Comparing the Relative Efficacy of Generalized Estimating Equations, Latent Growth Curve Modeling, and Area Under the Curve with a Repeated Measures Discrete Ordinal Outcome Variable
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Descriptive Statistics
3.2. GEE
3.3. LGCM
3.4. AUC
3.5. Comparing the Three Methods
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeger, S.L.; Liang, K.-Y.; Albert, P.S. Models for longitudinal data: A generalized estimating equation approach. Biometrics 1988, 44, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.-Y.; Zeger, S.L. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- da Silva, J.L.; Colosimo, E.A.; Demarqui, F.N. A general GEE framework for the analysis of longitudinal ordinal missing data and related issues. Stat. Model. 2019, 19, 174–193. [Google Scholar] [CrossRef]
- Rodriguez, D. Core Statistic: Practial Knowledge for the Health Sciences, 2nd ed; Kendall Hunt: Dubuque, IA, USA, 2024. [Google Scholar]
- Schober, P.; Vetter, T.R. Repeated Measures Designs and Analysis of Longitudinal Data: If at First You Do Not Succeed-Try, Try Again. Anesth. Analg. 2018, 127, 569–575. [Google Scholar] [CrossRef]
- How Can I Do Repeated Measures ANOVA with Covariates in SPSS? Available online: https://stats.oarc.ucla.edu/spss/faq/how-can-i-do-repeated-measures-anova-with-covariates-in-spss/ (accessed on 19 September 2024).
- Little, R.J.; Rubin, D.B. Statistical Analysis with Missing Data; John Wiley & Sons: Hoboken, NJ, USA, 2019; Volume 793. [Google Scholar]
- Lipsitz, S.R.; Fitzmaurice, G.M.; Weiss, R.D. Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes. Psychometrika 2020, 85, 890–904. [Google Scholar] [CrossRef]
- Robins, J.M.; Rotnitzky, A.; Zhao, L.P. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Stat. Assoc. 1995, 90, 106–121. [Google Scholar] [CrossRef]
- Yang, C.; Diao, L.; Cook, R.J. Adaptive response-dependent two-phase designs: Some results on robustness and efficiency. Stat. Med. 2022, 41, 4403–4425. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xu, R.; Elashoff, D. Local odds ratio is more efficient than correlation coefficient for modeling longitudinal ordinal data. In Proceedings of the Joint Statistical Meetings, Baltimore, MD, USA, 29 July–3 August 2017. [Google Scholar]
- Touloumis, A.; Agresti, A.; Kateri, M. GEE for multinomial responses using a local odds ratios parameterization. Biometrics 2013, 69, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Duncan, T.E.; Duncan, S.C. An introduction to latent growth curve modeling. Behav. Ther. 2004, 35, 333–363. [Google Scholar] [CrossRef]
- Duncan, T.E.; Duncan, S.C. The ABC’s of LGM: An introductory guide to latent variable growth curve modeling. Soc. Personal. Psychol. Compass 2009, 3, 979–991. [Google Scholar] [CrossRef]
- Mehta, P.D.; Neale, M.C.; Flay, B.R. Squeezing interval change from ordinal panel data: Latent growth curves with ordinal outcomes. Psychol. Methods 2004, 9, 301. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R. The problem of allowing correlated errors in structural equation modeling: Concerns and considerations. Comput. Methods Soc. Sci. 2015, 3, 5–17. [Google Scholar]
- MacCallum, R.C.; Roznowski, M.; Necowitz, L.B. Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychol. Bull. 1992, 111, 490. [Google Scholar] [CrossRef] [PubMed]
- Goffin, R.D. Assessing the adequacy of structural equation models: Golden rules and editorial policies. Personal. Individ. Differ. 2007, 42, 831–839. [Google Scholar] [CrossRef]
- Masyn, K.E.; Petras, H.; Liu, W. Growth curve models with categorical outcomes. In Encyclopedia of Criminology and Criminal Justice; Springer: New York, NY, USA, 2014; pp. 2013–2025. [Google Scholar]
- Rodriguez, D. Research Methods; Kendall Hunt Publishing Company: Dubuque, IA, USA, 2021. [Google Scholar]
- Schminkey, D.L.; von Oertzen, T.; Bullock, L. Handling missing data with multilevel structural equation modeling and full information maximum likelihood techniques. Res. Nurs. Health 2016, 39, 286–297. [Google Scholar] [CrossRef]
- Liu, A.; He, H.; Tu, X.M.; Tang, W. On testing proportional odds assumptions for proportional odds models. Gen. Psychiatry 2023, 36, e101048. [Google Scholar] [CrossRef]
