Two Types of Size-Biased Samples When Modeling Extreme Phenomena
Abstract
:1. Introduction
2. Bias to the Distribution of Maxima
- Step 1:
- Initially, N units are selected from a population and measurements in each one of them are recorded as related to the characteristic Y under study. We assume that Y is a positive and continuous random variable (r.v.), with cumulative distribution function (c.d.f.), say , which belongs to the maximum domain of attraction of the Fréchet distribution, and is large. Equivalently, in this step we can say that we select N random and independent samples with units in each sample. Let , be the r.v., which describes the measurements on the j-th unit or sample, with .
- Step 2:
- Next the maximum value of each one of the N units or samples is recorded. Let , . Taking into account Theorem 3.3.7 in [19], since belongs to the Fréchet domain and is large, the sample maximum of the random sample , i.e., , satisfies the following relation:
- Step 3:
- An r-size-biased sample of length n is selected from the population of , …, , i.e., each unit of the population has the probability to be selected in the sample proportional to . Let, in order not to introduce more notation, , …, be the observed sample, which obviously does not coincide with the first n of the population.
3. Maxima of Biased Samples
- Step 1:
- Let us consider a positive and continuous random variable Y with p.d.f. and c.d.f. , which belongs to the maximum domain of attraction of the Fréchet distribution.
- Step 2:
- Let , be n independent r-size-biased samples, with large.
- Step 3:
- Next, the maximum value of each one of the n samples is recorded. Let , .
- Step 4:
- ,…, comprise our observed sample, i.e., it is a random sample of n maxima obtained from respective independent r-size-biased samples from Y with p.d.f. .
4. Numerical Experiments
- Step 1:
- For , with , we generate a sample of size , ,…,, , from the Log-logistic distribution with shape parameter and scale parameter , denoted as , where , .
- Step 2:
- Next, the maximum value of each one of the samples of size k is recorded. Let , . The set of these values comprise the population of maxima.
- Step 3:
- An -size-biased sample, , of length n, is selected from the population of maxima. Let ,…, be the observed sample.
- Step 4:
- The values and , obtained by fitting the r-size-biased Fréchet for and , are computed.
- Step 5:
- Steps 1–3 are repeated 10,000 times (simulation runs). Thus, 10,000 values of and , for and , are obtained, with and being the appropriate MLEs under this scenario.
- Step 6:
