New Early Cretaceous Geosites with Palaeogeographical Value from the Northwestern Caucasus
Abstract
:1. Introduction
2. Geological Setting
3. Methodology
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crofts, R.; Tormey, D.; Gordon, J.E. Introducing New Guidelines on Geoheritage Conservation in Protected and Conserved Areas. Geoheritage 2021, 13, 23. [Google Scholar] [CrossRef]
- Henriques, M.H.; dos Reis, R.P.; Brilha, J.; Mota, T. Geoconservation as an emerging geoscience. Geoheritage 2011, 3, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, J.-J.; Brevik, E.C.; Cerdà, A. Geodiversity and geoheritage: Detecting scientific and geographic biases and gaps through a bibliometric study. Sci. Total Environ. 2019, 659, 1032–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pijet-Migon, E.; Migon, P. Geoheritage and Cultural Heritage—A Review of Recurrent and Interlinked Themes. Geosciences 2022, 12, 98. [Google Scholar] [CrossRef]
- Ruban, D.A.; Mikhailenko, A.V.; Yashalova, N.N. Valuable geoheritage resources: Potential versus exploitation. Resour. Policy 2022, 77, 102665. [Google Scholar] [CrossRef]
- Muda, J. Geological indicators of sea-level changes at northern Sabah, Malaysia: Tools for instilling public awareness on global climate changes. Bull. Geol. Soc. Malays. 2016, 62, 31–35. [Google Scholar] [CrossRef]
- Semeniuk, V.; Percival, I.G.; Brocx, M. Subaerial disconformities, microkarst and paleosols in Ordovician limestones at Bowan Park and Cliefden Caves, New South Wales, and their geoheritage significance. Aust. J. Earth Sci. 2019, 66, 891–906. [Google Scholar] [CrossRef]
- Yaseen, M.; Naseem, A.A.; Ahmad, J.; Khan, A.; Khan, A.; Alamzeb, M.; Ahmad, A.; Saeed, U.; Ahmad, A. Geological and Geomorphological Characteristics of Hingol National Park (HNP), Balochistan: A Geoheritage Candidate from Southern Pakistan. Geoheritage 2021, 13, 91. [Google Scholar] [CrossRef]
- Del Monte, M.; Fredi, P.; Pica, A.; Vergari, F. Geosites within Rome City center (Italy): A mixture of cultural and geomorphological heritage. Geogr. Fis. Din. Quat. 2013, 36, 241–257. [Google Scholar]
- Wolniewicz, P. Bringing the History of the Earth to the Public by Using Storytelling and Fossils from Decorative Stones of the City of Poznan, Poland. Geoheritage 2019, 11, 1827–1837. [Google Scholar] [CrossRef] [Green Version]
- Bruno, D.E.; Crowley, B.E.; Gutak, J.M.; Moroni, A.; Nazarenko, O.V.; Oheim, K.B.; Ruban, D.A.; Tiess, G.; Zorina, S.O. Paleogeography as geological heritage: Developing geosite classification. Earth-Sci. Rev. 2014, 138, 300–312. [Google Scholar] [CrossRef]
- Habibi, T.; Ruban, D.A.; Yashalova, N.N. The Nowdan anticline of the Zagros orogen as a geoheritage ‘window’ into the late Mesozoic-Cenozoic evolution of the African-Arabian continental margin. Geologos 2020, 26, 65–73. [Google Scholar] [CrossRef]
- Henriques, M.H.; Pena dos Reis, R.; Garcia, G.G.; João, P.; Marques, R.M.; Custódio, S. Developing paleogeographical heritage concepts and ideas through the Upper Jurassic record of the Salgado and Consolação geosites (Lusitanian Basin, Portugal). Resour. Policy 2022, 76, 102594. [Google Scholar] [CrossRef]
