Assessing the (In)Stability of Urban Art Paints: From Real Case Studies to Laboratory Investigations of Degradation Processes and Preservation Possibilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Paints and Anti-UV Varnishes
Mock-Ups Preparation
2.2. Ageing Conditions
2.2.1. Natural Ageing
2.2.2. Accelerated Ageing
2.3. Analytical Methods
2.3.1. Colorimetric Measurements
2.3.2. Contact Angle Measurements
2.3.3. Digital Microscopy
2.3.4. Thermogravimetric Analysis
2.3.5. X-ray Fluorescence (XRF)
2.3.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.7. Raman Spectroscopy
2.3.8. Pyrolysis Gas Chromatography Coupled with Mass Spectroscopy (Py-GC/MS)
3. Results and Discussion
3.1. Paint Formulations Characterisation
Sample Name | Binder(s) | Pigments/Dyestuff | Additives | TGA Residue 700 °C [%] | Contact Angles (θ) | Comments |
---|---|---|---|---|---|---|
PO | Nitrocellulose Styrene-nBA copolymer Alkyd resin (polyols, benzoic acid, pentaerythritol tri/tetramethyl ester) | PO43 PY3 PY74 PY83 | Hexanedioic acid, bis(2-ethylhexyl) ester (DEHA) DMP DEP Silicates TiO2 CaCO3 | 14.3 | 99 | The abundance of benzoic acid in the pyrogram suggests the presence of an alkyd resin based on iso-phthalic acid [11] |
NF | Acrylic copolymer (MA, MMA, nBA, nBMA monomers and oligomers) Nitrocellulose | Organic colourant supported by triazine-toluene sulfonamide-paraformaldehyde polycondensation resin | Uniplex 108 Ethyl-p-toluene sulfonate DMP Castor wax Silicates (identified: talc) TiO2 | 97.4 | 81 | In the limited organic fraction (less than 3%), high plasticisers concentration. Py-GC/MS: several aromatic compounds lead to the hypothesis of an acrylic resin modified with styrene (no oligomers observed though). Despite the use of TMAH added for promoting thermal decomposition, the retention times and the mass spectra of the triazine compounds suggested they are due to fragmentation of the dyestuff. |
FR | nBA-nBMA-MMA copolymer | PR168 | Silicates (identified: quartz, kaolin/nacrite) CaCO3 DMP | 69.4 | 87 | |
OM | Acrylic copolymer (MMA, nBMA, EHA, OMA monomers) | Metal powders (Al, Cu, Fe) | DEP DBP DIBP Biphenyl Castor wax Silicates TiO2 CaCO3 | 50.0 | 74 | Supposed alkyd-based product, it is instead an acrylic formulation plasticised with phthalates. Metal feature given by metallic powders, maybe with the contribution of organic colourant/iron oxides |
MA | Orthophthalic oil-modified alkyd resin (terephthalic acid, ortho-phthalic acid methyl ester) | PR 48:2 or 48:8 | Biphenyl DMP TiO2 | 34.3 | 89 | A relative high amount of suberic acid together with the molar ratios between azelaic (A), palmitic (P), oleic (O) and stearic (S) acids suggested the addition of a sunflower or safflower oil [39]; molar ratios calculated from pyrograms: A/P = 0.35 O/S = 1.42 P/S = 3.2 |
3.2. Evaluation of Ageing Tests on Paints Formulations
3.2.1. Natural Ageing
3.2.2. Accelerated Ageing
3.3. Anti-UV Protective Varnishes Performances
3.3.1. Characterisation and Chemical Resistance to Ageing Tests of Anti-UV Varnishes
Sample Name | Binder(s) | Additives | TGA Residue 700 °C [%] | Comments |
