Contribution to the Understanding of the Colour Change in Bluish-Grey Limestones
Abstract
:1. Introduction
2. Geological Setting and Features of the Bluish-Grey Limestone
3. Materials and Methods
3.1. X-ray Fluorescence Spectrometry
3.2. X-ray Diffraction
3.3. Scanning Electron Microscopy
3.4. Colour Measurements
3.5. Thermo-Analytical Techniques
3.6. X-ray Absorption Near Edge Structure and Energy Dispersive X-ray Fluorescence
4. Results and Discussion
4.1. Polished Limestone Exposed to Outdoor Atmospheric Conditions
4.1.1. Chemical and Mineralogical Characterization
4.1.2. SEM Studies
4.1.3. Colour Fading
4.2. Colour Change in the Same Limestone Sample
4.2.1. Mineralogical Characterization
4.2.2. SEM Studies
4.2.3. DTA–TG Assays
4.2.4. Iron Speciation
5. Conclusions
- (1)
- The UV radiation from the sun causes quick and severe bleaching or fading process on the dark blue/grey polished limestone placed outdoor during circa 3 months (natural weathering), visible to the naked eye; the presence of sulphates or microbial communities commonly associated to the weathering of the limestone were not detected.
- (2)
- The presence of small quantities of Fe2+ and Fe3+ are responsible for the greyish and yellow/brown colour side by side in the same limestone sample, respectively; the study performed with synchrotron radiation (XANES) allowed us to disclose the iron speciation, by comparison to model minerals and also by deconvolution of the pre-edge structure into pseudo-Voigt components. The iron model minerals were selected to configure different oxidation states and metal coordination. The evaluation with calculated spectra, allowed us to conclude that in the bluish-grey limestone, both pyrite and pyrrhotite in a proportion of 2:1 are present, while in brown and yellow limestone, goethite is possibly present. Although, in the yellow limestone, a mixture of goethite and pyrite in a ratio of 10:1 was noticed. Indeed, the pyrite oxidation most likely gives rise to the formation of goethite by percolation of alkaline fluids that was probably the mechanism responsible for the sudden variation of colour side by side.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clemente, I.M.; Artur, A.C.; Neto, J.A.N. Image analysis in the evaluation of chemical attack on carbonate rocks of Potiguar and Araripe basins. Est. Geol. 2013, 23, 29–44, (In Brazilian Portuguese). [Google Scholar]
- Marie, I. Perception of darkening of stone facades and the need for cleaning. Int. J. Sustain. Built Environ. 2013, 2, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Perez-Monserrat, E.M.; Fort, R.; Varas-Muriel, M.J. Monitoring façade soiling as a maintenance strategy for the sensitive built heritage. Int. J. Archit. Hérit. 2018, 12, 816–827. [Google Scholar] [CrossRef] [Green Version]
- Thornbush, M.; Viles, H. Integrated digital photography and image processing for the quantification of colouration on soiled limestone surfaces in Oxford, England. J. Cult. Hérit. 2004, 5, 285–290. [Google Scholar] [CrossRef]
- Columbia Stone. 2008. Available online: http://www.columbiastone.com/portfolio/wsu-compton-union-building-cub-renovation/ (accessed on 16 April 2022).
- JMU Centennial Celebration, The History of Bluestone. 2020. Available online: https://www.jmu.edu/centennialcelebration/bluestone.shtml (accessed on 16 April 2022).
- Albert, J. Natural Stone: Problems and Solutions for the Use in Outdoor Areas. LitosOnLine.com, 121. 2014. Available online: https://www.litosonline.com/en/article/natural-stone-problems-and-solutions-use-outdoor-areas (accessed on 16 April 2022).
