Evaluation of Natural Stone Weathering in Heritage Building by Infrared Thermography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Physical and Mechanical Rock Characterization
2.2. IRT Survey
2.3. Photogrammetric Survey
3. Physical and Mechanical Rock Parameters
3.1. Hyblean Limestones
3.2. Etna Basalts
4. Observed Weathering Types
4.1. Efflorescence and Subflorescence
4.2. Alveolar Weathering
4.3. Weathering from Air Pollution and Biological Activity
5. IRT Survey
5.1. IRT Applied to Efflorescence and Subflorescence
5.2. IRT Applied Alveolization
5.3. IRT Applied to Black Crust and Bioweathering
6. Discussion and Conclusions
- (1)
- Efflorescence affects both studied rock types, and its occurrence leads to the formation of a light-color salt crystallization film on the stone surface. When the salt crystallization occurs within the rock structure (subflorescence), it leads to the progressive flaking of the rock surface, producing thin slices of rock material and progressively detaching from the rock. IRT allowed the detection of these weathering types thanks to key thermal contrasts. In particular, at basalts, the highest surface temperatures were found at the sound rock, where weathering did not occur, or at the bared rock portions, where flaking phenomena exposed the rock underneath the weathered surface. Intermediate surface temperatures were found where the salt crystallization film occurred, with the lowest values measured at its maximum thickness. Lowest surface temperatures were highlighted at the rock slices partly detached from the substratum due to flaking phenomena. Moreover, the cold regions affecting such rock portions can be regarded as flaking expansion areas, thus providing interesting information otherwise undetectable by the naked eye. The same considerations can be carried out for limestones, where efflorescence is often coupled with other weathering types and where flaking showed a slightly higher surface temperature than the surrounding area with efflorescence, unlike what was observed at the basaltic stereobates. This may be due to the presence of a heavier efflorescence around the limestone rock slice, which enhances the moisture absorption also due to the highest porosity of the rock type if compared to basalts.
- (2)
- Alveolar weathering affects only limestones, which represent the weaker rock type analyzed herein. Its occurrence was found localized in those rock regions overlaying the basaltic, more protruding strip, which favors the rain droplet rebound and their consequent impact and erosion on the limestone surface. Both stylobates of columns and the exposed wall of the western staircase are affected by this weathering type, which often occurs together with efflorescence and related flaking evidence. Their horizontal depth was estimated through the use of 3D photogrammetric models, which allowed comparing the morphology of the alveolar structure to the IRT outcomes. In particular, when the alveolar structure is well defined, alveoli keep a high surface temperature due to the hollow morphology, while when efflorescence and/or flaking occurs within the cavity, its surface temperature is lowered.
- (3)