---|---|---|---|---|
Anti-UV 1 | Acrylic copolymer (MA, MMA, nBA, 2EHA, EMA) | Urea-formaldehyde Fatty acids DMA Methyl ethyl adipate 1,3 Propanediol PEG | 14.3 | Among the comonomer, 2-ethyl hexyl acrylate, whose addition can provide flexibility, water resistance, good weathering characteristics, and UV-light resistance [65,70] |
Anti-UV 2 | Oil (drying oil) and acrylic-modified alkyd resin VA-VeoVa | Isobutyl methyl phthalate Benzaldehyde PEG | 6.6 |
3.3.2. Colorimetric and Surface Changes Feature of Paints after Anti-UV Varnish Application
4. Discussion
5. Conclusions and Further Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Paint Film | Acquisition Light Condition | Before Ageing | After Natural Ageing | After Accelerated Ageing |
---|---|---|---|---|
PO | Vis | |||
UV | ||||
NF | Vis | |||
UV | ||||
FR | Vis | |||
UV | ||||
MA | Vis | |||
UV | ||||
OM | Vis | |||
UV |
References
- Tunali, T. Street Art between Business and Resistance. J. Urban Cult. Stud. 2020, 7, 187–198. [Google Scholar] [CrossRef]
- Pagnin, L.; Calvini, R.; Wiesinger, R.; Schreiner, M. SO2- and NOx-Initiated Atmospheric Degradation of Polymeric Films: Morphological and Chemical Changes, Influence of Relative Humidity and Inorganic Pigments. Microchem. J. 2021, 164, 106087. [Google Scholar] [CrossRef]
- Sampers, J. Importance of Weathering Factors Other than UV Radiation and Temperature in Outdoor Exposure. Polym. Degrad. Stab. 2002, 76, 455–465. [Google Scholar] [CrossRef]
- Ranalli, G.; Alfano, G.; Belli, C.; Lustrato, G.; Colombini, M.P.; Bonaduce, I.; Zanardini, E.; Abbruscato, P.; Cappitelli, F.; Sorlini, C. Biotechnology Applied to Cultural Heritage: Biorestoration of Frescoes Using Viable Bacterial Cells and Enzymes. J. Appl. Microbiol. 2005, 98, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Veneranda, M.; Prieto-Taboada, N.; de Vallejuelo, S.F.-O.; Maguregui, M.; Morillas, H.; Marcaida, I.; Castro, K.; Garcia-Diego, F.J.; Osanna, M.; Madariaga, J.M. In-Situ Multianalytical Approach to Analyze and Compare the Degradation Pathways Jeopardizing Two Murals Exposed to Different Environments (Ariadne House, Pompeii, Italy). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 203, 201–209. [Google Scholar] [CrossRef]
- Alonso-Villar, E.M.; Rivas, T.; Pozo-Antonio, J.S. Resistance to Artificial Daylight of Paints Used in Urban Artworks. Influence of Paint Composition and Substrate. Prog. Org. Coat. 2021, 154, 106180. [Google Scholar] [CrossRef]
- Rauseo, A. Il Restauro Negato: Senza Titolo Di Blu Ed Ericailcane Al Padiglione d’Arte Contemporanea Di Milano. Kermes Riv. Del Restauro 2018, 109, 20–25. [Google Scholar]
- Fenzo, F.; Gasperini, R.; La Nasa, J.; Di Carlo, S.; Michelotto, C.; Modugno, F.; Scalvi, M.; Todaro, C. I Writing Di Peeta, Deban e Ment a Verona. Kermes Riv. Restauro 2018, 109, 71–80. [Google Scholar]
- Capus Digital Repository. Available online: https://www.capusrepository.unito.it/resource/presentation-with-photographic-documentation-of-the-main-degradation-phenomena-of-niguarda-antifascista-mural-niguarda-district-milan-2018 (accessed on 1 February 2020).
