, 22, 67–86. [Google Scholar] [CrossRef]
- Aaberge, R. Characterizations of Lorenz Curves and Income Distributions. Soc. Choice Welf. 2000, 17, 639–653. [Google Scholar] [CrossRef]
- Atkinson, A. On the measurement of inequality. J. Econ. Theory 1970, 2, 244–263. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavilan-Ruiz, J.M.; Ruiz-Gándara, Á.; Ortega-Irizo, F.J.; Gonzalez-Abril, L. Some Notes on the Gini Index and New Inequality Measures: The nth Gini Index. Stats 2024, 7, 1354-1365. https://doi.org/10.3390/stats7040078
Gavilan-Ruiz JM, Ruiz-Gándara Á, Ortega-Irizo FJ, Gonzalez-Abril L. Some Notes on the Gini Index and New Inequality Measures: The nth Gini Index. Stats. 2024; 7(4):1354-1365. https://doi.org/10.3390/stats7040078
Chicago/Turabian StyleGavilan-Ruiz, José Manuel, África Ruiz-Gándara, Francisco Javier Ortega-Irizo, and Luis Gonzalez-Abril. 2024. "Some Notes on the Gini Index and New Inequality Measures: The nth Gini Index" Stats 7, no. 4: 1354-1365. https://doi.org/10.3390/stats7040078
APA StyleGavilan-Ruiz, J. M., Ruiz-Gándara, Á., Ortega-Irizo, F. J., & Gonzalez-Abril, L. (2024). Some Notes on the Gini Index and New Inequality Measures: The nth Gini Index. Stats, 7(4), 1354-1365. https://doi.org/10.3390/stats7040078