- Golonka, J. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 2004, 381, 235–270. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Torsvik, T.H.; Schmid, S.M.; Matenco, L.C.; Maffione, M.; Vissers, R.L.M.; Gürer, D.; Spakman, W. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 2020, 81, 79–229. [Google Scholar] [CrossRef]
- Baraboshkin, E.Y.; Bondarenko, N.A.; Lyubimova, T.V. Unique Geological Objects of the North-Western Caucasus; KubGU: Krasnodar, Russia, 2012. (In Russian) [Google Scholar]
- Gnezdilova, V.V.; Ruban, D.A.; Bruno, D.E.; Perrotta, P.; Crowley, B.E.; Oheim, K.B.; Zayats, P.P. Geoheritage sites with palaeogeographical value: Some geotourism perspectives with examples from Mountainous Adygeja (Russia). Geološki Anal. Balk. Poluostrva 2015, 76, 93–104. [Google Scholar] [CrossRef]
- Karpunin, A.M.; Mamonov, S.V.; Mironenko, O.A.; Sokolov, A.R. Geological Monuments of Nature of Russia; (In Russian). Lorien: Saint Petersburg, Russia, 1998. [Google Scholar]
- Ruban, D.A. On the Duality of Marine Geoheritage: Evidence from the Abrau Area of the Russian Black Sea Coast. J. Mar. Sci. Eng. 2021, 9, 921. [Google Scholar] [CrossRef]
- Adamia, S.; Alania, V.; Chabukiani, A.; Kutelia, Z.; Sadradze, N. Great Caucasus (Cavcasioni): A long-lived North-Tethyan back-arc basin. Turk. J. Earth Sci. 2011, 20, 611–628. [Google Scholar]
- Baraboshkin, E.Y.; Alekseev, A.S.; Kopaevich, L.F. Cretaceous palaeogeography of the North-Eastern Peri-Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 196, 177–208. [Google Scholar] [CrossRef]
- Lordkipanidze, M.B.; Adamia, S.A.; Asanidze, B.Z. Evolution of the active margins of the ocean Tethys (by example of the Caucasus). In Oceanology: Reports: 27 International Geological Congress, 3rd ed.; Lisitsin, A.P., Ed.; Nauka: Moscow, Russia, 1984; pp. 72–83. (In Russian) [Google Scholar]
- Saintot, A.; Angelier, J. Tectonic paleostress fields and structural evolution of the NW-Caucasus fold-and-thrust belt from Late Cretaceous to Quaternary. Tectonophysics 2002, 357, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Trifonov, V.G.; Sokolov, S.Y.; Sokolov, S.A.; Hessami, K. Mesozoic–Cenozoic Structure of the Black Sea–Caucasus–Caspian Region and Its Relationships with the Upper Mantle Structure. Geotectonics 2020, 54, 331–355. [Google Scholar] [CrossRef]
- Pinchuk, T.N. Microfauna from the Lower Cretaceous deposits between the rivers Ubin an Abin (North-Western Caucasus). In The Cretaceous System of Russia and the Nearest Vicinities: The Problems of Stratigraphy and Palaeogeography; Baraboshkin, E.Y., Markevitch, V.S., Bugdaeva, E.V., Afonin, M.A., Cherepanova, M.V., Eds.; Dalnauka: Vladivostok, Russia, 2014; pp. 243–246. (In Russian) [Google Scholar]
- Yasamanov, N.A. Landscape-Climatic Conditions of the Jurassic, the Cretaceous, and the Paleogene in the South of the USSR; Nedra: Moscow, Russia, 1978; 224p. (In Russian) [Google Scholar]
- International Commission on Stratigraphy (ICS). International Chronostratigraphic Chart. Available online: https://stratigraphy.org/chart (accessed on 9 March 2022).