- Perrin, F.X.; Irigoyen, M.; Aragon, E.; Vernet, J.L. Evaluation of Accelerated Weathering Tests for Three Paint Systems: A Comparative Study of Their Aging Behaviour. Polym. Degrad. Stab. 2001, 72, 115–124. [Google Scholar]
- Bosi, A.; Ciccola, A.; Serafini, I.; Guiso, M.; Ripanti, F.; Postorino, P.; Curini, R.; Bianco, A. Street Art Graffiti: Discovering Their Composition and Alteration by FTIR and Micro-Raman Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 225, 117474. [Google Scholar] [CrossRef]
- Germinario, G.; van der Werf, I.D.; Sabbatini, L. Chemical Characterisation of Spray Paints by a Multi-Analytical (Py/GC–MS, FTIR, μ-Raman) Approach. Microchem. J. 2016, 124, 929–939. [Google Scholar] [CrossRef]
- Sanmartín, P.; Pozo-Antonio, J.S. Weathering of Graffiti Spray Paint on Building Stones Exposed to Different Types of UV Radiation. Constr. Build. Mater. 2020, 236, 117736. [Google Scholar] [CrossRef]
- Jost, C.; Muehlethaler, C.; Massonnet, G. Forensic Aspects of the Weathering and Ageing of Spray Paints. Forensic Sci. Int. 2016, 258, 32–40. [Google Scholar] [CrossRef]
- Bertasa, M.; Ricci, C.; Scarcella, A.; Zenucchini, F.; Pellis, G.; Croveri, P.; Scalarone, D. Overcoming Challenges in Street Art Murals Conservation: A Comparative Study on Cleaning Approach and Methodology. Coatings 2020, 10, 1019. [Google Scholar] [CrossRef]
- Giusti, C.; Colombini, M.P.; Lluveras-Tenorio, A.; La Nasa, J.; Striova, J.; Salvadori, B. Graphic Vandalism: Multi-Analytical Evaluation of Laser and Chemical Methods for the Removal of Spray Paints. J. Cult. Herit. 2020, 44, 260–274. [Google Scholar] [CrossRef]
- Gomes, V.; Dionísio, A.; Pozo-Antonio, J.S. Conservation Strategies against Graffiti Vandalism on Cultural Heritage Stones: Protective Coatings and Cleaning Methods. Prog. Org. Coat. 2017, 113, 90–109. [Google Scholar] [CrossRef]
- Moura, A.; Flores-Colen, I.; De Brito, J. Study of the Effect of Three Anti-Graffiti Products on the Physical Properties of Different Substrates. Constr. Build. Mater. 2016, 107, 157–164. [Google Scholar] [CrossRef]
- Macchia, A.; Ruffolo, S.A.; Rivaroli, L.; Malagodi, M.; Licchelli, M.; Rovella, N.; Randazzo, L.; La Russa, M.F. Comparative Study of Protective Coatings for the Conservation of Urban Art. J. Cult. Herit. 2020, 41, 232–237. [Google Scholar] [CrossRef]
- Macchia, A.; Castro, M.; Curbelo, C.; Rivaroli, L.; Capriotti, S.; Vieira, E.; Ruffolo, S.A.; La Russa, M.F. Methods and Products for the Conservation of Vandalized. Coatings 2021, 11, 1304. [Google Scholar]
- Macchia, A.; Capriotti, S.; Rivaroli, L.; Ruffolo, S.A.; La Russa, M.F. Protection of Urban Art Painting: A Laboratory Study. Polymers 2021, 14, 162. [Google Scholar]
- Baglioni, M.; Poggi, G.; Jaidar Benavides, Y.; Martínez Camacho, F.; Giorgi, R.; Baglioni, P. Nanostructured Fluids for the Removal of Graffiti—A Survey on 17 Commercial Spray-Can Paints. J. Cult. Herit. 2018, 34, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Rousaki, A.; Vandenabeele, P.; Berzioli, M.; Saccani, I.; Fornasini, L.; Bersani, D. An In-and-out-the-Lab Raman Spectroscopy Study on Street Art Murals from Reggio Emilia in Italy. Eur. Phys. J. Plus 2022, 137, 252. [Google Scholar] [CrossRef]
- Arpa Veneto. Available online: https://www.arpa.veneto.it/arpav (accessed on 1 February 2020).
- Konica Minolta. Available online: https://sensing.konicaminolta.us/us/blog/specular-component-included-sci-vs-specular-component-excluded-sce/ (accessed on 1 November 2021).