- Black crust and bioweathering were surveyed at limestones. The first one occurs in the most sheltered portions of the façade or where rain water did not play a washing effect on the rock surface. Bioweathering occurs in specific regions, especially in correspondence with signs of water flow. Due to the fact that surveys were performed during the dry season, the IRT aspect of these two weathering types is given by warm surface temperatures, arising from the darker color owned by the weathered rock portion. Therefore, in this specific case, the chromatic difference between the washed/unweathered rock and the darker films allows differentiating these elements by IRT.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schiavon, N.; Chiavari, G.; Fabbri, D. Soiling of Limestone in an Urban Environment Characterized by Heavy Vehicular Exhaust Emissions. Environ. Geol. 2004, 46, 448–455. [Google Scholar] [CrossRef]
- Lefèvre, R.A.; Ausset, P. Atmospheric Pollution and Building Materials: Stone and Glass. Geol. Soc. Lond. Spec. Publ. 2002, 205, 329–345. [Google Scholar] [CrossRef]
- Montana, G.; Randazzo, L.; Mazzoleni, P. Natural and Anthropogenic Sources of Total Suspended Particulate and Their Contribution to the Formation of Black Crusts on Building Stone Materials of Catania (Sicily). Environ. Earth Sci. 2012, 67, 1097–1110. [Google Scholar] [CrossRef]
- Winkler, E.M. Important Agents of Weathering for Building and Monumental Stone. Eng. Geol. 1966, 1, 381–400. [Google Scholar] [CrossRef]
- Benavente, D. Role of Pore Structure in Salt Crystallisation in Unsaturated Porous Stone. J. Cryst. Growth 2004, 260, 532–544. [Google Scholar] [CrossRef]
- Chastre, C.; Ludovico-Marques, M. Nondestructive Testing Methodology to Assess the Conservation of Historic Stone Buildings and Monuments. In Handbook of Materials Failure Analysis; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–294. [Google Scholar] [CrossRef]
- Donato, A.; Randazzo, L.; Ricca, M.; Rovella, N.; Collina, M.; Ruggieri, N.; Dodaro, F.; Costanzo, A.; Alberghina, M.F.; Schiavone, S.; et al. Decay Assessment of Stone-Built Cultural Heritage: The Case Study of the Cosenza Cathedral Façade (South Calabria, Italy). Remote Sens. 2021, 13, 3925. [Google Scholar] [CrossRef]
- Ercoli, L.; Megna, B.; Nocilla, A.; Zimbardo, M. Measure of a Limestone Weathering Degree Using Laser Scanner. Int. J. Archit. Herit. 2013, 7, 591–607. [Google Scholar] [CrossRef]
- Casula, G. Experimental application of 3-d terrestrial laser scanning and acoustic techniques in assessing the quality of stones used in monumental structures. In Proceedings of the 4th International Conference on NDT, Chania, Greece, 11–14 October 2007. [Google Scholar]
- Avdelidis, N.P.; Moropoulou, A. Applications of Infrared Thermography for the Investigation of Historic Structures. J. Cult. Herit. 2004, 5, 119–127. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G. InfraRed Thermography Presented as an Innovative and Non-Destructive Solution to Quantify Rock Porosity in Laboratory. Int. J. Rock Mech. Min. Sci. 2019, 115, 99–110. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S. Investigation on the Mechanical Attitude of Basaltic Rocks from Mount Etna through InfraRed Thermography and Laboratory Tests. Constr. Build. Mater. 2017, 134, 228–235. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Calcaterra, D. Geomechanical analysis of unstable rock wedges by means of geostructural and infrared thermography surveys. Ital. J. Eng. Geol. Environ. 2017, 1, 93–101. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Carbone, S.; Monaco, C.; Catalano, D.; Signorello, G. Preliminary Recognition of Geohazards at the Natural Reserve “Lachea Islet and Cyclop Rocks” (Southern Italy). Sustainability 2021, 13, 1082. [Google Scholar] [CrossRef]