- Brant, R. Assessing proportionality in the proportional odds model for ordinal logistic regression. Biometrics 1990, 46, 1171–1178. [Google Scholar] [CrossRef]
- McCullagh, P. Regression models for ordinal data. J. R. Stat. Soc. Ser. B (Methodol.) 1980, 42, 109–127. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 792. [Google Scholar]
- Rodriguez, D. Assessing area under the curve as an alternative to latent growth curve modeling for repeated measures zero-inflated poisson data: A simulation study. Stats 2023, 6, 354–364. [Google Scholar] [CrossRef]
- Rodriguez, D. Area under the curve as an alternative to latent growth curve modeling when assessing the effects of predictor variables on repeated measures of a continuous dependent variable. Stats 2023, 6, 674–688. [Google Scholar] [CrossRef]
- Pruessner, J.C.; Kirschbaum, C.; Meinlschmid, G.; Hellhammer, D.H. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 2003, 28, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, M.E. Tobacco product use among adults–United States, 2021. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.P.; Luo, M.; McMenamin, S.B.; Stone, M.D.; Leas, E.C.; Strong, D.; Shi, Y.; Kealey, S.; Benmarhnia, T.; Messer, K. Declines in cigarette smoking among US adolescents and young adults: Indications of independence from e-cigarette vaping surge. Tobacco Control 2023, tc-2022-057907. [Google Scholar] [CrossRef]
- Bandi, P.; Star, J.; Minihan, A.K.; Patel, M.; Nargis, N.; Jemal, A. Changes in E-Cigarette Use Among U.S. Adults, 2019–2021. Am. J. Prev. Med. 2023, 65, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Becker, T.D.; Arnold, M.K.; Ro, V.; Martin, L.; Rice, T.R. Systematic Review of Electronic Cigarette Use (Vaping) and Mental Health Comorbidity Among Adolescents and Young Adults. Nicotine Tob. Res. 2020, 23, 415–425. [Google Scholar] [CrossRef]
- Romm, K.F.; Cohn, A.M.; Wang, Y.; Berg, C.J. Psychosocial predictors of trajectories of dual cigarette and e-cigarette use among young adults in the US. Addict. Behav. 2023, 141, 107658. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, A.F.; Testa, S.; Rodriguez, D.; Pianin, S.; Audrain-McGovern, J. Adolescent depression symptoms and e-cigarette progression. Drug Alcohol Depend. 2021, 228, 109072. [Google Scholar] [CrossRef]
- Collins, S.; Hoare, E.; Allender, S.; Olive, L.; Leech, R.M.; Winpenny, E.M.; Jacka, F.; Lotfalian, M. A longitudinal study of lifestyle behaviours in emerging adulthood and risk for symptoms of depression, anxiety, and stress. J. Affect. Disord. 2023, 327, 244–253. [Google Scholar] [CrossRef]
- Rodriguez, D.; Moss, H.B.; Audrain-McGovern, J. Developmental Heterogeneity in Adolescent Depressive Symptoms: Associations with Smoking Behavior. Psychosom. Med. 2005, 67, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Chong, A.K.; Vechiu, C.; Papa, A. Modifiable risk and protective factors for anxiety disorders among adults: A systematic review. Psychiatry Res. 2020, 285, 112705. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wu, L. Healthy people 2020: Social determinants of cigarette smoking and electronic cigarette smoking among youth in the United States 2010–2018. Int. J. Environ. Res. Public Health 2020, 17, 7503. [Google Scholar] [CrossRef] [PubMed]
- Panel Study of Income Dynamics, Public Use Dataset, University of Michigan, Ann Arbor, MI, USA. 2012. Available online: https://simba.isr.umich.edu/default.aspx (accessed on 12 July 2024).
- Cangür, Ş.; Ercan, I. Comparison of Model Fit Indices Used in Structural Equation Modeling under Multivariate Normality; Wayne State Univ Press: Detroit, MI, USA, 2015. [Google Scholar]
- MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power analysis and determination of sample size for covariance structure modeling. Psychol. Methods 1996, 1, 130. [Google Scholar] [CrossRef]
- Shi, D.; Lee, T.; Maydeu-Olivares, A. Understanding the Model Size Effect on SEM Fit Indices. Educ. Psychol. Meas. 2019, 79, 310–334. [Google Scholar] [CrossRef]
- McNeish, D. Should we use F-tests for model fit instead of chi-square in overidentified structural equation models? Organ. Res. Methods 2020, 23, 487–510. [Google Scholar] [CrossRef]
- Zhang, X.; Astivia, O.L.O.; Kroc, E.; Zumbo, B.D. How to think clearly about the central limit theorem. Psychol. Methods 2023, 28, 1427. [Google Scholar] [CrossRef]