- Mokrzycki, W.; Tatol, M. Color Difference Delta E-A Survey Colour Difference ∆E-A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Striova, J.; Camaiti, M.; Castellucci, E.M.; Sansonetti, A. Chemical, Morphological and Chromatic Behavior of Mural Paintings under Er:YAG Laser Irradiation. Appl. Phys. A 2011, 104, 649–660. [Google Scholar] [CrossRef]
- Costantini, R.; Berghe, I.V.; Izzo, F.C. New Insights into the Fading Problems of Safflower Red Dyed Textiles through a HPLC-PDA and Colorimetric Study. J. Cult. Herit. 2019, 38, 37–45. [Google Scholar] [CrossRef]
- European Standard, EN 15802; Conservation of Cultural Property-Test Methods-Determination of Static Contact Angle. IEEE: Washington, DC, USA, 2010.
- Dyar, M.D.; Breitenfeld, L.B.; Carey, C.J.; Bartholomew, P.; Tague, T.J., Jr.; Wang, P.; Mertzmann, S.; Byrne, S.A.; Crowley, M.C.; Leight, C.; et al. Interlaboratory and Cross-Instrument Comparison of Raman Spectra of 96 Minerals. Lunar Planet. Sci. 2016, 46, 2240. [Google Scholar]
- Favaro, B.; Balliana, E.; Rigoni, F.; Zendri, E. Original Article A Preliminary Evaluation of Chemical Interaction between Sanitizing Products and Silk. J. Cult. Herit. 2021, 51, 1–13. [Google Scholar] [CrossRef]
- Ploeger, R.; Scalarone, D.; Chiantore, O. The Characterization of Commercial Artists’ Alkyd Paints. J. Cult. Herit. 2008, 9, 412–419. [Google Scholar] [CrossRef]
- Wei, S.; Pintus, V.; Schreiner, M. A Comparison Study of Alkyd Resin Used in Art Works by Py-GC/MS and GC/MS: The Influence of Aging. J. Anal. Appl. Pyrolysis 1970, 104, 441–447. [Google Scholar] [CrossRef]
- Learner, T.J.S. Analysis of Modern Paints; Getty Publications: Los Angeles, CA, USA, 2004. [Google Scholar]
- Caravá, S.; Roldán García, C.; Vázquez de Agredos-Pascual, M.L.; Murcia Mascarós, S.; Izzo, F.C. Investigation of Modern Oil Paints through a Physico-Chemical Integrated Approach. Emblematic Cases from Valencia, Spain. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 30–32. [Google Scholar] [CrossRef]
- Fuster-López, L.; Izzo, F.C.; Damato, V.; Yusà-Marco, D.J.; Zendri, E. An Insight into the Mechanical Properties of Selected Commercial Oil and Alkyd Paint Films Containing Cobalt Blue. J. Cult. Herit. 2019, 35, 225–234. [Google Scholar] [CrossRef]
- Fuster-López, L.; Izzo, F.C.; Piovesan, M.; Yusá-Marco, D.J.; Sperni, L.; Zendri, E. Study of the Chemical Composition and the Mechanical Behaviour of 20th Century Commercial Artists’ Oil Paints Containing Manganese-Based Pigments. Microchem. J. 2016, 124, 962–973. [Google Scholar] [CrossRef] [Green Version]
- Izzo, F.C.; Ferriani, B.; Van den Berg, K.J.; Van Keulen, H.; Zendri, E. 20th Century Artists’ Oil Paints: The Case of the Olii by Lucio Fontana. J. Cult. Herit. 2014, 15, 557–563. [Google Scholar] [CrossRef]
- Izzo, F.C.; van den Berg, K.J.; van Keulen, H.; Ferriani, B.; Zendri, E. Modern Oil Paints–Formulations, Organic Additives and Degradation: Some Case Studies. In Issues in Contemporary Oil Paint; Springer International Publishing: New York, NY, USA, 2014; pp. 75–104. [Google Scholar]
- Álvarez-Martín, A.; De Winter, S.; Nuyts, G.; Hermans, J.; Janssens, K.; Van der Snickt, G. Multi-Modal Approach for the Characterization of Resin Carriers in Daylight Fluorescent Pigments. Microchem. J. 2020, 159, 105340. [Google Scholar] [CrossRef]
- Hu, A.; Peng, H.; Li, M.; Fu, S. Preparation of Melamine-Formaldehyde Encapsulated Fluorescent Dye Dispersion and Its Application to Cotton Fabric Printing. Color. Technol. 2019, 135, 103–110. [Google Scholar] [CrossRef]
- Kremer Pigments. Available online: https://www.kremer-pigmente.com/elements/resources/products/files/56000-56450e.pdf (accessed on 1 November 2021).
