Volcanic Pozzolan from the Phlegraean Fields in the Structural Mortars of the Roman Temple of Nora (Sardinia)
Abstract
:1. Introduction
2. Context of Research and Sampling
2.1. The Roman Temple of Nora and Its Construction Techniques
2.2. The Sampling
3. Analytical Techniques
3.1. PLM
3.2. SEM-EDS
3.3. QPA-XRPD
3.4. XRF
4. Results
4.1. Mortars Characterization
4.2. Minero-Chemical Characteristics and Provenance of the Pyroclastic Rocks
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lancaster, L.C. Pozzolans in Mortar in the Roman Empire: An Overview and Thoughts on Future Work. In Mortiers et Hy-draulique en Méditerranée Antique; Ortega, F., Bouffier, S., Eds.; Archéologies Méditerranéennes 6; Presses Universitaires de Provence: Aix-en-Provence, France, 2019; pp. 31–39. [Google Scholar]
- Cook, D.J. Natural pozzolanas. In Cement Replacement Materials; Swamy, R.N., Ed.; Surrey University Press: London, UK, 1986; pp. 1–39. [Google Scholar]
- Massazza, F. Pozzolana and Pozzolanic Cements. In Lea’s Chemistry of Cement and Concrete; Hewlett, P.C., Ed.; Arnold: London, UK; Wiley: New York, NY, USA, 1998; pp. 471–635. [Google Scholar]
- Dilaria, S.; Secco, M.; Bonetto, J.; Ricci, G.; Artioli, G. Making ancient mortars Hydraulic. How composition influences type and structure of reaction products. In Proceedings of the 6th Historic Mortar Conference, Ljubljana, Slovenia, 21–23 September 2022; Bokan Bosiljkov, V., Padovnik, A., Turk, T., Štukovnik, P., Eds.; pp. 55–69. [Google Scholar]
- Brandon, C.J.; Hohlfelder, R.L.; Jackson, M.D.; Oleson, J.P. (Eds.) Building for Eternity. The History and Technology of Roman Concrete Engineering in the Sea; Oxbow Books: Philadelphia, PA, USA, 2014. [Google Scholar]
- Marra, F.; Anzidei, M.; Benini, A.; D’Ambrosio, E.; Gaeta, M.; Ventura, G.; Cavallo, A. Petro-chemical features and source areas of volcanic aggregates used in ancient Roman maritime concretes. J. Volcanol. Geotherm. Res. 2016, 328, 59–69. [Google Scholar] [CrossRef]
- Secco, M.; Asscher, Y.; Ricci, G.; Tamburini, S.; Preto, N.; Sharvit, J.; Artioli, G. Cementation processes of Roman pozzolanic binders from Caesarea Maritima (Israel). Constr. Build. Mater. 2022, 355, 129128. [Google Scholar] [CrossRef]
- Gros, P.; Corso, A.; Romano, E. (Eds.) Vitruvio, De Architectura; G. Einaudi: Torino, Italy, 1997. [Google Scholar]
- Giuliani, C.F. L’edilizia Nell’antichità; Carocci: Roma, Italy, 2006. [Google Scholar]
- Adam, J.-P. Roman building. Materials and Techniques; Routledge: London, UK; New York, NY, USA, 1997. [Google Scholar]
- D’Ambrosio, E.; Marra, F.; Cavallo, A.; Gaeta, M.; Ventura, G. Provenance materials for Vitruvius harenae fossiciae and pulvis puteolanis: Geochemical signature and historical-archaeological implications. J. Archaeol. Sci. Rep. 2015, 2, 186–203. [Google Scholar] [CrossRef]
- Lancaster, L.C. Mortars and plasters—How mortars were made. The literary sources. Archaeol. Anthropol. Sci. 2021, 13, 192. [Google Scholar] [CrossRef]
- Bonetto, J. Nora fenicia. Nuovi dati e nuove letture. In Tra le Coste del Levante e le Terre del Tramonto. Studi in Ricordo di Paolo Bernardini; Bondì, S.F., Botto, M., Garbati, G., Oggiano, I., Eds.; Collezione di Studi Fenici 51; Quasar: Roma, Italy, 2021; pp. 195–208. [Google Scholar]
