A Spatial–Temporal Bayesian Model for a Case-Crossover Design with Application to Extreme Heat and Claims Data
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Bayesian Spatial–Temporal Model
2.3. Model Selection Criteria
- Model 1 (M1): ;
- Model 2 (M2): .
3. Simulation Study
3.1. Simulation Set-Ups
- Scenario 1 (S1): ;
- Scenario 2 (S2): , where .
- M1: ;
- M2: .
3.2. Simulation Results
4. Data Application
4.1. Data Source
4.2. Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Bayesian Inference with the MCAR Prior
- Step 1:
- Sample from ;
- Step 2:
- Sample from ;
- Step 3:
- Sample from , for ;
- Step 4:
- Sample from .
- Generate and ;
- Generate from , where s is the step size of a random walk process;
- Calculate
- If ; otherwise, .
Appendix B. Computing Package
Appendix C. Additional Simulation Results
- Scenario 3 (S3): ;
- Scenario 4 (S4): .
- M3: .
S1 | S2 | S3 | S4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Par | Bias | SD | MSE | Bias | SD | MSE | Bias | SD | MSE | Bias | SD | MSE | |
M1 | −0.010 | 0.012 | 0.001 | −0.004 | 0.012 | 0.000 | 0.000 | 0.011 | 0.000 | 0.000 | 0.010 | 0.000 | |
−0.005 | 0.011 | 0.001 | −0.001 | 0.022 | 0.000 | 0.000 | 0.020 | 0.000 | 0.000 | 0.015 | 0.000 | ||
M2 | −0.054 | 0.092 | 0.012 | −0.003 | 0.012 | 0.000 | −0.033 | 0.014 | 0.001 | −0.009 | 0.011 | 0.000 | |
−0.023 | 0.032 | 0.003 | −0.002 | 0.022 | 0.001 | −0.021 | 0.024 | 0.001 | −0.004 | 0.020 | 0.000 | ||
M3 | −0.125 | 0.140 | 0.035 | −0.013 | 0.015 | 0.000 | −0.032 | 0.017 | 0.001 | −0.016 | 0.015 | 0.000 | |
−0.062 | 0.082 | 0.010 | −0.007 | 0.027 | 0.001 | −0.015 | 0.031 | 0.001 | −0.008 | 0.026 | 0.001 |
References
- Lin, S.; Luo, M.; Walker, R.J.; Liu, X.; Hwang, S.A.; Chinery, R. Extreme High Temperatures and Hospital Admissions for Respiratory and Cardiovascular Diseases. Epidemiology 2009, 20, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Linares, C.; Culqui, D.; Carmona, R.; Ortiz, C.; Díaz, J. Short-term association between environmental factors and hospital admissions due to dementia in Madrid. Environ. Res. 2017, 152, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Best, N. Bayesian hierarchical models in ecological studies of health–environment effects. Environmetrics Off. J. Int. Environmetrics Soc. 2003, 14, 129–147. [Google Scholar] [CrossRef]
- Sheppard, L. Insights on bias and information in group-level studies. Biostatistics 2003, 4, 265–278. [Google Scholar] [CrossRef]
- Richmond-Bryant, J.; Long, T.C. Influence of exposure measurement errors on results from epidemiologic studies of different designs. J. Exposure Sci. Environ. Epidemiol. 2020, 30, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Zeger, S.L.; Samet, J.M. A measurement error model for time-series studies of air pollution and mortality. Biostatistics 2000, 1, 157–175. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Kanaroglou, P.; Eyles, J.; Finkelstein, N.; Giovis, C.; Brook, J.R. A gis–environmental justice analysis of particulate air pollution in hamilton, canada. Environ. Plan. A 2001, 33, 955–973. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pol- lution exposure models. J. Exposure Sci. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef]