- Milczarek, J.M.; Zieba-Palus, J. Examination of Spray Paints on Plasters by the Use of Pyrolysis-Gas Chromatography/Mass Spectrometry for Forensic Purposes. J. Anal. Appl. Pyrolysis 2009, 86, 252–259. [Google Scholar] [CrossRef]
- Zhang, L.; Dillert, R.; Bahnemann, D.; Vormoor, M. Photo-Induced Hydrophilicity and Self-Cleaning: Models and Reality. Energy Environ. Sci. 2012, 5, 7491–7507. [Google Scholar] [CrossRef]
- Schoff, C.K. Wettability Phenomena and Coatings. In Modern Approaches to Wettability; Schrader, M.E., Loeb, G.I., Eds.; Springer: Boston, MA, USA, 1992; pp. 375–395. [Google Scholar]
- Melo, M.J.; Bracci, S.; Camaiti, M.; Chiantore, O.; Piacenti, F. Photodegradation of Acrylic Resins Used in the Conservation of Stone. Polym. Degrad. Stab. 1999, 66, 23–30. [Google Scholar] [CrossRef]
- Izzo, F.C.; Balliana, E.; Perra, E.; Zendri, E. Accelerated Ageing Procedures to Assess the Stability of an Unconventional Acrylic-Wax Polymeric Emulsion for Contemporary Art. Polymers 2020, 12, 1925. [Google Scholar] [CrossRef]
- Levison, H.W. Yellowing and Bleaching of Paint Films. J. Am. Inst. Conserv. 1985, 24, 69–76. [Google Scholar]
- Down, J.L.; MacDonald, M.A.; Tétreault, J.; Williams, S. Adhesive Testing at the Canadian Conservation Institute—An Evaluation of Selected Poly(Vinyl Acetate) and Acrylic Adhesives. Stud. Conserv. 1996, 41, 19–44. [Google Scholar] [CrossRef]
- Morris, H.R.; Whitmore, P.M.; Colaluca, V.G. Preventing Discoloration in Films of Acrylic Artists’ Media by Exposure to Ambient Light. Stud. Conserv. 2003, 48, 95–102. [Google Scholar] [CrossRef]
- Ecco, L.G.; Rossi, S.; Fedel, M.; Deflorian, F. Color Variation of Electrophoretic Styrene-Acrylic Paints under Field and Accelerated Ultraviolet Exposure. Mater. Des. 2017, 116, 554–564. [Google Scholar] [CrossRef]
- Smith, G.D. Aging Characteristics of a Contemporary Acrylic Emulsion Used in Artists’ Paints. In Modern Paints Uncovered: Proceedings from the Modern Paints Uncovered Symposium; Getty Publications: Los Angeles, CA, USA, 2007; pp. 236–246. [Google Scholar]
- Ciccola, A.; Guiso, M.; Domenici, F.; Sciubba, F.; Bianco, A. Azo-Pigments Effect on UV Degradation of Contemporary Art Pictorial Film: A FTIR-NMR Combination Study. Polym. Degrad. Stab. 2017, 140, 74–83. [Google Scholar] [CrossRef]
- Ortiz-Herrero, L.; Cardaba, I.; Setien, S.; Bartolomé, L.; Alonso, M.L.; Maguregui, M.I. OPLS Multivariate Regression of FTIR-ATR Spectra of Acrylic Paints for Age Estimation in Contemporary Artworks. Talanta 2019, 205, 120114. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Y.; Wu, X.; Ren, L.; Zhang, J.; Wang, Y.; Zhang, Y.; Sun, C. Gas Chromatography-Triple Quadrupole Tandem Mass Spectrometry for Successive Single-Surface Migration Study of Phthalate Esters from Polythene Film. Food Control 2017, 73, 1134–1143. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, K.T.; Choi, K. Migration of DEHP and DINP into Dust from PVC Flooring Products at Different Surface Temperature. Sci. Total Environ. 2016, 547, 441–446. [Google Scholar] [CrossRef]