- The mean of the 10,000 estimators and , denoted by mean.br and mean.dr, respectively, as well as their standard deviations, denoted by sd.br and sd.dr, respectively, are computed for and .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
k | n | mean.d0 | sd.d0 | mean.b0 | sd.b0 | mean.d1 | sd.d1 | mean.b1 | sd.b1 | mean.d2 | sd.d2 | mean.b2 | sd.b2 | mean.d3 | sd.d3 | mean.b3 | sd.b3 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 | 30 | 1 | 5.146 | 0.309 | 3.432 | 0.519 | 4.676 | 0.269 | 4.099 | 0.512 | (4.641192, 4) | ||||||||
50 | 5.131 | 0.226 | 3.398 | 0.407 | 4.664 | 0.197 | 4.063 | 0.401 | |||||||||||
100 | 5.131 | 0.167 | 3.342 | 0.270 | 4.657 | 0.142 | 4.004 | 0.265 | |||||||||||
50 | 30 | 5.870 | 0.358 | 3.454 | 0.515 | 5.341 | 0.295 | 4.121 | 0.509 | (5.291503, 4) | |||||||||
50 | 5.860 | 0.274 | 3.391 | 0.397 | 5.325 | 0.229 | 4.056 | 0.391 | |||||||||||
100 | 5.842 | 0.185 | 3.361 | 0.283 | 5.309 | 0.159 | 4.024 | 0.278 | |||||||||||
100 | 30 | 6.978 | 0.404 | 3.491 | 0.543 | 6.360 | 0.342 | 4.159 | 0.536 | (6.308684, 4) | |||||||||
50 | 6.972 | 0.315 | 3.427 | 0.400 | 6.346 | 0.268 | 4.092 | 0.394 | |||||||||||
100 | 6.956 | 0.214 | 3.375 | 0.283 | 6.326 | 0.177 | 4.038 | 0.279 | |||||||||||
30 | 30 | 2 | 6.018 | 0.467 | 2.666 | 0.423 | 5.177 | 0.346 | 3.353 | 0.411 | 4.724 | 0.329 | 4.139 | 0.392 | (4.641192, 4) | ||||
50 | 5.997 | 0.343 | 2.625 | 0.314 | 5.157 | 0.269 | 3.310 | 0.306 | 4.697 | 0.262 | 4.094 | 0.291 | |||||||
100 | 5.942 | 0.252 | 2.632 | 0.210 | 5.125 | 0.195 | 3.315 | 0.204 | 4.672 | 0.185 | 4.096 | 0.194 | |||||||
50 | 30 | 6.845 | 0.536 | 2.703 | 0.439 | 5.909 | 0.397 | 3.390 | 0.428 | 5.400 | 0.375 | 4.175 | 0.409 | (5.291503, 4) | |||||
50 | 6.807 | 0.400 | 2.642 | 0.324 | 5.863 | 0.304 | 3.328 | 0.316 | 5.346 | 0.292 | 4.112 | 0.300 | |||||||
100 | 6.772 | 0.264 | 2.629 | 0.212 | 5.840 | 0.204 | 3.312 | 0.205 | 5.322 | 0.198 | 4.093 | 0.195 | |||||||
100 | 30 | 8.140 | 0.644 | 2.690 | 0.427 | 7.017 | 0.494 | 3.376 | 0.416 | 6.407 | 0.472 | 4.160 | 0.396 | (6.308684, 4) | |||||
50 | 8.099 | 0.456 | 2.653 | 0.315 | 6.987 | 0.351 | 3.340 | 0.307 | 6.376 | 0.339 | 4.124 | 0.293 | |||||||
100 | 8.054 | 0.321 | 2.649 | 0.216 | 6.960 | 0.246 | 3.333 | 0.210 | 6.351 | 0.236 | 4.114 | 0.199 | |||||||
30 | 30 | 3 | 7.765 | 0.768 | 1.996 | 0.267 | 6.061 | 0.532 | 2.702 | 0.257 | 5.316 | 0.486 | 3.525 | 0.239 | 4.930 | 0.464 | 4.415 | 0.224 | (4.641192, 4) |
50 | 7.599 | 0.566 | 2.022 | 0.210 | 5.982 | 0.403 | 2.724 | 0.203 | 5.250 | 0.374 | 3.541 | 0.191 | 4.863 | 0.361 | 4.426 | 0.180 | |||
100 | 7.365 | 0.376 | 2.123 | 0.153 | 5.920 | 0.276 | 2.816 | 0.149 | 5.226 | 0.257 | 3.623 | 0.141 | 4.845 | 0.250 | 4.498 | 0.133 | |||