Discrete Variables | |||
---|---|---|---|
Variable | Level | N | % |
Race | White | 1097 | 26.0 |
Non-White | 1414 | 33.5 | |
System missing | 1711 | 40.5 | |
Education | ≤High school | 1055 | 25.0 |
>High school | 1471 | 34.8 | |
System missing | 1696 | 40.2 | |
Nicotine use (2017) | Does not smoke | 1674 | 39.6 |
Vapes/vaped | 473 | 11.2 | |
Smokes | 185 | 4.4 | |
Smokes and vapes/vaped | 188 | 4.5 | |
System missing | 1702 | 40.3 | |
Nicotine use (2019) | Does not smoke | 1642 | 38.9 |
Vapes/vaped | 642 | 15.2 | |
Smokes | 122 | 2.9 | |
Smokes and vapes/vaped | 142 | 3.4 | |
System missing | 1674 | 39.6 | |
Nicotine use (2021) | Does not smoke | 1438 | 34.1 |
Vapes/vaped | 729 | 17.3 | |
Smokes | 54 | 1.3 | |
Smokes and vapes/vaped | 88 | 2.1 | |
System missing | 1913 | 45.3 | |
Continuous variables | |||
Variable | N | Mean | SD |
Distress 2017 | 2512 | 4.91 | 4.00 |
System missing | 1710 | ||
Distress 2019 | 2519 | 6.10 | 5.35 |
System missing | 1703 | ||
Distress 2021 | 2309 | 6.72 | 5.73 |
System missing | 1913 |
Variable | B | SE | 95% CI | |||
---|---|---|---|---|---|---|
Lower | Upper | Wald | p-Value | |||
≤High school | 0.139 | 0.2258 | −0.304 | 0.581 | 0.377 | 0.539 |
White race | 0.191 | 0.2368 | −0.273 | 0.655 | 0.651 | 0.420 |
Psychological distress | 0.052 | 0.0116 | 0.029 | 0.075 | 20.274 | <0.001 |
Time 3 | 0.720 | 0.0932 | 0.537 | 0.903 | 59.705 | <0.001 |
Time 2 | 0.293 | 0.0677 | 0.160 | 0.426 | 18.759 | <0.001 |
High school*Time 3 | 0.117 | 0.1174 | −0.113 | 0.347 | 0.994 | 0.319 |
High school*Time 2 | 0.053 | 0.0868 | −0.117 | 0.223 | 0.378 | 0.539 |
Race*Time 3 | −0.143 | 0.1161 | −0.371 | 0.084 | 1.519 | 0.218 |
Race*Time 2 | −0.049 | 0.0838 | −0.213 | 0.115 | 0.342 | 0.559 |
Intercept | Slope | |||||||
---|---|---|---|---|---|---|---|---|
Smoking | ||||||||
b | SE | z-Value | p-Value | b | SE | z-Value | p-Value | |
Distress slope | - | - | - | - | 0.011 | 0.01 | 1.129 | 0.259 |
Distress intercept | - | - | - | - | 0.037 | 0.005 | 6.777 | <0.001 |
High school | 0.364 | 0.05 | 7.363 | <0.001 | −0.082 | 0.027 | −3.063 | 0.002 |
White | 0.251 | 0.049 | 5.095 | <0.001 | −0.058 | 0.027 | −2.176 | 0.03 |
Psychological distress | ||||||||
b | SE | z-value | p-value | b | SE | z-value | p-value | |
Smoke slope | - | - | - | - | - | - | - | - |
Smoke intercept | - | - | - | - | −0.008 | 0.055 | −0.138 | 0.89 |
High school | 0.295 | 0.159 | 1.852 | 0.064 | 0.226 | 0.152 | 1.488 | 0.137 |
White | 0.164 | 0.16 | 1.023 | 0.306 | 0.379 | 0.151 | 2.514 | 0.012 |
Original Data (N = 1095) | Multiple Imputation (n = 2511) | |||||||
---|---|---|---|---|---|---|---|---|
Predictor | b | SE | t-Value | p-Value | b | SE | t-Value | p-Value |
Intercept | 0.335 | 0.053 | 6.314 | p < 0.001 | 0.498 | 0.085 | 5.845 | 0.000 |
High school | 0.451 | 0.050 | 8.989 | p < 0.001 | 0.512 | 0.069 | 7.392 | 0.000 |
White | 0.317 | 0.050 | 6.358 | p < 0.001 | 0.286 | 0.066 | 4.309 | 0.000 |
AUC distress | 0.033 | 0.003 | 11.102 | p < 0.001 | 0.033 | 0.005 | 7.189 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, D.; Verma, R.; Upchurch, J. Comparing the Relative Efficacy of Generalized Estimating Equations, Latent Growth Curve Modeling, and Area Under the Curve with a Repeated Measures Discrete Ordinal Outcome Variable. Stats 2024, 7, 1366-1378. https://doi.org/10.3390/stats7040079
Rodriguez D, Verma R, Upchurch J. Comparing the Relative Efficacy of Generalized Estimating Equations, Latent Growth Curve Modeling, and Area Under the Curve with a Repeated Measures Discrete Ordinal Outcome Variable. Stats. 2024; 7(4):1366-1378. https://doi.org/10.3390/stats7040079
Chicago/Turabian StyleRodriguez, Daniel, Ryan Verma, and Juliana Upchurch. 2024. "Comparing the Relative Efficacy of Generalized Estimating Equations, Latent Growth Curve Modeling, and Area Under the Curve with a Repeated Measures Discrete Ordinal Outcome Variable" Stats 7, no. 4: 1366-1378. https://doi.org/10.3390/stats7040079
APA StyleRodriguez, D., Verma, R., & Upchurch, J. (2024). Comparing the Relative Efficacy of Generalized Estimating Equations, Latent Growth Curve Modeling, and Area Under the Curve with a Repeated Measures Discrete Ordinal Outcome Variable. Stats, 7(4), 1366-1378. https://doi.org/10.3390/stats7040079