- Pintus, V.; Wei, S.; Schreiner, M. UV Ageing Studies: Evaluation of Lightfastness Declarations of Commercial Acrylic Paints. Anal. Bioanal. Chem. 2012, 402, 1567–1584. [Google Scholar] [CrossRef]
- Anghelone, M.; Jembrih-Simbürger, D.; Schreiner, M. Influence of Phthalocyanine Pigments on the Photo-Degradation of Alkyd Artists’ Paints under Different Conditions of Artificial Solar Radiation. Polym. Degrad. Stab. 2016, 134, 157–168. [Google Scholar] [CrossRef]
- Tétreault, J. Airborne Pollutants in Museums, Galleries and Archives: Risk Assessment, Control Strategies and Preservation Management; Canadian Conservation Institute: Ottawa, ON, Canada, 2003.
- Thomson, G. The Museum Environment, 2nd ed.; Routledge: London, UK, 1994. [Google Scholar] [CrossRef]
- Berthumeyrie, S.; Collin, S.; Bussiere, P.O.; Therias, S. Photooxidation of Cellulose Nitrate: New Insights into Degradation Mechanisms. J. Hazard. Mater. 2014, 272, 137–147. [Google Scholar] [CrossRef]
- Yuzawa, T.; Watanabe, C.; Nemoto, N.; Ohtani, H. Rapid Evaluation of Photo, Thermal and Oxidative Degradation of High Impact Polystyrene by a Xenon Lamp-Based Online Ultraviolet Irradiation-Pyrolysis-GC/MS System. Polym. Degrad. Stab. 2013, 98, 671–676. [Google Scholar]
- Di Melchiorre, M.M.; Zendri, E.; Sánchez-pons, M.; Fuster-lópez, L.; Yusá-marco, D.J. The Use of Waterborne Paints in Contemporary Murals: Comparing the Stability of Vinyl, Acrylic and Styrene-Acrylic Formulations to Outdoor Weathering Conditions. Polym. Degrad. Stab. 2014, 107, 285–293. [Google Scholar] [CrossRef]
- Ciccola, A.; Serafini, I.; Guiso, M.; Ripanti, F.; Domenici, F.; Sciubba, F.; Postorino, P.; Bianco, A. Spectroscopy for Contemporary Art: Discovering the Effect of Synthetic Organic Pigments on UVB Degradation of Acrylic Binder. Polym. Degrad. Stab. 2019, 159, 224–228. [Google Scholar] [CrossRef]
- Negim, E.; Aisha, N.; Mun, G.A.; Iskakov, R.; Irmukhametova, G.S.; Sakhy, M. Preparation and Characterization of Acrylic Primer for Concrete Substrate Application. Int. J. Polym. Sci. 2016, 2016, 1754168. [Google Scholar]
- Büyükyonga, Ö.N.; Akgün, N.; Acar, I.; Güçlü, G. Synthesis of Four-Component Acrylic-Modified Water-Reducible Alkyd Resin: Investigation of Dilution Ratio Effect on Film Properties and Thermal Behaviors. J. Coat. Technol. Res. 2017, 14, 117–128. [Google Scholar] [CrossRef]
- Raeissi, S.; Florusse, L.J.; Peters, C.J. Bubble-Point Pressures of Binary and Ternary Mixtures of Acetaldehyde with Versatic 10 and Veova 10. Fluid Phase Equilibria 2014, 368, 1–4. [Google Scholar] [CrossRef]
- Silva, M.F.; Doménech-Carbó, M.T.; Fuster-López, L.; Mecklenburg, M.F.; Martin-Rey, S. Identification of Additives in Poly(Vinylacetate) Artist’s Paints Using PY-GC-MS. Anal. Bioanal. Chem. 2010, 397, 357–367. [Google Scholar] [CrossRef]
- França De Sá, S.; Viana, C.; Ferreira, J.L. Tracing Poly(Vinyl Acetate) Emulsions by Infrared and Raman Spectroscopies: Identification of Spectral Markers. Polymers 2021, 13, 3609. [Google Scholar] [CrossRef]
- Gantrade Polymers. Available online: https://www.gantrade.com/blog/applications-of-2-ethylhexyl-acrylate (accessed on 1 November 2021).