- Bonetto, J. Nora nel V secolo: Dall’emporio fenicio a colonia cartaginese. In La Sardegna, il Mediterraneo occidentale e Cartagine nel V secolo a.C.; Roppa, A., Botto, M., Van Dommelen, P., Eds.; Quasar: Roma, Italy, 2021; pp. 91–106. [Google Scholar]
- Ghiotto, A.R.; Zara, A. Nora tra III e I secolo a.C.: La graduale transizione da città punica a città romana. In Nora Antiqua, II. Nora dalla Costituzione della PROVINCIA all’età Augustea; Atti del Convegno di Studi (Pula, 5–6 ottobre 2018); Scavi di Nora, I.X., Bonetto, J., Carboni, R., Giuman, M., Zara, A., Eds.; Quasar: Roma, Italy, 2020; pp. 3–18. [Google Scholar]
- Asolati, M.; Bonetto, J.; Zara, A. Un deposito rituale di antoniniani dal settore orientale dell’abitato di Nora (Sardegna). Annali. Ist. Ital. Numis. 2018, 64, 99–146. [Google Scholar]
- Zara, A. Il Tempio romano di Nora. Riflessioni sulla dedica in base a un frammento epigrafico inedito. In L’Africa Romana. Momenti di Continuità e Rottura: Bilancio di Trent’anni di Convegni; Atti del XX convegno internazionale di studi (Alghero-Porto Conte Ricerche, 26–29 settembre 2013); Ruggeri, P., Ed.; Carocci: Roma, Italy, 2015; pp. 1889–1902. [Google Scholar]
- Bonetto, J.; Mantovani, V.; Zara, A. (Eds.) Nora. Il Tempio Romano (2008–2014). II.1. I Materiali Preromani. II.2. I Materiali Romani e Gli Altri Reperti; Scavi di Nora X; Quasar: Roma, Italy, 2021. [Google Scholar]
- Ghiotto, A.R. L’architettura Romana Nelle Città della Sardegna; Quasar: Roma, Italy, 2004. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Boynton, R.S. Chemistry and Technology of Lime and Limestone; Interscience Publ. J. Wiley: New York, NY, USA, 1966. [Google Scholar]
- Charola, A.E.; Henriques, F.M.A. Hydraulicity in lime mortars revisited. In Historic Mortars: Characteristics and Tests: Proceedings of a RILEM Workshop, Paisley, (12–14/05/1999); Bartos, P., Groot, C., Hughes, J.J., Eds.; RILEM: Cachan Cedex, France, 2000; pp. 95–104. [Google Scholar]
- Rietveld, H.M. Line Profiles of Neutron Powder-diffraction Peaks for Structure Refinement. Acta Crystallogr. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- Taut, T.; Kleeberg, R.; Bergmann, J. The new Seifert Rietveld program BGMN and its application to quantitative phase analysis. Mater. Struct. 1998, 5, 55–64. [Google Scholar]
- Dollase, W. Correction of Intensities for Preferred Orientation in Powder Diffractometry: Application of the March Model. J. Appl. Crystallogr. 1986, 19, 267–272. [Google Scholar] [CrossRef]
- Melis, S.; Columbu, S. Les matériaux de construction à l’époque romaine et leur rapport avec les anciennes carrières: L’exemple du théâtre de Nora (Sardaigne SO—Italie). In La pierre dans la ville antique et médiévale, Actes du colloque d’Argentomagus Tours (Argenton-sur-Creuse, Saint-Marcel, 30–31/03/1998); Lorenz, J., Tardy, D., Coulon, G., Eds.; Supplément à la Revue ar-chéologique du centre de la France, 18; Musee d’Argentomagus: Saint-Marcel, France, 2000; pp. 103–117. [Google Scholar]
- Columbu, S. Petrographic and geochemical investigations on the volcanic rocks used in the Punic-Roman archaeological site of Nora (Sardinia, Italy). Environ. Earth Sci. 2018, 77, 577. [Google Scholar] [CrossRef]
- Columbu, S.; Garau, A.M. Mineralogical, petrographic and chemical analysis of geomaterials used in the mortars of Roman Nora theatre (south Sardinia, Italy). Ital. J. Geosci. 2017, 136, 238–262. [Google Scholar] [CrossRef]