50 | 30 | 8.854 | 0.888 | 1.993 | 0.285 | 6.901 | 0.620 | 2.701 | 0.276 | 6.052 | 0.567 | 3.525 | 0.260 | 5.614 | 0.543 | 4.416 | 0.245 | (5.291503, 4) | |
50 | 8.612 | 0.642 | 2.033 | 0.215 | 6.794 | 0.454 | 2.734 | 0.208 | 5.969 | 0.418 | 3.552 | 0.195 | 5.533 | 0.402 | 4.436 | 0.184 | |||
100 | 8.388 | 0.430 | 2.109 | 0.150 | 6.727 | 0.308 | 2.803 | 0.146 | 5.934 | 0.283 | 3.611 | 0.137 | 5.501 | 0.272 | 4.488 | 0.129 | |||
100 | 30 | 10.520 | 1.056 | 1.985 | 0.261 | 8.191 | 0.712 | 2.692 | 0.253 | 7.177 | 0.650 | 3.516 | 0.237 | 6.654 | 0.625 | 4.407 | 0.223 | (6.308684, 4) | |
50 | 10.259 | 0.760 | 2.032 | 0.211 | 8.094 | 0.544 | 2.733 | 0.204 | 7.110 | 0.499 | 3.550 | 0.191 | 6.589 | 0.478 | 4.435 | 0.180 | |||
100 | 9.945 | 0.519 | 2.127 | 0.159 | 8.001 | 0.382 | 2.821 | 0.154 | 7.068 | 0.355 | 3.628 | 0.145 | 6.557 | 0.342 | 4.504 | 0.136 |
k | n | mean.d0 | sd.d0 | mean.b0 | sd.b0 | mean.d1 | sd.d1 | mean.b1 | sd.b1 | mean.d2 | sd.d2 | mean.b2 | sd.b2 | mean.d3 | sd.d3 | mean.b3 | sd.b3 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 | 30 | 1 | 7.730 | 0.457 | 3.485 | 0.547 | 7.042 | 0.389 | 4.152 | 0.540 | (6.961787, 4) | ||||||||
30 | 50 | 7.728 | 0.370 | 3.394 | 0.417 | 7.020 | 0.313 | 4.057 | 0.413 | ||||||||||
30 | 100 | 7.708 | 0.251 | 3.341 | 0.282 | 6.996 | 0.217 | 4.003 | 0.278 | ||||||||||
50 | 30 | 8.795 | 0.519 | 3.506 | 0.550 | 8.018 | 0.439 | 4.171 | 0.543 | (7.937254, 4) | |||||||||
50 | 50 | 8.779 | 0.383 | 3.399 | 0.392 | 7.982 | 0.327 | 4.065 | 0.388 | ||||||||||
50 | 100 | 8.773 | 0.281 | 3.357 | 0.269 | 7.970 | 0.239 | 4.020 | 0.266 | ||||||||||
100 | 30 | 10.468 | 0.616 | 3.482 | 0.555 | 9.534 | 0.521 | 4.150 | 0.548 | (9.463026, 4) | |||||||||
100 | 50 | 10.476 | 0.474 | 3.419 | 0.419 | 9.530 | 0.389 | 4.083 | 0.414 | ||||||||||
100 | 100 | 10.439 | 0.333 | 3.377 | 0.269 | 9.496 | 0.282 | 4.040 | 0.266 | ||||||||||
30 | 30 | 2 | 9.007 | 0.671 | 2.676 | 0.432 | 7.755 | 0.501 | 3.364 | 0.420 | 7.079 | 0.482 | 4.150 | 0.399 | (6.961787, 4) | ||||
30 | 50 | 8.981 | 0.496 | 2.634 | 0.314 | 7.731 | 0.383 | 3.320 | 0.305 | 7.046 | 0.373 | 4.103 | 0.291 | ||||||
30 | 100 | 8.938 | 0.369 | 2.630 | 0.221 | 7.705 | 0.267 | 3.313 | 0.215 | 7.021 | 0.252 | 4.094 | 0.205 | ||||||
50 | 30 | 10.353 | 0.816 | 2.643 | 0.420 | 8.886 | 0.608 | 3.331 | 0.408 | 8.098 | 0.577 | 4.117 | 0.387 | (7.937254, 4) | |||||
50 | 50 | 10.215 | 0.593 | 2.626 | 0.313 | 8.786 | 0.453 | 3.313 | 0.304 | 8.008 | 0.437 | 4.098 | 0.289 | ||||||
50 | 100 | 10.154 | 0.402 | 2.644 | 0.219 | 8.769 | 0.308 | 3.328 | 0.214 | 7.997 | 0.300 | 4.108 | 0.204 | ||||||
100 | 30 | 12.227 | 0.935 | 2.683 | 0.408 | 10.546 | 0.721 | 3.373 | 0.398 | 9.636 | 0.688 | 4.159 | 0.380 | (9.463026, 4) | |||||