- Casal Moura, A. Ornamental Marbles and Limestones of Portugal; Gestão de Artes Gráficas, SA: Amadora, Portugal, 2007; p. 383. (In Portuguese) [Google Scholar]
- González-Avilés, A.B.; Echarri-Iribarren, V.; Galiano-Garrigós, A.; Rizo-Maestre, C.; Pérez-Millán, M.I. Colour Ageing in Acrylic Resin Plates and Natural Minerals on the Façade after 10 Years of Sun Exposure in the Marine Environment. Appl. Sci. 2021, 11, 2222. [Google Scholar] [CrossRef]
- Ribeiro, R.C.C.; Figueiredo, P.M.F.; Barbutti, D.S. Multi-Analytical Investigation of Stains on Dimension Stones in Master Valentim’s Fountain, Brazil. Minerals 2018, 8, 465. [Google Scholar] [CrossRef] [Green Version]
- Aldoasri, M.A.; Darwish, S.S.; Adam, M.A.; Elmarzugi, N.A.; Ahmed, S.M. Enhancing the Durability of Calcareous Stone Monuments of Ancient Egypt Using CaCO3 Nanoparticles. Sustainability 2017, 9, 1392. [Google Scholar] [CrossRef] [Green Version]
- Pargoletti, E.; Comite, V.; Fermo, P.; Sabatini, V.; Cappelletti, G. Enhanced Historical Limestone Protection by New Organic/Inorganic Additive-Modified Resins. Coatings 2021, 11, 73. [Google Scholar] [CrossRef]
- Siegesmund, S.; Snethlage, R. Stone in Architecture—Properties, Durability, 4th ed.; Springer-Verlag: Berlin, Germany, 2011; p. 552. [Google Scholar]
- Smith, B.; Viles, H.A. Rapid, catastrophic decay of building limestones: Thoughts on causes, effects and consequences. In Heritage Weathering and Conservation; González, R.F., De Buergo, M.A., Gómez-Heras, M., Eds.; Taylor and Francis: Abingdon, UK, 2006; Volume 1, pp. 531–537. [Google Scholar]
- Myrow, P.M. A new graph for understanding colors of mudrocks and shales. J. Geol. Educ. 1990, 38, 16–20. [Google Scholar] [CrossRef]
- Dias, L.; Rosado, T.; Coelho, A.; Barrulas, P.; Lopes, L.; Moita, P.; Candeias, A.; Mirão, J.; Caldeira, A.T. Natural limestone discolouration triggered by microbial activity—A contribution. AIMS Microbiol. 2018, 4, 594–607. [Google Scholar] [CrossRef]
- Azerêdo, A.C.; Mendonça Filho, J.G.; Cabral, M.C.; Duarte, L.V. Pedogenic limestones and organic-matter rich levels in the Middle Jurassic from Pedreira do Galinha, Serra de Aire: A multidisciplinary approach. Comum. Geol. 2013, 100, 95–100. (In Portuguese) [Google Scholar]
- Pires, V.; Amaral, P.M.; Simão, J.A.R.; Galhano, C. Experimental procedure for studying the degradation and alteration of limestone slabs applied on exterior cladding. Environ. Earth Sci. 2022, 81, 59. [Google Scholar] [CrossRef]
- Santos, M.A.C. Mechanisms of Discoloration of the “Blue” Limestone from “Maciço Calcário Estremenho”. Unpublished. MSc Thesis, Sciences Faculty, Lisbon University, Lisbon, Portugal, 2017. (In Portuguese). [Google Scholar]
- Bams, V.; Dewaele, S. Staining of white marble. Mater. Charact. 2007, 58, 1052–1062. [Google Scholar] [CrossRef]
- Cucci, C.; De Pascale, O.; Senesi, G.S. Assessing Laser Cleaning of a Limestone Monument by Fiber Optics Reflectance Spectroscopy (FORS) and Visible and Near-Infrared (VNIR) Hyperspectral Imaging (HSI). Minerals 2020, 10, 1052. [Google Scholar] [CrossRef]
- Binal, A.; Ayderman, A.; Sel, A. Colour Changes on the Surface of the Rock Materials Due to UV-A and UV-B Rays. Geophys. Res. Abstr. 2015, 17, EGU2015-1447-2. [Google Scholar]
- Worthington, S. Does Natural Stone Fade? Understanding Colour in Stone, AquaMix Australia. 2015. Available online: https://aquamix.com.au/reference-library/technical-articles/does-natural-stone-fade/ (accessed on 19 May 2022).