- Sitzia, F.; Beltrame, M.; Lisci, C.; Mirão, J. Micro Destructive Analysis for the Characterization of Ancient Mortars: A Case Study from the Little Roman Bath of Nora (Sardinia, Italy). Heritage 2021, 4, 2544–2562. [Google Scholar] [CrossRef]
- Sabbioni, C.; Zappia, G.; Riontino, C.; Blanco-Varela, M.T.; Aguilera, J.; Puertas, F.; Van Balen, F.; Toumbakari, E. Atmospheric deterioration of ancient and modern hydraulic mortars. Atmos. Environ. 2001, 35, 539–548. [Google Scholar] [CrossRef]
- Secco, M.; Previato, C.; Addis, A.; Zago, G.; Kamsteeg, A.; Dilaria, S.; Canovaro, C.; Artioli, G.; Bonetto, J. Mineralogical clustering of the structural mortars from the Sarno Baths, Pompeii: A tool to interpret construction techniques and relative chronologies. J. Cult. Herit. 2019, 40, 265–273. [Google Scholar] [CrossRef]
- Dilaria, S.; Previato, C.; Secco, M.; Busana, M.S.; Bonetto, J.; Cappellato, J.; Ricci, G.; Artioli, G.; Tan, P. Phasing the history of ancient buildings through PCA on mortars’ mineralogical profiles: The example of the Sarno Baths (Pompeii). Archaeometry. 2022. [CrossRef]
- Secco, M.; Dilaria, S.; Bonetto, J.; Addis, A.; Tamburini, S.; Preto, N.; Ricci, G.; Artioli, G. Technological transfers in the Medi-terranean on the verge of the Romanization: Insights from the waterproofing renders of Nora (Sardinia, Italy). J. Cult. Herit. 2020, 44, 63–82. [Google Scholar] [CrossRef]
- De’ Gennaro, M.; Cappelletti, P.; Langella, A.; Perrotta, A.; Scarpati, C. Genesis of zeolites in the Neapolitan Yellow Tuff: Ge-ological, volcanological and mineralogical evidence. Contrib. Mineral. Petrol. 2000, 139, 17–35. [Google Scholar] [CrossRef]
- Colella, A.; Calcaterra, D.; Cappelletti, P.; Langella, A.; Papa, L.; de’ Gennaro, M. I tufi zeolitizzati nell’architettura della Campania. In La Diagnostica per il Restauro del Patrimonio Culturale; Cuzzolin: Napoli, Italy, 2009; pp. 327–341. [Google Scholar]
- Morra, V.; Calcaterra, D.; Cappelletti, P.; Colella, A.; Fedele, L.; De’ Gennaro, R.; Langella, A.; Mercurio, M.; De’ Gennaro, M. Urban geology: Relationships between geological setting and architectural heritage of the Neapolitan area. J. Virtual Explor. 2010, 36, 1–60. [Google Scholar] [CrossRef]
- Langella, A.; Calcaterra, D.; Cappelletti, P.; Colella, A.; D’Albora, M.P.; Morra, V.; De Gennaro, V. Lava stones from Neapolitan volcanic districts in the architecture of Campanian region, Italy. Environ. Earth Sci. 2009, 59, 145–160. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Le Bas, M.J.R.; Le Maitre, W.; Streckeisen, A.; Zanettin, B. IUGS Subcommission on the Systematics of Igneous Rocks, A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Peccerillo, A. Plio-Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics; Springer: Berlin, Germany, 2005. [Google Scholar]
- Peccerillo, A. Campania volcanoes. In Vesuvius, Campi Flegrei, and Campanian Volcanism; De Vivo, B., Belkin, H.E., Rolandi, G., Eds.; Elsevier: Amsterdam, Holland, 2020; pp. 79–120. [Google Scholar]
- Avanzinelli, R.; Lustrino, M.; Mattei, M.; Melluso, L.; Conticelli, S. Potassic and ultrapotassic magmatism in the cir-cum-Tyrrhenian region: Significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 2009, 113, 213–227. [Google Scholar] [CrossRef]