100 | 50 | 12.158 | 0.707 | 2.659 | 0.307 | 10.494 | 0.542 | 3.346 | 0.299 | 9.580 | 0.517 | 4.130 | 0.285 | ||||||
100 | 100 | 12.066 | 0.487 | 2.656 | 0.223 | 10.431 | 0.373 | 3.339 | 0.217 | 9.518 | 0.358 | 4.119 | 0.206 | ||||||
30 | 30 | 3 | 11.679 | 1.224 | 1.988 | 0.299 | 9.078 | 0.841 | 2.695 | 0.288 | 7.954 | 0.775 | 3.519 | 0.269 | 7.377 | 0.744 | 4.410 | 0.251 | (6.961787, 4) |
30 | 50 | 11.379 | 0.891 | 2.026 | 0.218 | 8.959 | 0.613 | 2.727 | 0.211 | 7.863 | 0.557 | 3.544 | 0.198 | 7.284 | 0.534 | 4.429 | 0.186 | ||
30 | 100 | 11.011 | 0.564 | 2.114 | 0.154 | 8.840 | 0.425 | 2.808 | 0.149 | 7.800 | 0.397 | 3.616 | 0.141 | 7.230 | 0.386 | 4.491 | 0.133 | ||
50 | 30 | 13.265 | 1.355 | 1.998 | 0.298 | 10.344 | 0.955 | 2.705 | 0.289 | 9.075 | 0.887 | 3.530 | 0.272 | 8.422 | 0.855 | 4.420 | 0.256 | (7.937254, 4) | |
50 | 50 | 12.901 | 0.983 | 2.028 | 0.221 | 10.166 | 0.689 | 2.731 | 0.215 | 8.931 | 0.636 | 3.549 | 0.202 | 8.281 | 0.615 | 4.435 | 0.191 | ||
50 | 100 | 12.508 | 0.647 | 2.122 | 0.152 | 10.053 | 0.462 | 2.815 | 0.148 | 8.874 | 0.427 | 3.622 | 0.140 | 8.228 | 0.414 | 4.498 | 0.133 | ||
100 | 30 | 15.726 | 1.572 | 2.009 | 0.292 | 12.295 | 1.084 | 2.716 | 0.283 | 10.795 | 0.992 | 3.540 | 0.265 | 10.021 | 0.950 | 4.429 | 0.249 | (9.463026, 4) | |
100 | 50 | 15.497 | 1.283 | 2.031 | 0.217 | 12.216 | 0.882 | 2.734 | 0.212 | 10.732 | 0.799 | 3.551 | 0.199 | 9.949 | 0.766 | 4.437 | 0.188 | ||
100 | 100 | 14.905 | 0.772 | 2.126 | 0.146 | 11.993 | 0.555 | 2.820 | 0.143 | 10.592 | 0.508 | 3.627 | 0.135 | 9.824 | 0.490 | 4.503 | 0.128 |
k | n | mean.d0 | sd.d0 | mean.b0 | sd.b0 | mean.d1 | sd.d1 | mean.b1 | sd.b1 | mean.d2 | sd.d2 | mean.b2 | sd.b2 | mean.d3 | sd.d3 | mean.b3 | sd.b3 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 | 30 | 1 | 4.180 | 0.187 | 4.523 | 0.684 | 3.946 | 0.166 | 5.175 | 0.678 | (3.922018, 5) | ||||||||
30 | 50 | 4.181 | 0.146 | 4.379 | 0.495 | 3.939 | 0.129 | 5.032 | 0.491 | ||||||||||
30 | 100 | 4.173 | 0.103 | 4.342 | 0.351 | 3.931 | 0.092 | 4.992 | 0.348 | ||||||||||
50 | 30 | 4.648 | 0.211 | 4.533 | 0.709 | 4.388 | 0.187 | 5.189 | 0.703 | (4.355813, 5) | |||||||||
50 | 50 | 4.635 | 0.161 | 4.426 | 0.529 | 4.371 | 0.140 | 5.080 | 0.525 | ||||||||||
50 | 100 | 4.629 | 0.110 | 4.360 | 0.346 | 4.363 | 0.098 | 5.012 | 0.344 | ||||||||||
100 | 30 | 5.352 | 0.245 | 4.522 | 0.680 | 5.053 | 0.214 | 5.178 | 0.676 | (5.013685, 5) | |||||||||
100 | 50 | 5.332 | 0.182 | 4.475 | 0.508 | 5.036 | 0.161 | 5.127 | 0.503 | ||||||||||
100 | 100 | 5.317 | 0.126 | 4.401 | 0.364 | 5.016 | 0.110 | 5.051 | 0.359 | ||||||||||
30 | 30 | 2 | 4.564 | 0.252 | 3.742 | 0.601 | 4.206 | 0.213 | 4.410 | 0.591 | 3.971 | 0.207 | 5.155 | 0.573 | (3.922018, 5) | ||||