- Careddu, N.; Marras, G. The effects of solar UV radiation on the gloss values of polished stone surfaces. Constr. Build. Mater. 2013, 49, 828–834. [Google Scholar] [CrossRef]
- Figueiredo, M.O.; Silva, T.P.; Veiga, J.P. Ancient glazed ceramic tiles: A long-term study from the remediation of environmental impacts to the non-destructive characterization of materials. In Proceedings of the International Seminar on Conservation of Glazed Ceramic Tiles: Research and Practice, Lisbon, Portugal, 15–16 April 2009; CDROM. p. 10. [Google Scholar]
- Rosado, T.; Dias, L.; Lança, M.; Nogueira, C.; Santos, R.; Martins, M.R.; Candeias, A.; Mirão, J.; Caldeira, A.T. Assessment of microbiota present on a Portuguese historical stone convent using high-throughput sequencing approaches. MicrobiologyOpen 2020, 9, 1067–1084. [Google Scholar] [CrossRef]
- Dias, L.; Rosado, T.; Candeias, A.; Mirão, J.; Caldeira, A.T. A change in composition, a change in colour: The case of limestone sculptures from the Portuguese National Museum of Ancient Art. J. Cult. Hérit. 2020, 42, 255–262. [Google Scholar] [CrossRef]
- Wilson, R.C.L.; Hiscott, R.N.; Willis, M.G.; Gradstein, F.M. The Lusitanian Basin of west-central Portugal: Mesozoic and Tertiary tectonic, stratigraphic, and subsidence history. In Extensional Tectonics and Stratigraphy of the North Atlantic Margins; Tankard, A.J., Balkwill, H.R., Eds.; AAPG: Tulsa, OK, USA, 1989; pp. 341–361. [Google Scholar]
- Ribeiro, A.; Silva, J.B.; Cabral, J.; Dias, R.; Fonseca, P.; Kullberg, M.C.; Terrinha, P.; Kullberg, J.C. Tectonics of the Lusitanian Basin. In Final Report, Project MILUPOBAS, EC-Contract nº JOU-CT94-0348, ICTE/GG/GeoFCUL; Lisbon University: Lisbon, Portugal, 1996; p. 126. [Google Scholar]
- Pinheiro, L.M.; Wilson, R.C.L.; Pena Dos Reis, R.; Whitmarsh, R.B.; Ribeiro, A. The western Iberia margin: A geophysical and geological overview. In Proceedings of the Ocean Drilling Program, Scientific Results, Balboa, Panama, Balboa, Panama, 16 October–17 December 1996; Whitmarsh, R.B., Sawyer, D.S., Klaus, A., Masson, D.G., Eds.; TX (Ocean Drilling Program): College Station, TX, USA, 1996; pp. 1–23. [Google Scholar]
- Kullberg, J.C.; Rocha, R.B.; Soares, A.F.; Rey, J.; Terrinha, P.; Azerêdo, A.C.; Callapez, P.; Duarte, L.V.; Kullberg, M.C.; Martins, L.; et al. A Bacia Lusitaniana: Estratigrafia, Paleogeografia e Tectónica. In Geologia de Portugal; Dias, R., Araújo, A.A., Terrinha, P., Kullberg, J.C., Eds.; Escolar Editora: Lisbon, Portugal, 2013; Volume II-Geologia Meso-Cenozóica de Portugal, pp. 195–348. [Google Scholar]
- Carvalho, J.M.F.; Lisboa, J.V.V. Ornamental stone potential areas for land use planning: A case study in a limestone massif from Portugal. Environ. Earth Sci. 2018, 77, 206. [Google Scholar] [CrossRef]
- Manuppella, G.; Barbosa, B.; Machado, S.; Carvalho, J. Folha 27-A Vila Nova de Ourém, Carta Geológica de Portugal, Scale 1:50,000, 2nd ed.; Instituto Geológico e Mineiro: Lisbon, Portugal, 1998. [Google Scholar]