- Frodella, W.; Elashvili, M.; Spizzichino, D.; Gigli, G.; Adikashvili, L.; Vacheishvili, N.; Kirkitadze, G.; Nadaraia, A.; Margottini, C.; Casagli, N. Combining InfraRed Thermography and UAV Digital Photogrammetry for the Protection and Conservation of Rupestrian Cultural Heritage Sites in Georgia: A Methodological Application. Remote Sens. 2020, 12, 892. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Zampelli, S.P.; Cubito, A.; Calcaterra, D. InfraRed Thermography Proposed for the Estimation of the Cooling Rate Index in the Remote Survey of Rock Masses. Int. J. Rock Mech. Min. Sci. 2016, 83, 182–196. [Google Scholar] [CrossRef]
- Punturo, R.; Russo, L.G.; Giudice, A.L.; Mazzoleni, P.; Pezzino, A. Building Stone Employed in the Historical Monuments of Eastern Sicily (Italy). An Example: The Ancient City Centre of Catania. Environ. Geol. 2006, 50, 156–169. [Google Scholar] [CrossRef]
- Bas, M.J.L.; Maitre, R.W.L.; Streckeisen, A.; Zanettin, B.; IUGS Subcommission on the Systematics of Igneous Rocks. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Tanguy, J.C. Les Éruptions Historiques de L’Etna: Chronologie et Localisation. Bull. Volcanol. 1981, 44, 585–640. [Google Scholar] [CrossRef]
- Pappalardo, G.; Punturo, R.; Mineo, S.; Contrafatto, L. The Role of Porosity on the Engineering Geological Properties of 1669 Lavas from Mount Etna. Eng. Geol. 2017, 221, 16–28. [Google Scholar] [CrossRef]
- DeWitt, D.P.; Nutter, G.D. Theory and Practice of Radiation Thermometry; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Baroň, I.; Bečkovský, D.; Míča, L. Application of Infrared Thermography for Mapping Open Fractures in Deep-Seated Rockslides and Unstable Cliffs. Landslides 2014, 11, 15–27. [Google Scholar] [CrossRef]
- Fiorucci, M.; Marmoni, G.M.; Martino, S.; Mazzanti, P. Thermal Response of Jointed Rock Masses Inferred from Infrared Thermographic Surveying (Acuto Test-Site, Italy). Sensors 2018, 18, 2221. [Google Scholar] [CrossRef]
- Junique, T.; Vazquez, P.; Thomachot-Schneider, C.; Hassoun, I.; Jean-Baptiste, M.; Géraud, Y. The Use of Infrared Thermography on the Measurement of Microstructural Changes of Reservoir Rocks Induced by Temperature. Appl. Sci. 2021, 11, 559. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G. Preliminary Results on the Estimation of Porosity in Intact Rock through InfraRed Thermography. ROL 2016, 41, 317–320. [Google Scholar] [CrossRef]
- Mezza, S.; Vazquez, P.; Ben M’barek Jemai, M.; Fronteau, G. Infrared Thermography for the Investigation of Physical–Chemical Properties and Thermal Durability of Tunisian Limestone Rocks. Constr. Build. Mater. 2022, 339, 127470. [Google Scholar] [CrossRef]
- Deng, N.-F.; Qiao, L.; Li, Q.; Hao, J.-W.; Wu, S. A Method to Predict Rock Fracture with Infrared Thermography Based on Heat Diffusion Analysis. Geofluids 2021, 2021, 6669016. [Google Scholar] [CrossRef]
- Eyssautier-Chuine, S.; Mouhoubi, K.; Reffuveille, F.; Bodnar, J.-L. Thermographic Imaging for Early Detection of Biocolonization on Buildings. Build. Res. Inf. 2020, 48, 856–865. [Google Scholar] [CrossRef]
- Korkanç, M.; Hüseyinca, M.Y.; Hatır, M.E.; Tosunlar, M.B.; Bozdağ, A.; Özen, L.; İnce, İ. Interpreting Sulfated Crusts on Natural Building Stones Using Sulfur Contour Maps and Infrared Thermography. Environ. Earth Sci. 2019, 78, 378. [Google Scholar] [CrossRef]
- Paoletti, D.; Ambrosini, D.; Sfarra, S.; Bisegna, F. Preventive Thermographic Diagnosis of Historical Buildings for Consolidation. J. Cult. Herit. 2013, 14, 116–121. [Google Scholar] [CrossRef]
- Balaras, C.A.; Argiriou, A.A. Infrared Thermography for Building Diagnostics. Energy Build. 2002, 34, 171–183. [Google Scholar] [CrossRef]