30 | 50 | 4.546 | 0.186 | 3.665 | 0.429 | 4.185 | 0.153 | 4.330 | 0.423 | 3.946 | 0.148 | 5.073 | 0.411 | ||||||
30 | 100 | 4.529 | 0.131 | 3.638 | 0.295 | 4.170 | 0.107 | 4.301 | 0.291 | 3.932 | 0.103 | 5.042 | 0.283 | ||||||
50 | 30 | 5.050 | 0.263 | 3.738 | 0.596 | 4.653 | 0.222 | 4.408 | 0.587 | 4.394 | 0.220 | 5.155 | 0.570 | (4.355813, 5) | |||||
50 | 50 | 5.046 | 0.205 | 3.691 | 0.445 | 4.650 | 0.172 | 4.358 | 0.437 | 4.389 | 0.168 | 5.103 | 0.424 | ||||||
50 | 100 | 5.025 | 0.143 | 3.668 | 0.307 | 4.633 | 0.118 | 4.332 | 0.302 | 4.371 | 0.115 | 5.074 | 0.293 | ||||||
100 | 30 | 5.808 | 0.328 | 3.724 | 0.580 | 5.348 | 0.265 | 4.392 | 0.571 | 5.047 | 0.253 | 5.138 | 0.554 | (5.013685, 5) | |||||
100 | 50 | 5.783 | 0.240 | 3.708 | 0.445 | 5.334 | 0.197 | 4.376 | 0.439 | 5.036 | 0.191 | 5.120 | 0.426 | ||||||
100 | 100 | 5.782 | 0.167 | 3.676 | 0.304 | 5.334 | 0.140 | 4.341 | 0.300 | 5.035 | 0.136 | 5.083 | 0.292 | ||||||
30 | 30 | 3 | 5.164 | 0.353 | 2.965 | 0.472 | 4.559 | 0.268 | 3.650 | 0.462 | 4.211 | 0.256 | 4.425 | 0.444 | 3.998 | 0.254 | 5.265 | 0.423 | (3.922018, 5) |
30 | 50 | 5.159 | 0.267 | 2.928 | 0.349 | 4.557 | 0.209 | 3.612 | 0.342 | 4.208 | 0.202 | 4.387 | 0.328 | 3.991 | 0.201 | 5.227 | 0.313 | ||
30 | 100 | 5.096 | 0.190 | 2.981 | 0.241 | 4.527 | 0.147 | 3.659 | 0.235 | 4.186 | 0.138 | 4.427 | 0.225 | 3.971 | 0.136 | 5.259 | 0.214 | ||
50 | 30 | 5.759 | 0.403 | 2.961 | 0.449 | 5.087 | 0.311 | 3.647 | 0.439 | 4.700 | 0.296 | 4.424 | 0.421 | 4.463 | 0.291 | 5.265 | 0.401 | (4.355813, 5) | |
50 | 50 | 5.692 | 0.306 | 2.952 | 0.353 | 5.036 | 0.233 | 3.634 | 0.345 | 4.652 | 0.221 | 4.407 | 0.331 | 4.414 | 0.218 | 5.245 | 0.315 | ||
50 | 100 | 5.637 | 0.199 | 2.999 | 0.248 | 5.014 | 0.155 | 3.678 | 0.243 | 4.640 | 0.148 | 4.445 | 0.233 | 4.404 | 0.148 | 5.277 | 0.222 | ||
100 | 30 | 6.581 | 0.445 | 2.968 | 0.446 | 5.817 | 0.343 | 3.654 | 0.436 | 5.376 | 0.327 | 4.430 | 0.418 | 5.105 | 0.322 | 5.270 | 0.399 | (5.013685, 5) | |
100 | 50 | 6.577 | 0.347 | 2.918 | 0.334 | 5.806 | 0.268 | 3.601 | 0.326 | 5.357 | 0.253 | 4.375 | 0.312 | 5.079 | 0.249 | 5.214 | 0.297 | ||
100 | 100 | 6.497 | 0.229 | 2.989 | 0.233 | 5.776 | 0.184 | 3.668 | 0.227 | 5.344 | 0.177 | 4.437 | 0.217 | 5.072 | 0.175 | 5.270 | 0.207 |
k | n | mean.d0 | sd.d0 | mean.b0 | sd.b0 | mean.d1 | sd.d1 | mean.b1 | sd.b1 | mean.d2 | sd.d2 | mean.b2 | sd.b2 | mean.d3 | sd.d3 | mean.b3 | sd.b3 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 | 30 | 1 | 6.269 | 0.286 | 4.523 | 0.707 | 5.917 | 0.253 | 5.176 | 0.702 | (5.883027, 5) | ||||||||
30 | 50 | 6.275 | 0.228 | 4.386 | 0.491 | 5.913 | 0.201 | 5.037 | 0.486 | ||||||||||
30 | 100 | 6.265 | 0.149 | 4.346 | 0.360 | 5.902 | 0.133 | 4.995 | 0.358 | ||||||||||