- Buatois, L.A.; Mangano, M.A. Ichnology: Organism-Substrate Interactions in Space and Time; Cambridge University Press: Cambridge, UK, 2011; 358p. [Google Scholar]
- Knaust, D.; Bromley, R.G. (Eds.) Trace Fossils as Indicators of Sedimentary Environments; Elsevier: Amsterdam, The Netherlands, 2012; 924p. [Google Scholar]
- Seilacher, A. Trace Fossil Analysis; Springer: Berlin, Germany, 2007; 226p. [Google Scholar]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Diniz, M.T.M.; de Araújo, I.G.D.; das Chagas, M.D. Comparative study of quantitative assessment of the geomorphological heritage of the coastal zone of Icapuí–Ceará, Brazil. Int. J. Geoheritage Parks 2022, 10, 124–142. [Google Scholar] [CrossRef]
- Herrera-Franco, G.A.; Carrión-Mero, P.C.; Mora-Frank, C.V.; Caicedo-Potosí, J.K. Comparative analysis of methodologies for the evaluation of geosites in the context of the Santa Elena-Ancón geopark project. Int. J. Des. Nat. Ecodynamics 2020, 15, 183–188. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Motta Garcia, M.D.G.; Reynard, E. Comparing quantitative methods on the evaluation of scientific value in geosites: Analysis from the Itatiaia National Park, Brazil. Geomorphology 2022, 396, 107988. [Google Scholar] [CrossRef]
- Reynard, E.; Brilha, J. (Eds.) Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Štrba, L.; Rybar, P.; Balaz, B.; Molokac, M.; Hvizdak, L.; Krsak, B.; Lukac, M.; Muchova, L.; Tometzova, D.; Ferencikova, J. Geosite assessments: Comparison of methods and results. Curr. Issues Tour. 2015, 18, 496–510. [Google Scholar] [CrossRef]
- Ruban, D.A. Geological Heritage of the Anthropocene Epoch—A Conceptual Viewpoint. Heritage 2020, 3, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Madon, M. Deep-sea trace fossils in the West Crocker Formation, Sabah (Malaysia), and their palaeoenvironmental significance. Bull. Geol. Soc. Malays. 2021, 71, 23–46. [Google Scholar] [CrossRef]
- Rodríguez-Tovar, F.J.; Pujalte, V.; Payros, A. Danian-lower Selandian Microcodium-rich calcarenites of the Subbetic Zone (SE Spain): Record of Nereites ichnofacies in a deep-sea, base-of-slope system. Sediment. Geol. 2020, 406, 105723. [Google Scholar] [CrossRef]
- Uchman, A. Deep-sea trace fossils controlled by palaeo-oxygenation and deposition: An example from the Lower Cretaceous dark flysch deposits of the Silesian Unit, Carpathians, Poland. Foss. Strat. 2004, 51, 39–57. [Google Scholar]
- Baraboshkin, E.E.; Baraboshkin, E.V. Sedimentology and ichnoassemblages of the Jurassic / Cretaceous boundary interval of Feodosia region (SE Crimea). Ber. Der Geol. Bundesanst. 2017, 120, 21. [Google Scholar]
- Grabowski, J.; Haas, J.; Stoykova, K.; Wierzbowski, H.; Branski, P. Environmental changes around the Jurassic/Cretaceous transition: New nannofossil, chemostratigraphic and stable isotope data from the Lókút section (Transdanubian Range, Hungary). Sediment. Geol. 2017, 360, 54–72. [Google Scholar] [CrossRef]
- Hallam, A. The Pliensbachian and Tithonian extinction events. Nature 1986, 319, 765–768. [Google Scholar] [CrossRef]
- Tennant, J.P.; Mannion, P.D.; Upchurch, P. Environmental drivers of crocodyliform extinction across the Jurassic/Cretaceous transition. Proc. R. Soc. B Biol. Sci. 2016, 283, 20152840. [Google Scholar] [CrossRef] [Green Version]
- Tennant, J.P.; Mannion, P.D.; Upchurch, P. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval. Nat. Commun. 2016, 7, 12737. [Google Scholar] [CrossRef] [Green Version]