- Manuppella, G.; Barbosa, B.; Azerêdo, A.C.; Carvalho, J.; Crispim, J.; Machado, S.; Sampaio, J. Folha 27-C Torres Novas, Carta Geológica de Portugal, Scale 1:50,000, 2nd ed.; Instituto Geológico e Mineiro: Lisbon, Portugal, 1999. [Google Scholar]
- Azerêdo, A.C. Formalização da litoestratigrafia do Jurássico Inferior e Médio do Maciço Calcário Estremenho (Bacia Lusitânica). Comun. Geol. 2007, 94, 29–51. [Google Scholar]
- Carvalho, J.; Manuppella, G.; Moura, A.C. Portuguese Ornamental Limestones. In Proceedings of the International Symposium on Industrial Minerals and Building Stones, Istanbul, Turkey, 15–18 September 2003. [Google Scholar]
- Cai, Y.; Hu, X.; Li, X.; Pan, Y. Origin of the red colour in a red limestone from the Vispi Quarry section (central Italy): A high-resolution transmission electron microscopy analysis. Cretac. Res. 2012, 38, 97–102. [Google Scholar] [CrossRef]
- Figueiredo, M.O.; Silva, T.P.; Veiga, J.P. Natural Nanomaterials: Reappraising the Elusive Structure of the Nano-sized Mineral Ferrihydrite through X-ray Absorption Spectroscopy at the Iron K-Edge. Mat. Sci. Forum 2013, 730, 931–935. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, M.O.; Silva, T.P.; Veiga, J.P. The blue of iron in mineral pigments: A Fe K-edge XANES study of vivianite. Appl. Phys. A 2010, 99, 357–361. [Google Scholar] [CrossRef]
- No, S.-G.; Park, M.-E.; Yoo, B.-C.; Lee, S.-H. Genesis of Carbonate Breccia Containing Invisible Gold in Taebaeksan Basin, South Korea. Minerals 2020, 10, 1087. [Google Scholar] [CrossRef]
- Batista, A.F. Solid as Stone. Forbes Portugal. 2018. Available online: https://www.forbespt.com/solido-como-pedra/?geo=pt (accessed on 16 April 2022). (In Portuguese).
- Carvalho, C.; Silva, Z.; Simão, J. Evaluation of Portuguese limestones’ susceptibility to salt mist through laboratory testing. Environ. Earth Sci. 2018, 77, 523. [Google Scholar] [CrossRef]
- International Commission on Illumination. CIE 15: Technical Report: Colorimetry, 3rd ed.; International Commission on Illumination: Vienna, Austria, 2004. [Google Scholar]
- Silva, T.P.; De Oliveira, D.; Veiga, J.P.; Lisboa, V.; Carvalho, J.; Salas-Colera, E. From yellow, brown to blue/greyish limestone: A Fe K-edge study through XANES. In Book of Abstracts of the 7th ENURS—National Meeting of Portuguese Synchrotron Radiation Users; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa: Caparica, Portugal, 2018; p. 44. [Google Scholar]
- Solé, V.A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta 2007, 62, 63–68. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Wilke, M.; Farges, F.; Petit, P.-E.; Brown, G.E., Jr.; Martin, F. Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. Amer. Min. 2001, 86, 714–730. [Google Scholar] [CrossRef]
- Fityk 0.8.2 Program. 2007. Available online: http://www.unipress.waw.pl/fityk (accessed on 16 April 2022).