50 | 30 | 6.978 | 0.314 | 4.528 | 0.691 | 6.588 | 0.277 | 5.183 | 0.686 | (6.533719, 5) | |||||||||
50 | 50 | 6.962 | 0.239 | 4.439 | 0.496 | 6.569 | 0.212 | 5.091 | 0.492 | ||||||||||
50 | 100 | 6.943 | 0.171 | 4.392 | 0.373 | 6.549 | 0.151 | 5.043 | 0.371 | ||||||||||
100 | 30 | 8.011 | 0.361 | 4.543 | 0.701 | 7.567 | 0.317 | 5.199 | 0.695 | (7.520527, 5) | |||||||||
100 | 50 | 7.999 | 0.268 | 4.474 | 0.534 | 7.554 | 0.239 | 5.128 | 0.531 | ||||||||||
100 | 100 | 7.983 | 0.194 | 4.404 | 0.370 | 7.532 | 0.171 | 5.055 | 0.367 | ||||||||||
30 | 30 | 2 | 6.846 | 0.373 | 3.729 | 0.594 | 6.304 | 0.306 | 4.398 | 0.587 | 5.949 | 0.300 | 5.143 | 0.571 | (5.883027, 5) | ||||
30 | 50 | 6.837 | 0.285 | 3.663 | 0.422 | 6.294 | 0.237 | 4.328 | 0.416 | 5.934 | 0.231 | 5.071 | 0.404 | ||||||
30 | 100 | 6.800 | 0.195 | 3.639 | 0.297 | 6.263 | 0.166 | 4.303 | 0.293 | 5.904 | 0.164 | 5.043 | 0.284 | ||||||
50 | 30 | 7.573 | 0.411 | 3.778 | 0.614 | 6.988 | 0.342 | 4.447 | 0.607 | 6.602 | 0.333 | 5.191 | 0.591 | (6.533719, 5) | |||||
50 | 50 | 7.553 | 0.315 | 3.710 | 0.454 | 6.966 | 0.267 | 4.377 | 0.447 | 6.576 | 0.264 | 5.120 | 0.434 | ||||||
50 | 100 | 7.538 | 0.221 | 3.646 | 0.300 | 6.945 | 0.183 | 4.311 | 0.295 | 6.549 | 0.178 | 5.053 | 0.286 | ||||||
100 | 30 | 8.694 | 0.466 | 3.752 | 0.608 | 8.015 | 0.379 | 4.421 | 0.600 | 7.569 | 0.366 | 5.167 | 0.585 | (7.520527, 5) | |||||
100 | 50 | 8.708 | 0.349 | 3.667 | 0.415 | 8.021 | 0.296 | 4.335 | 0.408 | 7.567 | 0.290 | 5.080 | 0.395 | ||||||
100 | 100 | 8.674 | 0.250 | 3.666 | 0.311 | 7.998 | 0.206 | 4.332 | 0.306 | 7.547 | 0.200 | 5.074 | 0.296 | ||||||
30 | 30 | 3 | 7.799 | 0.570 | 2.944 | 0.459 | 6.876 | 0.431 | 3.629 | 0.450 | 6.347 | 0.403 | 4.405 | 0.432 | 6.022 | 0.395 | 5.246 | 0.413 | (5.883027, 5) |
30 | 50 | 7.709 | 0.390 | 2.945 | 0.332 | 6.821 | 0.302 | 3.628 | 0.324 | 6.301 | 0.290 | 4.401 | 0.310 | 5.978 | 0.288 | 5.239 | 0.294 | ||
30 | 100 | 7.641 | 0.266 | 2.986 | 0.239 | 6.790 | 0.211 | 3.664 | 0.234 | 6.279 | 0.203 | 4.430 | 0.225 | 5.956 | 0.203 | 5.262 | 0.215 | ||
50 | 30 | 8.619 | 0.605 | 2.939 | 0.457 | 7.600 | 0.464 | 3.625 | 0.447 | 7.016 | 0.439 | 4.403 | 0.428 | 6.659 | 0.433 | 5.245 | 0.409 | (6.533719, 5) | |
50 | 50 | 8.537 | 0.441 | 2.938 | 0.330 | 7.549 | 0.335 | 3.621 | 0.322 | 6.972 | 0.315 | 4.395 | 0.308 | 6.614 | 0.309 | 5.233 | 0.294 | ||
50 | 100 | 8.452 | 0.314 | 3 | 0.244 | 7.518 | 0.245 | 3.678 | 0.240 | 6.957 | 0.233 | 4.445 | 0.231 | 6.601 | 0.230 | 5.277 | 0.221 | ||
100 | 30 | 9.877 | 0.650 | 2.953 | 0.448 | 8.722 | 0.504 | 3.640 | 0.438 | 8.058 | 0.484 | 4.417 | 0.420 | 7.651 | 0.479 | 5.259 | 0.400 | (7.520527, 5) | |