- Steinle, S.; Reis, S.; Sabel, C.E. Quantifying human exposure to air pol- lution—moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Total Environ. 2013, 443, 184–193. [Google Scholar] [CrossRef]
- Goldman, G.T.; Mulholland, J.A.; Russell, A.G.; Srivastava, A.; Strickl, M.J.; Klein, M.; Waller, L.A.; Tolbert, P.E.; Edgerton, E.S. Ambient air pollutant measurement error: Characterization and impacts in a time-series epidemiologic study in atlanta. Environ. Sci. Technol. 2010, 44, 7692–7698. [Google Scholar] [CrossRef]
- Turner, M.G.; Cardille, J.A. Spatial heterogeneity and ecosystem processes. In Key Topics in Landscape Ecology; Wu, J., Hobbs, R.J., Eds.; Cambridge Studies in Landscape Ecology; Cambridge University Press: Cambridge, UK, 2007; pp. 62–77. [Google Scholar]
- Chang, H.H.; Warren, J.L.; Darrow, L.A.; Reich, B.J.; Waller, L.A. Assessment of critical exposure and outcome windows in time-to-event analysis with application to air pollution and preterm birth study. Biostatistics 2015, 16, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.; Fuentes, M.; Herring, A.; Langlois, P. Spatial-temporal modeling of the association between air pollution exposure and preterm birth: Identifying critical windows of exposure. Biometrics 2012, 68, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.; Fuentes, M.; Herring, A.; Langlois, P. Bayesian spatial-temporal model for cardiac con- genital anomalies and ambient air pollution risk assessment. Environmetrics 2012, 23, 673–684. [Google Scholar] [CrossRef]
- Banerjee, S.; Carlin, B.P.; Gelfand, A.E. Hierarchical Modeling and Analysis for Spatial Data; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Heaton, M.J.; Datta, A.; Finley, A.O.; Furrer, R.; Guinness, J.; Guhaniyogi, R.; Gerber, F.; Gramacy, R.B.; Hammerling, D.; Katzfuss, M.; et al. A case study competition among methods for analyzing large spatial data. J. Agric. Biol. Environ. Statist 2019, 24, 398–425. [Google Scholar] [CrossRef]
- Zhang, Y.; Ebelt, S.T.; Shi, L.; Scovronick, N.C.; D’Souza, R.R.; Steenland, K.; Chang, H.H. Short-term associations between warm-season ambient temperature and emergency department visits for Alzheimer’s disease and related dementia in five US states. Environ. Res. 2023, 220, 115176. [Google Scholar] [CrossRef]
- Fritze, T. The Effect of Heat and Cold Waves on the Mortality of Persons with Dementia in Germany. Sustainability 2020, 12, 3664. [Google Scholar] [CrossRef]
- Armstrong, B.G. Fixed Factors that Modify the Effects of Time-Varying Factors: Applying the Case-Only Approach. Epidemiology 2003, 14, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J. Who is Sensitive to Extremes of Temperature?: A Case-Only Analysis. Epidemiology 2005, 16, 67–72. [Google Scholar] [CrossRef]
- Zanobetti, A.; O’Neill, M.S.; Gronlund, C.J.; Schwartz, J.D. Susceptibility to Mortality in Weather Extremes: Effect Modification by Personal and Small-Area Characteristics. Epidemiology 2013, 24, 809–819. [Google Scholar] [CrossRef]
- Xu, Z.; Crooks, J.L.; Black, D.; Hu, W.; Tong, S. Heatwave and infants’ hospital admissions under different heatwave definitions. Environ. Pollut. 2017, 229, 525–530. [Google Scholar] [CrossRef]