- Petit, P.-E.; Farges, F.; Wilke, M.; Solé, V.A. Determination of the iron oxidation state in earth materials using XANES pre-edge information. J. Synchrotron Radiat. 2001, 8, 952–954. [Google Scholar] [CrossRef]
- Carvalho, C.; Silva, Z.; Simão, J. Surface alteration on limestones exposed to salt mist. Comum. Geol. 2018, 105, 91–99. (In Portuguese) [Google Scholar]
- ICOMOS-ISCS. Illustrated Glossary on Stone Deterioration Patterns, English-Portuguese Version; ICOMOS: Paris, France, 2008; p. 80. [Google Scholar]
- Zheng, L.Z.; Liang, X.T.; Li, S.R.; Li, Y.H.; Hu, D.D. Fading and showing mechanisms of ancient color relics based on light scattering induced by particles. RSC Adv. 2018, 8, 1124–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdingovas, V.; Jellesen, M.S.; Ambat, R. Colorimetric visualization of tin corrosion: A method for early stage corrosion detection on printed circuit boards. Microelectron. Reliab. 2017, 73, 158–166. [Google Scholar] [CrossRef]
- Coutinho, M.L.; Veiga, J.P.; Ruivo, A.; Silva, T.P.; Salas-Colera, E.; Bottura-Scardina, S.; Lima, A.; Figueiredo, E.; Cotte, M.; Lima, M.M.R. An insight into the firing conditions of Chinese blue-and-white porcelain through XANES. J. Anal. At. Spectrom. 2022, 37, 632–640. [Google Scholar] [CrossRef]
- Ruiz-Ardanaz, I.; Lasheras, E.; Durán, A. Mineralogical Characterization of Carreaux de Pavement from Northern Spain (Tiebas, Navarre). Minerals 2021, 11, 153. [Google Scholar] [CrossRef]
- Barbero-Álvarez, M.A.; Menéndez, J.M.; Rodrigo, J.A.; Ramírez-Barat, B.; Cano, E. Assessment of the Robustness of a Color Monitoring Chart Calibration Method for Crowdsourcing-Based Preventive Conservation. Appl. Sci. 2021, 11, 10067. [Google Scholar] [CrossRef]
- Instituto Português do Mar e da Atmosfera (IPMA). 2022. Available online: https://www.ipma.pt/pt/publicacoes/boletins.jsp?cmbDep=cli&cmbTema=pcl&idDep=cli&idTema=pcl&curAno=-1 (accessed on 28 May 2022).
- Pavingexpert, The Curse of Black Limestone. Available online: https://www.pavingexpert.com/stonpv05 (accessed on 16 April 2022).
- Galvez-Martinez, S.; Mateo-Marti, E. Ultraviolet Irradiation on a Pyrite Surface Improves Triglycine Adsorption. Life 2018, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Mateo-Marti, E.; Galvez-Martinez, S.; Gil-Lozano, C.; Zorzano, M.-P. Pyrite-induced uv-photocatalytic abiotic nitrogen fixation: Implications for early atmospheres and Life. Sci. Rep. 2019, 9, 15311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Földvári, M. Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice; Kiadó, F., Ed.; Geological Institute of Hungary: Budapest, Hungary, 2011. [Google Scholar]
- Chattaraj, B.D.; Dutta, S.N.; Iyengar, M.S. Studies on the thermal decomposition of calcium carbonate in the presence of alkali salts (Na2CO3, K2CO3 and NaCl). J. Therm. Anal. 1973, 5, 43–49. [Google Scholar] [CrossRef]
- Galoisy, L.; Calas, G.; Arrio, M.A. High-resolution XANES spectra of iron in minerals and glasses: Structural information from the pre-edge region. Chem. Geol. 2001, 174, 307–319. [Google Scholar] [CrossRef]
- Jheeta, K.S.; Jain, D.C. Investigation of coordination geometry around iron in annealed sapphire (Al2O3) using PL, XRD, XAS and FTIR techniques. Afr. Phys. Rev. 2007, 1, 56–66. [Google Scholar]
- Wilke, M.; Partzsch, G.M.; Bernhardt, R.; Lattard, D. Erratum to “Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge”. Chem. Geol. 2005, 220, 143–161. [Google Scholar] [CrossRef]
- Westre, T.E.; Kennepohl, P.; DeWitt, J.G.; Hedman, B.; Hodgson, K.O.; Solomon, E.I. A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes. J. Am. Chem. Soc. 1997, 119, 6297–6314. [Google Scholar] [CrossRef]