100 | 50 | 9.809 | 0.535 | 2.956 | 0.349 | 8.682 | 0.400 | 3.638 | 0.342 | 8.021 | 0.373 | 4.411 | 0.328 | 7.611 | 0.366 | 5.248 | 0.313 | ||
100 | 100 | 9.723 | 0.347 | 2.981 | 0.242 | 8.638 | 0.265 | 3.661 | 0.237 | 7.990 | 0.250 | 4.429 | 0.227 | 7.581 | 0.246 | 5.262 | 0.216 |
References
- Simon, R. Length biased sampling in etiologic studies. Am. J. Epidemiol. 1980, 111, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Zelen, M.; Feinleib, M. On the theory of screening for chronic diseases. Biometrika 1969, 56, 601–614. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Tripathi, Y.; Lio, Y. Inference of Constant-Stress Model of Fréchet Distribution under a Maximum Ranked Set Sampling with Unequal Samples. Axioms 2024, 13, 394. [Google Scholar] [CrossRef]
- Patil, G.P.; Rao, C.R. Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics 1978, 34, 179–189. [Google Scholar] [CrossRef]
- Mudasir, S.; Ahmad, S. Parameter Estimation of the Weighted Generalized Inverse Weibull Distribution. J. Stat. Theory Appl. 2021, 20, 395–406. [Google Scholar] [CrossRef]
- Fisher, R.A. The effect of methods of ascertainment upon the estimation of frequencies. Ann. Eugen. 1934, 6, 13–25. [Google Scholar] [CrossRef]
- Rao, C.R. On discrete distributions arising out of methods of ascertainment. Sankhyā Indian J. Stat. Ser. A 1965, 27, 311–324. [Google Scholar]
- Tzavelas, G.; Economou, P. On the consequences of model misspecification for biased samples from the Weibull distribution. In Proceedings of the Statistics and Simulation: IWS 8, Vienna, Austria, 8 September 2015; Springer: Berlin/Heidelberg, Germany, 2018; pp. 357–369. [Google Scholar]
- Tzavelas, G.; Douli, M.; Economou, P. Model misspecification effects for biased samples. Metrika 2017, 80, 171–185. [Google Scholar] [CrossRef]
- Economou, P.; Tzavelas, G.; Batsidis, A. Robust inference under r-size-biased sampling without replacement from finite population. J. Appl. Stat. 2020, 47, 2808–2824. [Google Scholar] [CrossRef] [PubMed]
- Capaldi, A.; Kolba, T.N. Using the sample maximum to estimate the parameters of the underlying distribution. PLoS ONE 2019, 14, e0215529. [Google Scholar] [CrossRef] [PubMed]
- Gnedenko, B. Sur la distribution limite du terme maximum d’une serie aleatoire. Ann. Math. 1943, 44, 423–453. [Google Scholar] [CrossRef]
- Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958. [Google Scholar]
- Beisel, C.J.; Rokyta, D.R.; Wichman, H.A.; Joyce, P. Testing the extreme value domain of attraction for distributions of beneficial fitness effects. Genetics 2007, 176, 2441–2449. [Google Scholar] [CrossRef] [PubMed]