- Madrigano, J.; Ito, K.; Johnson, S.; Kinney, P.L.; Matte, T. A Case-Only Study of Vulnerability to Heat Wave–RelatedMortality in New York City (2000–2011). Environ. Health Perspect. 2015, 123, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Z.; Lu, J.; Zhang, L.; Li, Y.; Zhang, L. Spatial-temporal Bayesian accelerated failure time models for survival endpoints with applications to prostate cancer registry data. BMC Med. Res. Methodol. 2024, 24, 86. [Google Scholar] [CrossRef] [PubMed]
- Carracedo-Martínez, E.; Taracido, M.; Tobias, A.; Saez, M.; Figueiras, A. Case-Crossover Analysis of Air Pollution Health Effects: A Systematic Review of Methodology and Application. Environ. Health Perspect. 2010, 118, 1173–1182. [Google Scholar] [CrossRef]
- Szyszkowicz, M. Case-Crossover Method with a Short Time-Window. Int. J. Environ. Res. Public Health 2020, 17, 202. [Google Scholar] [CrossRef] [PubMed]
- Braeye, T.; Hens, N. Optimising the case-crossover design for use in shared exposure settings. Epidemiol Infect 2020, 148, e151. [Google Scholar] [CrossRef]
- Janes, H.; Sheppard, L.; Lumley, T. Case-Crossover Analyses of Air Pollution Exposure Data:Referent Selection Strategies and Their Implications for Bias. Epidemiology 2005, 16, 717–726. [Google Scholar] [CrossRef]
- Besag, J. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 192–236. [Google Scholar] [CrossRef]
- Hanson, T.E.; Jara, A.; Zhao, L. A Bayesian semiparametric temporally-stratified proportional hazards model with spatial frailties. Bayesian Anal. 2011, 6, 1–48. [Google Scholar] [CrossRef]
- Cai, B.; Lawson, A.B.; Hossain, M.; Choi, J.; Kirby, R.S.; Liu, J. Bayesian semiparametric model with spatially-temporally varying coefficients selection. Stat. Med. 2013, 32, 3670–3685. [Google Scholar] [CrossRef]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2002, 64, 583–639. [Google Scholar] [CrossRef]
- Casella, G.; George, E.I. Explaining the Gibbs sampler. Am. Stat. 1992, 46, 167–174. [Google Scholar] [CrossRef]
- Chib, S.; Greenberg, E. Understanding the Metropolis-Hastings algorithm. Am. Stat. 1995, 49, 327–335. [Google Scholar] [CrossRef]
S1 | S2 | ||||||
---|---|---|---|---|---|---|---|
Par | Bias | SD | MSE | Bias | SD | MSE | |
M1 | −0.010 | 0.012 | 0.001 | −0.004 | 0.012 | 0.000 | |
−0.005 | 0.011 | 0.001 | −0.001 | 0.022 | 0.000 | ||
M2 | −0.054 | 0.092 | 0.012 | −0.003 | 0.012 | 0.000 | |
−0.023 | 0.032 | 0.003 | −0.002 | 0.022 | 0.001 |
S1 | S2 | ||||||
---|---|---|---|---|---|---|---|
Par | Bias | SD | MSE | Bias | SD | MSE | |
M1 | −0.084 | 0.131 | 0.024 | −0.020 | 0.080 | 0.007 | |
−0.006 | 0.030 | 0.001 | −0.002 | 0.023 | 0.001 | ||
M2 | −0.092 | 0.148 | 0.030 | −0.009 | 0.101 | 0.010 | |
−0.045 | 0.063 | 0.006 | −0.002 | 0.023 | 0.001 |
M1 | M2 | M1 | M2 | |
---|---|---|---|---|
S1 | 0.93 | 0.07 | 0.91 | 0.09 |
S2 | 0.10 | 0.90 | 0.22 | 0.78 |
Covariate | New York | Florida | ||
---|---|---|---|---|
M1 | M2 | M1 | M2 | |
EST (95%CL) | EST (95%CL) | EST (95%CL) | EST (95%CL) | |
Age | ||||
65 | REF | REF | REF | REF |
<65 | 0.039 (0.035, 0.041) | 0.040 (0.036, 0.043) | ||
Gender | ||||
Male | REF | REF | REF | REF |
Female | 0.057 (0.009, 0.097) | −0.092 (−0.155, −0.013) | ||
EHE | ||||
Yes | REF | REF | REF | REF |
No | −0.011 (−0.015, −0.007) | −0.022 (−0.029, −0.012) | −0.012 (−0.017, −0.004) | −0.018 (−0.023, −0.011) |