- Mas Haris, M.R.H.; Kathiresan, S.; Mohan, S. FT-IR and FT-Raman Spectra and Normal Coordinate Analysis of Poly Methyl Methacrylate. Pharma Chem. 2010, 2, 316–323. [Google Scholar]
- Krmpotić, M.; Jembrih-Simbürger, D.; Siketić, Z.; Anghelone, M.; Radović, I.B. Study of UV Ageing Effects in Modern Artists’ Paints with MeV-SIMS. Polym. Degrad. Stab. 2021, 195, 109769. [Google Scholar] [CrossRef]
- Duce, C.; Bernazzani, L.; Bramanti, E.; Spepi, A.; Colombini, M.P.; Tiné, M.R. Alkyd Artists’ Paints: Do Pigments Affect the Stability of the Resin? A TG and DSC Study on Fast-Drying Oil Colours. Polym. Degrad. Stab. 2014, 105, 48–58. [Google Scholar] [CrossRef]
- Bracci, S.; Melo, M.J. Correlating Natural Ageing and Xenon Irradiation of Paraloid® B72 Applied on Stone. Polym. Degrad. Stab. 2003, 80, 533–541. [Google Scholar] [CrossRef]
- Lauridsen, C.B.; Sanyova, J.; Simonsen, K.P. Analytical Study of Modern Paint Layers on Metal Knight Shields: The Use and Effect of Titanium White. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 124, 638–645. [Google Scholar] [CrossRef]
- Van Driel, B.A.; Wezendonk, T.A.; van den Berg, K.J.; Kooyman, P.J.; Gascon, J.; Dik, J. Determination of Early Warning Signs for Photocatalytic Degradation of Titanium White Oil Paints by Means of Surface Analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 172, 100–108. [Google Scholar] [CrossRef] [Green Version]
- González-Cabrera, M.; Domínguez-Vidal, A.; Ayora-Cañada, M.J. Monitoring UV-Accelerated Alteration Processes of Paintings by Means of Hyperspectral Micro-FTIR Imaging and Chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 253, 119568. [Google Scholar] [CrossRef]
Product Acronym | Product | Manufacturer | Declared Composition |
---|---|---|---|
PO | G2080 Pure Orange (spray) | Montana Cans (Heidelberg, Germany) | Nitrocellulose–acrylic–alkyd lacquer base |
NF | MTN 94 Fluorescent Orange/Naranja Fluorescent (spray) | Montana Colors (Barcellona, Spain) | Modified alkyd resins |
FR | Framaquarz TR NCS 3060-R | Lechler (Como, Italy) | Acrylic resin and quartz |
OM | MTN 94 Frame Gold/Oro Marco (spray) | Montana Colors (Barcellona, Spain) | Modified alkyd resins |
MA | MTN 94 RV-4010 Magenta (spray) | Montana Colors (Barcellona, Spain) | Modified alkyd resins |
Anti-UV1 | T1000 VARNISH GLOSS | Montana Cans (Heidelberg, Germany) | Nitrocellulose-acrylic resin |
Anti-UV2 | MTN PRO Synthetic Varnish | Montana Colors (Barcellona, Spain) | Alkyd-based resin |
Anti-UV Protective Varnish | ||
---|---|---|
Paint | Without Varnish | With Varnish |
PO | V-PO VN-PO VA-PO | VN-PO-AntiUV2 VA-PO-AntiUV2 |
NF | V-NF VN-NF VA-NF | VN-NF-AntiUV1 VA-NF-AntiUV1 |
FR | V-FR VN-FR VA-FR | - |