- Tennant, J.P.; Mannion, P.D.; Upchurch, P.; Sutton, M.D.; Price, G.D. Biotic and environmental dynamics through the Late Jurassic–Early Cretaceous transition: Evidence for protracted faunal and ecological turnover. Biol. Rev. 2017, 92, 776–814. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.A. Diversity dynamics of Callovian-Albian brachiopods in the Northern Caucasus (Northern Neo-Tethys) and a Jurassic/Cretaceous mass extinction. Paleontol. Res. 2011, 15, 154–167. [Google Scholar] [CrossRef]
- Vorob’ev, I.E. Fossil Search in the North-Western Caucasus; KO RosGeo: Krasnodar, Russia, 2014; 300p. (In Russian) [Google Scholar]
- Granier, B.R.C. Introduction to thematic issue “The transition of the Jurassic to the Cretaceous: An early XXIth century holistic approach”. Cretac. Res. 2020, 114, 104530. [Google Scholar] [CrossRef]
- Granier, B.R.C.; Ferry, S.; Benzaggagh, M. A critical look at Tré Maroua (Le Saix, Hautes-Alpes, France), the berriasian GSSP candidate section. Carnets De Geol. 2020, 20, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kenjo, S.; Reboulet, S.; Mattioli, E.; Ma’louleh, K. The Berriasian–Valanginian boundary in the Mediterranean Province of the Tethyan Realm: Ammonite and calcareous nannofossil biostratigraphy of the Vergol section (Montbrun-les-Bains, SE France), candidate for the Valanginian GSSP. Cretac. Res. 2021, 121, 104738. [Google Scholar] [CrossRef]
- Martinez, M.; Deconinck, J.-F.; Pellenard, P.; Reboulet, S.; Riquier, L. Astrochronology of the Valanginian Stage from reference sections (Vocontian Basin, France) and palaeoenvironmental implications for the Weissert Event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 376, 91–102. [Google Scholar] [CrossRef]
- Wimbledon, W.A.P.; Reháková, D.; Svobodová, A.; Schnabl, P.; Pruner, P.; Elbra, T.; Šifnerová, K.; Kdýr, Š.; Frau, C.; Schnyder, J.; et al. Fixing a J/K boundary: A comparative account of key Tithonian-Berriasian profiles in the departments of Drôme and Hautes-Alpes, France. Geol. Carpathica 2020, 71, 24–46. [Google Scholar] [CrossRef]
- Wimbledon, W.A.P.; Reháková, D.; Svobodová, A.; Elbra, T.; Schnabl, P.; Pruner, P.; Sifnerova, K.; Kdyr, S.; Dzyuba, O.; Schnyder, J.; et al. The proposal of a GSSP for the Berriasian stage (Cretaceous System): Part 1. Vol. Jurass. 2020, 18, 53–106. [Google Scholar] [CrossRef]
- Wimbledon, W.A.P.; Reháková, D.; Svobodová, A.; Elbra, T.; Schnabl, P.; Pruner, P.; Sifnerova, K.; Kdyr, S.; Frau, C.; Schnyder, J.; et al. The proposal of a GSSP for the Berriasian stage (Cretaceous System): Part 2. Vol. Jurass. 2020, 18, 121–160. [Google Scholar]
- Baucon, A. Da Vinci’s Paleodictyon: The fractal beauty of traces. Acta Geol. Pol. 2010, 60, 3–17. [Google Scholar]
- Xing, L.; Zhang, J.; Klein, H.; Mayor, A.; Chen, Y.; Dai, H.; Burns, M.E.; Gao, J.; Tang, Y.; Dong, S. Dinosaur Tracks, Myths and Buildings: The Jin Ji (Golden Chicken) Stones from Zizhou Area, Northern Shaanxi, China. Ichnos 2015, 22, 227–234. [Google Scholar] [CrossRef]
- Gutierrez-Marco, J.C.; Lorenzo, S.; Sa, A.A. An outstanding ichnological locality from the Lower Ordovician of the southern Toledo Mounts (Fontanarejo, Ciudad Real province, central Spain). Geogaceta 2017, 62, 47–50. [Google Scholar]
- Lkebir, N.; Masrour, M.; Pascual-Arribas, C.; de Ducla, M.; Hernández-Medrano, N.; Pérez-Lorente, F. The Anza tracksite: Ichnological heritage and geoeducational significance of dinosaur and pterosaur tracks in coastal Morocco. J. Afr. Earth Sci. 2020, 171, 103949. [Google Scholar] [CrossRef]
- Lopes, R.F.; Candeiro, C.R.A.; de Valais, S. Geoconservation of the paleontological heritage of the geosite of dinosaur footprints (sauropods) in the locality of São Domingos, municipality of Itaguatins, state of Tocantins, Brazil. Environ. Earth Sci. 2019, 78, 707. [Google Scholar] [CrossRef]