- Thomachot-Schneider, C.; Gommeaux, M.; Lelarge, N.; Conreux, A.; Mouhoubi, K.; Bodnar, J.-L.; Vázquez, P. Relationship between Na2SO4 Concentration and Thermal Response of Reconstituted Stone in the Laboratory and on Site. Environ. Earth Sci. 2016, 75, 762. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G. Rock Emissivity Measurement for Infrared Thermography Engineering Geological Applications. Appl. Sci. 2021, 11, 3773. [Google Scholar] [CrossRef]
- Yilmaz, H.M.; Yakar, M.; Yildiz, F. Documentation of Historical Caravansaries by Digital Close Range Photogrammetry. Autom. Constr. 2008, 17, 489–498. [Google Scholar] [CrossRef]
- Pieraccini, M.; Guidi, G.; Atzeni, C. 3D Digitizing of Cultural Heritage. J. Cult. Herit. 2001, 2, 63–70. [Google Scholar] [CrossRef]
- Dostal, C.; Yamafune, K. Photogrammetric Texture Mapping: A Method for Increasing the Fidelity of 3D Models of Cultural Heritage Materials. J. Archaeol. Sci. Rep. 2018, 18, 430–436. [Google Scholar] [CrossRef]
- Yastikli, N. Documentation of Cultural Heritage Using Digital Photogrammetry and Laser Scanning. J. Cult. Herit. 2007, 8, 423–427. [Google Scholar] [CrossRef]
- Lezzerini, M.; Antonelli, F.; Columbu, S.; Gadducci, R.; Marradi, A.; Miriello, D.; Parodi, L.; Secchiari, L.; Lazzeri, A. Cultural Heritage Documentation and Conservation: Three-Dimensional (3D) Laser Scanning and Geographical Information System (GIS) Techniques for Thematic Mapping of Facade Stonework of St. Nicholas Church (Pisa, Italy). Int. J. Archit. Herit. 2016, 10, 9–19. [Google Scholar] [CrossRef]
- Randazzo, L.; Collina, M.; Ricca, M.; Barbieri, L.; Bruno, F.; Arcudi, A.; La Russa, M.F. Damage Indices and Photogrammetry for Decay Assessment of Stone-Built Cultural Heritage: The Case Study of the San Domenico Church Main Entrance Portal (South Calabria, Italy). Sustainability 2020, 12, 5198. [Google Scholar] [CrossRef]
- Přikryl, R. Some Microstructural Aspects of Strength Variation in Rocks. Int. J. Rock Mech. Min. Sci. 2001, 38, 671–682. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Monaco, C. Geotechnical Characterization of Limestones Employed for the Reconstruction of a UNESCO World Heritage Baroque Monument in Southeastern Sicily (Italy). Eng. Geol. 2016, 212, 86–97. [Google Scholar] [CrossRef]
- Tugrul, A.; Zarif, I.H. Engineering Aspects of Limestone Weathering in Istanbul, Turkey. Bull. Eng. Geol. Environ. 2000, 58, 191–206. [Google Scholar] [CrossRef]
- Sabatakakis, N.; Koukis, G.; Tsiambaos, G.; Papanakli, S. Index Properties and Strength Variation Controlled by Microstructure for Sedimentary Rocks. Eng. Geol. 2008, 97, 80–90. [Google Scholar] [CrossRef]
- Viers, J.; Oliva, P.; Dandurand, J.-L.; Dupré, B.; Gaillardet, J. Chemical Weathering Rates, CO2 Consumption, and Control Parameters Deduced from the Chemical Composition of Rivers. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 175–194. [Google Scholar] [CrossRef]
- Přikryl, R.; Melounová, L.; Vařilová, Z.; Weishauptová, Z. Spatial Relationships of Salt Distribution and Related Physical Changes of Underlying Rocks on Naturally Weathered Sandstone Exposures (Bohemian Switzerland National Park, Czech Republic). Environ. Geol. 2007, 52, 409–420. [Google Scholar] [CrossRef]
- Young, A.R.M. Salt as an Agent in the Development of Cavernous Weathering. Geology 1987, 15, 962. [Google Scholar] [CrossRef]
- Magee, A.W.; Bull, P.A.; Goudie, A.S. Chemical Textures on Quartz Grains: An Experimental Approach Using Salts. Earth Surf. Process. Landf. 1988, 13, 665–676. [Google Scholar] [CrossRef]