- Dräger, G.; Frahm, R.; Materlik, G.; Brümmer, O. On the Multipole Character of the X-Ray Transitions in the Pre-Edge Structure of Fe K Absorption Spectra. An Experimental Study. Phys. Stat. Sol. B 1988, 146, 287–294. [Google Scholar] [CrossRef]
- England, K.E.R.; Charnock, J.M.; Pattrick, R.A.D.; Vaughan, D.J. Surface oxidation studies of chalcopyrite and pyrite by glancing-angle X-ray absorption spectroscopy (REFLEXAFS). Min. Mag. 1999, 63, 559–566. [Google Scholar] [CrossRef]
- Wasserman, I.; Bentur, A. The efficiency of surface treatments on enhancement of the durability of limestone cladding stones. Mat. Struct. 2005, 38, 99–105. [Google Scholar] [CrossRef]
- Todd, E.C.; Sherman, D.M.; Purton, J.A. Surface oxidation of pyrite under ambient atmospheric and aqueous (pH = 2 to 10) conditions: Electronic structure and mineralogy from X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 2003, 67, 881–893. [Google Scholar] [CrossRef]
- Bladh, K.W. The Formation of Goethite, Jarosite, and Alunite during the Weathering of Sulfide-Bearing Felsic Rock. Econ. Geol. 1982, 77, 176–184. [Google Scholar] [CrossRef]
- Bianco, L. Geochemistry, Mineralogy and Textural Properties of the Lower Globigerina Limestone Used in the Built Heritage. Minerals 2021, 11, 740. [Google Scholar] [CrossRef]
Quarry | Limestone Designation | Sample Characteristics | Reference | Analytical Technique |
---|---|---|---|---|
Covão Alto | Azul Valverde | Polished, greyish | AV 27 * | XRF-WDS; XRD; SEM/EDS; colourimetry |
Polished, greyish | AV 43 * | XRF-WDS; colourimetry | ||
Polished, polychromatic | AV Yellow area | SEM/EDS | ||
AV Bluish-grey area | SEM/EDS | |||
Unpolished, polychromatic | AV Yellow (1) area | XRD; XANES; EDXRF | ||
AV Brown (2) area | XRD; XANES; EDXRF | |||
AV Bluish-grey (3) area | XRD; XANES; EDXRF | |||
Unpolished | AV Bluish-grey (A) | XRD; DTA–TG; XANES | ||
Unpolished | AV Yellow (B) | XRD; DTA–TG; XANES | ||
Cadoiço | Atlantic Blue | Polished, greyish | AB 9 * | XRF-WDS; XRD; SEM/EDS; colourimetry |
Polished, greyish | AB 48 * | XRF-WDS; colourimetry |
Month | Average Temperature, Minimum–Maximum (°C) | Total Precipitation (mm) | Maximum Wind Intensity (Kmh−1) | Solar Irradiance (kWhm−2) |
---|---|---|---|---|
May | 17.2, 11.1–30.8 | 133.4 | 65.2 | >194 |
June | 21.4, 14.1–34.0 | 1.4 | 61.9 | >250 |
July | 24.7, 15.0–36.5 | 0.0 | 65.2 | >222 |
August | 25.0, 16.4–36.6 | 0.0 | 59.0 | >194 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, T.P.; de Oliveira, D.; Veiga, J.P.; Lisboa, V.; Carvalho, J.; Barreiros, M.A.; Coutinho, M.L.; Salas-Colera, E.; Vigário, R. Contribution to the Understanding of the Colour Change in Bluish-Grey Limestones. Heritage 2022, 5, 1479-1503. https://doi.org/10.3390/heritage5030078
Silva TP, de Oliveira D, Veiga JP, Lisboa V, Carvalho J, Barreiros MA, Coutinho ML, Salas-Colera E, Vigário R. Contribution to the Understanding of the Colour Change in Bluish-Grey Limestones. Heritage. 2022; 5(3):1479-1503. https://doi.org/10.3390/heritage5030078
Chicago/Turabian StyleSilva, Teresa P., Daniel de Oliveira, João P. Veiga, Vitor Lisboa, Jorge Carvalho, M. Alexandra Barreiros, Mathilda L. Coutinho, Eduardo Salas-Colera, and Rogério Vigário. 2022. "Contribution to the Understanding of the Colour Change in Bluish-Grey Limestones" Heritage 5, no. 3: 1479-1503. https://doi.org/10.3390/heritage5030078
APA StyleSilva, T. P., de Oliveira, D., Veiga, J. P., Lisboa, V., Carvalho, J., Barreiros, M. A., Coutinho, M. L., Salas-Colera, E., & Vigário, R. (2022). Contribution to the Understanding of the Colour Change in Bluish-Grey Limestones. Heritage, 5(3), 1479-1503. https://doi.org/10.3390/heritage5030078