- Tzavelas, G.; Batsidis, A.; Economou, P. Size Biased Fréchet Distribution: Properties and Statistical Inference. J. Stat. Theory Appl. 2024. [Google Scholar]
- Alzeley, O.; Almetwally, E.M.; Gemeay, A.M.; Alshanbari, H.M.; Hafez, E.H.; Abu-Moussa, M.H. Statistical Inference under Censored Data for the New Exponential-X Fréchet Distribution: Simulation and Application to Leukemia Data. Comput. Intell. Neurosci. 2021, 2021, 2167670. [Google Scholar] [CrossRef] [PubMed]
- Phaphan, W.; Ibrahim, A.; Wirawan, P. Properties and Maximum Likelihood Estimation of the Novel Mixture of Fréchet Distribution. Symmetry 2023, 15, 1380. [Google Scholar] [CrossRef]
- Tzavelas, G.; Economou, P. Extreme value distributions for biased samples. Probab. Eng. Inf. Sci. 2015, 29, 277–290. [Google Scholar] [CrossRef]
- Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling Extremal Events: For Insurance and Finance; Springer Science & Business Media: Heidelberg, Germany, 2013. [Google Scholar]
- Tzavelas, G.; Panagiotakos, D. Statistical inference for the size-biased Weibull distribution. J. Stat. Comput. Simul. 2013, 83, 1252–1265. [Google Scholar] [CrossRef]
- Jain, K.; Singh, H.; Bagai, I. Relations for reliability measures of weighted distributions. Commun. Stat.-Theory Methods 1989, 18, 4393–4412. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Al-Shomrani, A.A.; Shawky, A.; Arif, O.H.; Aslam, M. Log-logistic distribution for survival data analysis using MCMC. SpringerPlus 2016, 5, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ashkar, F.; Mahdi, S. Fitting the log-logistic distribution by generalized moments. J. Hydrol. 2006, 328, 694–703. [Google Scholar] [CrossRef]
- Kleiber, C.; Kotz, S. Statistical Size Distributions in Economics and Actuarial Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
Distribution | |||
---|---|---|---|
, , | |||
(type XII) | , , | ||
, , | a | ||
(type III) | , , | ||
, , | a | ||
Fréchet (a) | , , | a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batsidis, A.; Tzavelas, G.; Economou, P. Two Types of Size-Biased Samples When Modeling Extreme Phenomena. Stats 2024, 7, 1392-1404. https://doi.org/10.3390/stats7040081
Batsidis A, Tzavelas G, Economou P. Two Types of Size-Biased Samples When Modeling Extreme Phenomena. Stats. 2024; 7(4):1392-1404. https://doi.org/10.3390/stats7040081
Chicago/Turabian StyleBatsidis, Apostolos, George Tzavelas, and Polychronis Economou. 2024. "Two Types of Size-Biased Samples When Modeling Extreme Phenomena" Stats 7, no. 4: 1392-1404. https://doi.org/10.3390/stats7040081
APA StyleBatsidis, A., Tzavelas, G., & Economou, P. (2024). Two Types of Size-Biased Samples When Modeling Extreme Phenomena. Stats, 7(4), 1392-1404. https://doi.org/10.3390/stats7040081