- Machado, S.; Mergulhão, L.; Pereira, B.C.; Pereira, P.; Carvalho, J.; Anacleto, J.A.; de Carvalho, C.N.; Belo, J.; Paredes, R.; Baucon, A. Geoconservation in the Cabeço da Ladeira paleontological site (Serras de Aire e Candeeiros nature park, Portugal): Exquisite preservation of animals and their behavioral activities in a Middle Jurassic carbonate tidal flat. Geosciences 2021, 11, 366. [Google Scholar] [CrossRef]
- Abratis, M.; Viereck, L.; Büchner, J.; Tietz, O. Route to the volcanoes in Germany-conceptual model for a geotourism project interconnecting geosites of cenozoic volcanism. Z. Dtsch. Ges. Geowiss. 2015, 166, 161–185. [Google Scholar] [CrossRef]
- Chakrabarty, P.; Sadhukhan, S.K. Trekking and geotourism: A symbiosis in case of goeche la trek route of west Sikkim in India. Geoj. Tour. Geosites 2018, 23, 848–860. [Google Scholar]
- Chylinska, D.; Kolodziejczyk, K. The untapped potential of scenic routes for geotourism: Case studies of Lasocki Grzbiet and Pasmo Lesistej (Western and Central Sudeten Mountains, SW Poland). J. Mt. Sci. 2021, 18, 1062–1092. [Google Scholar] [CrossRef]
- Rocha, D.; Duarte, A. The Management of Arouca Geopark’s Route of Geosites: A Strategic Geologically Based Product in a Geotourism Destination. In Economics and Management of Geotourism. Tourism, Hospitality & Event Management; Braga, V., Duarte, A., Marques, C.S., Eds.; Springer: Cham, Switzerland, 2022; pp. 87–104. [Google Scholar]
- Bentivenga, M.; Cavalcante, F.; Mastronuzzi, G.; Palladino, G.; Prosser, G. Geoheritage: The Foundation for Sustainable Geotourism. Geoheritage 2019, 11, 1367–1369. [Google Scholar] [CrossRef] [Green Version]
- Bucci, F.; Tavarnelli, E.; Novellino, R.; Palladino, G.; Guglielmi, P.; Laurita, S.; Prosser, G.; Bentivenga, M. The History of the Southern Apennines of Italy Preserved in the Geosites Along a Geological Itinerary in the High Agri Valley. Geoheritage 2019, 11, 1489–1508. [Google Scholar] [CrossRef]
- Coratza, P.; Vandelli, V.; Fiorentini, L.; Paliaga, G.; Faccini, F. Bridging terrestrial and marine geoheritage: Assessing geosites in Portofino Natural Park (Italy). Water 2019, 11, 2112. [Google Scholar] [CrossRef] [Green Version]
- Geremia, F.; Bentivenga, M.; Palladino, G. Environmental geology applied to geoconservation in the interaction between geosites and linear infrastructures in South-Eastern Italy. Geoheritage 2015, 7, 33–46. [Google Scholar]
- Palladino, G.; Prosser, G.; Bentivenga, M. The Geological Itinerary of Sasso di Castalda: A Journey into the Geological History of the Southern Apennine Thrust-belt (Basilicata, Southern Italy). Geoheritage 2013, 5, 47–58. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, D.A.; Tolokonnikova, Z.A. New Early Cretaceous Geosites with Palaeogeographical Value from the Northwestern Caucasus. Heritage 2022, 5, 871-880. https://doi.org/10.3390/heritage5020048
Ruban DA, Tolokonnikova ZA. New Early Cretaceous Geosites with Palaeogeographical Value from the Northwestern Caucasus. Heritage. 2022; 5(2):871-880. https://doi.org/10.3390/heritage5020048
Chicago/Turabian StyleRuban, Dmitry A., and Zoya A. Tolokonnikova. 2022. "New Early Cretaceous Geosites with Palaeogeographical Value from the Northwestern Caucasus" Heritage 5, no. 2: 871-880. https://doi.org/10.3390/heritage5020048
APA StyleRuban, D. A., & Tolokonnikova, Z. A. (2022). New Early Cretaceous Geosites with Palaeogeographical Value from the Northwestern Caucasus. Heritage, 5(2), 871-880. https://doi.org/10.3390/heritage5020048