Year(Cont) | 0.044 (0.039, 0.052) | - | 0.075 (0.068, 0.086) | - |
Year = 2010 | - | REF | - | REF |
Year = 2011 | - | −0.441 (−1.663, −0.116) | - | −0.036 (−0.107, 0.078) |
Year = 2012 | - | 0.134 (−0.067, 0.143) | - | −0.114 (−0.157, 0.022) |
Year = 2013 | - | 0.192 (−0.097, 0.331) | - | −0.112 (−0.165, 0.037) |
Year = 2014 | - | −0.429 (−0.877, −0.121) | - | −0.103 (−0.165, 0.050) |
Year = 2015 | - | 0.095 (−0.570, 0.781) | - | -0.053 (−0.159, 0.110) |
Year = 2016 | - | 0.416 (−0.026, 0.741) | - | 0.052 (−0.030, 0.191) |
Year = 2017 | - | 1.526 (0.761, 1.891) | - | 0.277 (0.193, 0.407) |
Year = 2018 | - | 1.495 (0.754, 1.901) | - | 0.267 (0.193, 0.403) |
Year = 2019 | - | 2.214 (1.514, 2.996) | - | 0.619 (0.536, 0.765) |
Year = 2020 | - | 5.375 (2.499, 7.816) | - | 1.271 (1.018, 1.553) |
Model Diagnosis | ||||
DIC | 61,202.31 | 69,965.20 | 34,235.64 | 29,876.01 |
Covariate | New York | Florida | ||
---|---|---|---|---|
M1 | M2 | M1 | M2 | |
EST (95%CL) | EST (95%CL) | EST (95%CL) | EST (95%CL) | |
Age | ||||
65 | REF | REF | REF | REF |
<65 | 0.038 (0.034, 0.040) | 0.041 (0.035, 0.042) | ||
Gender | ||||
Male | REF | REF | REF | REF |
Female | 0.056 (0.007, 0.098) | −0.090 (−0.154, −0.015) | ||
EHE | ||||
Yes | REF | REF | REF | REF |
No | −0.013 (−0.016, −0.008) | −0.023 (−0.029, −0.013) | −0.014 (−0.013, −0.004) | −0.018 (−0.023, −0.011) |
Year(Cont) | 0.046 (0.037, 0.052) | - | 0.077 (0.066, 0.087) | - |
Year = 2010 | - | REF | - | REF |
Year = 2011 | - | −0.443 (−1.661, −0.116) | - | −0.036 (−0.107, 0.078) |
Year = 2012 | - | 0.135 (−0.063, 0.144) | - | −0.114 (−0.157, 0.022) |
Year = 2013 | - | 0.193 (−0.096, 0.331) | - | −0.113 (−0.165, 0.037) |
Year = 2014 | - | −0.431 (−0.876, −0.121) | - | −0.104 (−0.165, 0.050) |
Year = 2015 | - | 0.096 (−0.570, 0.781) | - | −0.051 (−0.154, 0.110) |
Year = 2016 | - | 0.416 (−0.026, 0.741) | - | 0.052 (−0.030, 0.191) |
Year = 2017 | - | 1.530 (0.777, 1.891) | - | 0.277 (0.193, 0.407) |
Year = 2018 | - | 1.496 (0.754, 1.901) | - | 0.261 (0.193, 0.403) |
Year = 2019 | - | 2.213 (1.514, 2.996) | - | 0.620 (0.536, 0.765) |
Year = 2020 | - | 5.374 (2.499, 7.816) | - | 1.272 (1.018, 1.553) |
Model Diagnosis | ||||
DIC | 61,221.31 | 69,966.20 | 34,235.33 | 29,876.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Li, Z.; Zhang, L.; Wang, M. A Spatial–Temporal Bayesian Model for a Case-Crossover Design with Application to Extreme Heat and Claims Data. Stats 2024, 7, 1379-1391. https://doi.org/10.3390/stats7040080
Liang M, Li Z, Zhang L, Wang M. A Spatial–Temporal Bayesian Model for a Case-Crossover Design with Application to Extreme Heat and Claims Data. Stats. 2024; 7(4):1379-1391. https://doi.org/10.3390/stats7040080
Chicago/Turabian StyleLiang, Menglu, Zheng Li, Lijun Zhang, and Ming Wang. 2024. "A Spatial–Temporal Bayesian Model for a Case-Crossover Design with Application to Extreme Heat and Claims Data" Stats 7, no. 4: 1379-1391. https://doi.org/10.3390/stats7040080
APA StyleLiang, M., Li, Z., Zhang, L., & Wang, M. (2024). A Spatial–Temporal Bayesian Model for a Case-Crossover Design with Application to Extreme Heat and Claims Data. Stats, 7(4), 1379-1391. https://doi.org/10.3390/stats7040080