OM | V-OM VN-OM VA-OM | VN-OM-AntiUV1 VA-OM-AntiUV1 |
MA | V-MA VN-MA VA-MA | VN-MA-AntiUV1 VA-MA-AntiUV1 |
Ratio | Not Aged | Natural Ageing | Accelerated Ageing | |
---|---|---|---|---|
620 h | 1240 h | |||
A/P | 0.35 | 1.02 | 0.88 | 1.37 |
O/S | 1.42 | 1.37 | 0.40 | 0.37 |
Paint | Not Aged [θ] | Natural Ageing [θ] | Natural Ageing [Δθ] | Accelerated Ageing—1240 h [θ] | Accelerated Ageing—1240 h [Δθ] |
---|---|---|---|---|---|
PO | 99 ± 5 | 72 ± 9 | −27 | 68 ± 12 | −31 |
NF | 81 ± 7 | 52 ± 5 | −29 | 65 ± 9 | −16 |
FR | 87 ± 9 | 107 ± 7 | 20 | 102 ± 3 | 15 |
OM | 74 ± 4 | 63 ± 5 | −11 | 89 ± 3 | 15 |
MA | 89 ± 12 | 78 ± 12 | −11 | 102 ± 5 | 13 |
Anti-UV 1 | Anti-UV 2 | |||||
---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |
Before ageing | 89 | 1 | −7 | 89 | 1 | −4 |
dL* | da* | db* | dL* | da* | db* | |
After natural ageing | −1 | 0 | 2 | −1 | 0 | 1 |
After accelerated ageing | −2 | 0 | 2 | −2 | −1 | 4 |
Colorimetric Variations | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anti-UV Applied | AV1 | SV1 | ||||||||||||||
PO | NF | MA | OM | |||||||||||||
dL* | da* | db* | ΔE | dL* | da* | db* | ΔE | dL* | da* | db* | ΔE | dL* | da* | db* | ΔE | |
−1 | 0 | 0 | 1 | −2 | 2 | −6 | 7 | 0 | 0 | 0 | 0 | −1 | −1 | −2 | 2 |
Contact Angles θ and Differences | ||||
---|---|---|---|---|
Anti-UV Applied | AV1 | SV1 | ||
PO | NF | MA | OM | |
79 (−20) | 70 (−11) | 72 (−17) | 66 (−8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimino, D.; Lamuraglia, R.; Saccani, I.; Berzioli, M.; Izzo, F.C. Assessing the (In)Stability of Urban Art Paints: From Real Case Studies to Laboratory Investigations of Degradation Processes and Preservation Possibilities. Heritage 2022, 5, 581-609. https://doi.org/10.3390/heritage5020033
Cimino D, Lamuraglia R, Saccani I, Berzioli M, Izzo FC. Assessing the (In)Stability of Urban Art Paints: From Real Case Studies to Laboratory Investigations of Degradation Processes and Preservation Possibilities. Heritage. 2022; 5(2):581-609. https://doi.org/10.3390/heritage5020033
Chicago/Turabian StyleCimino, Dafne, Raffaella Lamuraglia, Ilaria Saccani, Michela Berzioli, and Francesca Caterina Izzo. 2022. "Assessing the (In)Stability of Urban Art Paints: From Real Case Studies to Laboratory Investigations of Degradation Processes and Preservation Possibilities" Heritage 5, no. 2: 581-609. https://doi.org/10.3390/heritage5020033
APA StyleCimino, D., Lamuraglia, R., Saccani, I., Berzioli, M., & Izzo, F. C. (2022). Assessing the (In)Stability of Urban Art Paints: From Real Case Studies to Laboratory Investigations of Degradation Processes and Preservation Possibilities. Heritage, 5(2), 581-609. https://doi.org/10.3390/heritage5020033