- Nord, A.G. Efflorescence Salts on Weathered Building Stone in Sweden. Geol. Föreningen Stockh. Förhandlingar 1992, 114, 423–429. [Google Scholar] [CrossRef]
- Peñas Castejón, J.M.; Maciá Sánchez, J.F.; Jiménez Medina, M.P.; Peñalver Martínez, M.J. Cyclical Salt Efflorescence Weathering: An Invisible Threat to the Recovery of Underground Mine Environment for Tourist Exploitation. Environ. Earth Sci. 2014, 72, 1901–1913. [Google Scholar] [CrossRef]
- Harris, S.Y. Building Pathology: Deterioration, Diagnostics, and Intervention; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Siedel, H. Alveolar Weathering of Cretaceous Building Sandstones on Monuments in Saxony, Germany. Geol. Soc. Lond. Spec. Publ. 2010, 333, 11–23. [Google Scholar] [CrossRef]
- Steiger, M. Crystal Growth in Porous Materials—I: The Crystallization Pressure of Large Crystals. J. Cryst. Growth 2005, 282, 455–469. [Google Scholar] [CrossRef]
- La Russa, M.F.; Belfiore, C.M.; Fichera, G.V.; Maniscalco, R.; Calabrò, C.; Ruffolo, S.A.; Pezzino, A. The Behaviour to Weathering of the Hyblean Limestone in the Baroque Architecture of the Val Di Noto (SE Sicily): An Experimental Study on the “Calcare a Lumachella” Stone. Constr. Build. Mater. 2015, 77, 7–19. [Google Scholar] [CrossRef]
- Occhipinti, R.; Stroscio, A.; Maria Belfiore, C.; Barone, G.; Mazzoleni, P. Chemical and Colorimetric Analysis for the Characterization of Degradation Forms and Surface Colour Modification of Building Stone Materials. Constr. Build. Mater. 2021, 302, 124356. [Google Scholar] [CrossRef]
- Benavente, D.; de Jongh, M.; Cañaveras, J.C. Weathering Processes and Mechanisms Caused by Capillary Waters and Pigeon Droppings on Porous Limestones. Minerals 2020, 11, 18. [Google Scholar] [CrossRef]
- Maldonado, L.; Veleva, L.; Díaz-Ballote, L. Characterization of Limestones for Building in the Yucatan Peninsula, Mexico. Appl. Phys. A 2011, 103, 1105–1110. [Google Scholar] [CrossRef]
- Camuffo, D.; Del Monte, M.; Sabbioni, C. Origin and Growth Mechanisms of the Sulfated Crusts on Urban Limestone. Water Air Soil Pollut. 1983, 19, 351–359. [Google Scholar] [CrossRef]
- Sabbioni, C.; Zappia, G. Atmospheric-Derived Element Tracers on Damaged Stone. Sci. Total Environ. 1992, 126, 35–48. [Google Scholar] [CrossRef]
- Barca, D.; Belfiore, C.M.; Crisci, G.M.; La Russa, M.F.; Pezzino, A.; Ruffolo, S.A. A New Methodological Approach for the Chemical Characterization of Black Crusts on Building Stones: A Case Study from the Catania City Centre (Sicily, Italy). J. Anal. At. Spectrom. 2011, 26, 1000. [Google Scholar] [CrossRef]
- Török, Á.; Licha, T.; Simon, K.; Siegesmund, S. Urban and Rural Limestone Weathering; the Contribution of Dust to Black Crust Formation. Environ. Earth Sci. 2011, 63, 675–693. [Google Scholar] [CrossRef]
- Mitsos, D.; Kantarelou, V.; Palamara, E.; Karydas, A.G.; Zacharias, N.; Gerasopoulos, E. Characterization of Black Crust on Archaeological Marble from the Library of Hadrian in Athens and Inferences about Contributing Pollution Sources. J. Cult. Herit. 2022, 53, 236–243. [Google Scholar] [CrossRef]
- Scheerer, S.; Ortega-Morales, O.; Gaylarde, C. Chapter 5 Microbial Deterioration of Stone Monuments—An Updated Overview. Adv. Appl. Microbiol. 2009, 66, 97–139. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G. Nondestructive Rock Porosity Estimation by InfraRed Thermography Applied to Natural Stones. Constr. Build. Mater. 2022, 342, 127950. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S. Study of Jointed and Weathered Rock Slopes Through the Innovative Approach of InfraRed Thermography. In Landslides: Theory, Practice and Modelling; Pradhan, S.P., Vishal, V., Singh, T.N., Eds.; Advances in Natural and Technological Hazards Research; Springer International Publishing: Cham, Switzerland, 2019; Volume 50, pp. 85–103. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Imposa, S.; Grassi, S.; Leotta, A.; La Rosa, F.; Salerno, D. A Quick Combined Approach for the Characterization of a Cliff during a Post-Rockfall Emergency. Landslides 2020, 17, 1063–1081. [Google Scholar] [CrossRef]
- Mineo, S.; Caliò, D.; Pappalardo, G. UAV-Based Photogrammetry and Infrared Thermography Applied to Rock Mass Survey for Geomechanical Purposes. Remote Sens. 2022, 14, 473. [Google Scholar] [CrossRef]
ID Specimen | Bulk Density (kg/m3) | Degree of Compactness | Imbibition Coefficient (%) | Effective Porosity (%) | Total Porosity (%) | Elastic Modulus (GPa) | UCS (MPa) |
---|---|---|---|---|---|---|---|
HL1 | 1516 | 1.77 | 21.2% | 32.1% | 43.6% | 1.4 | 6.99 |
HL2 | 1523 | 1.76 | 21.0% | 32.1% | 43.3% | 1.5 | 7.17 |
HL3 | 1501 | 1.79 | 21.4% | 32.2% | 44.1% | 1.2 | 6.74 |
HL4 | 1586 | 1.69 | 18.8% | 29.9% | 40.9% | 2.2 | 9.82 |
HL5 | 1529 | 1.76 | 20.7% | 31.7% | 43.1% | 1.2 | 8.59 |
HL6 | 1635 | 1.63 | 18.2% | 29.8% | 38.7% | 3.6 | 11.40 |
HL7 | 1651 | 1.62 | 18.0% | 29.8% | 38.1% | 2.1 | 8.93 |
HL8 | 1754 | 1.52 | 14.5% | 25.4% | 34.3% | 2.8 | 13.41 |
HL9 | 1635 | 1.64 | 18.4% | 30.2% | 39.0% | 2.9 | 6.71 |
HL10 | 1850 | 1.43 | 11.3% | 20.9% | 30.0% | 4.7 | 24.54 |
HL11 | 1817 | 1.46 | 12.3% | 22.4% | 31.3% | 4.6 | 14.64 |
HL12 | 1790 | 1.48 | 13.0% | 23.3% | 32.5% | 4.1 | 20.16 |
HL13 | 1836 | 1.44 | 11.6% | 21.3% | 30.6% | 5.2 | 22.05 |
mean | 1663 | 1.61 | 16.9% | 27.77% | 37.65% | 2.9 | 12.40 |
min | 1501 | 1.43 | 11.3% | 20.9% | 30.0% | 1.2 | 6.71 |
max | 1850 | 1.79 | 21.4% | 32.2% | 44.1% | 5.2 | 24.54 |
ID Specimen | Bulk Density (kg/m3) | Degree of Compactness | Imbibition Coefficient (%) | Effective Porosity (%) | Total Porosity (%) | Elastic Modulus (GPa) | UCS (MPa) |
---|---|---|---|---|---|---|---|
EB1 | 2815 | 1.052 | 10.0% | 2.8% | 5.1% | 11.1 | 211.40 |
EB2 | 2837 | 1.050 | 9.4% | 2.7% | 4.5% | 11.1 | 210.00 |
EB3 | 2814 | 1.052 | 10.3% | 2.9% | 5.3% | 11.9 | 223.56 |
EB4 | 2845 | 1.050 | 9.2% | 2.6% | 4.6% | 11.8 | 213.63 |
EB5 | 2838 | 1.049 | 10.8% | 3.1% | 4.4% | 10.7 | 198.44 |
EB6 | 2831 | 1.052 | 10.5% | 3.0% | 4.7% | 11.7 | 211.39 |
EB7 | 2841 | 1.051 | 8.8% | 2.5% | 4.3% | 11.4 | 204.76 |
mean | 2832 | 1.051 | 9.9% | 2.8% | 4.7% | 11.4 | 210.45 |
min | 2814 | 1.049 | 8.8% | 2.5% | 4.3% | 10.7 | 198.44 |
max | 2845 | 1.052 | 10.8% | 3.1% | 5.3% | 11.9 | 223.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappalardo, G.; Mineo, S.; Caliò, D.; Bognandi, A. Evaluation of Natural Stone Weathering in Heritage Building by Infrared Thermography. Heritage 2022, 5, 2594-2614. https://doi.org/10.3390/heritage5030135
Pappalardo G, Mineo S, Caliò D, Bognandi A. Evaluation of Natural Stone Weathering in Heritage Building by Infrared Thermography. Heritage. 2022; 5(3):2594-2614. https://doi.org/10.3390/heritage5030135
Chicago/Turabian StylePappalardo, Giovanna, Simone Mineo, Davide Caliò, and Annamaria Bognandi. 2022. "Evaluation of Natural Stone Weathering in Heritage Building by Infrared Thermography" Heritage 5, no. 3: 2594-2614. https://doi.org/10.3390/heritage5030135
APA StylePappalardo, G., Mineo, S., Caliò, D., & Bognandi, A. (2022). Evaluation of Natural Stone Weathering in Heritage Building by Infrared Thermography. Heritage, 5(3), 2594-2614. https://doi.org/10.3390/heritage5030135