- Albert, P.G.; Tomlinson, E.L.; Smith, V.C.; Di Traglia, F.; Pistolesi, M.; Morris, A.; Donato, P.; De Rosa, R.; Sulpizio, R.; Keller, J.; et al. Glass geochemistry of pyroclastic deposits from the Aeolian Islands in the last 50 ka: A proximal database for tephrochronology. J. Volcanol. Geotherm. Res. 2017, 336, 81–107. [Google Scholar] [CrossRef]
- Lustrino, M.; Melluso, L.; Morra, V. The geochemical peculiarity of “Plio-Quaternary” volcanic rocks of Sardinia in the cir-cum-Mediterranean area. In Cenozoic Volcanism in the Mediterranean Area; Special Paper; Beccaluva, L., Bianchini, G., Wilson, M., Eds.; Geo-logical Society of America: Boulder, CO, USA, 2007; Volume 418, pp. 277–301. [Google Scholar]
- Marra, F.; Deocampo, D.; Jackson, M.D.; Ventura, G. The Alban Hills and Monti Sabatini volcanic products used in ancient Roman masonry (Italy): An integrated stratigraphic, archaeological, environmental and geochemical approach. Earth Sci. Rev. 2011, 108, 115–136. [Google Scholar] [CrossRef]
- Marra, F.; D’Ambrosio, E.; Sottili, G.; Ventura, G. Geochemical fingerprints of volcanic materials: Identification of a pumice trade route from Pompeii to Rome. Bull. Geol. Soc. Am. 2013, 125, 556–577. [Google Scholar] [CrossRef]
- Lancaster, L.C.; Sottili, G.; Marra, F.; Ventura, G. Provenancing of lightweight volcanic stones used in ancient Roman concrete vaulting: Evidence from Rome. Archaeometry 2011, 53, 707–727. [Google Scholar] [CrossRef]
- Marra, F.; D’Ambrosio, E. Trace element classification diagrams of pyroclastic rocks from the volcanic districts of central Italy: The case study of the ancient Roman ships of Pisa. Archaeometry 2013, 55, 993–1019. [Google Scholar] [CrossRef]
- Gioncada, A.; Mazzuoli, R.; Bisson, M.; Pareschi, M.T. Petrology of volcanic products younger than 42 ka on the Lipari-Vulcano complex (Aeolian Islands, Italy): An example of volcanism controlled by tectonics. J. Volcanol. Geotherm. Res. 2003, 122, 191–220. [Google Scholar] [CrossRef]
- De Astis, G.; La Volpe, L.; Peccerillo, A.; Civetta, L. Volcanological and petrological evolution of Vulcano island (Aeolian Arc, southern Tyrrhenian Sea). J. Geophys. Res. 1997, 102, 8021–8050. [Google Scholar] [CrossRef]
- Davì, M.; De Rosa, R.; Donato, P.; Sulpizio, R. The Lami pyroclastic succession (Lipari, Aeolian Islands): A clue for unravelling the eruptive dynamics of the Monte Pilato rhyolitic pumice cone. J. Volcanol. Geotherm. Res. 2011, 201, 285–300. [Google Scholar] [CrossRef]
- Pappalardo, L.; Civetta, L.; D’Antonio, M.; Deino, A.; Di Vito, M.A.; Orsi, G.; Carandente, A.; De Vita, S.; Isaia, R.; Piochi, M. Chemical and Sr isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. J. Volcanol. Geotherm. Res. 1999, 91, 141–166. [Google Scholar] [CrossRef]
- Fedele, L.; Insinga, D.D.; Calvert, A.T.; Morra, V.; Perrotta, A.; Scarpati, C. 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): Toward a new chronostratigraphic reconstruction of the Holocene volcanic activity. Bull. Vol-Canol. 2011, 73, 1323–1336. [Google Scholar] [CrossRef]
- Poli, S.; Chiesa, S.; Gillot, P.-Y.; Gregnanin, A.; Guichard, F. Chemistry versus time in the volcanic complex of Ischia (Gulf of Naples, Italy): Evidence of successive magmatic cycles. Contrib. Mineral. Petrol. 1987, 95, 322–335. [Google Scholar] [CrossRef]
- De Astis, G.; Pappalardo, L.; Piochi, M. Procida volcanic history: New insights into the evolution of the Phlegrean Volcanic Discrict (Campania Region, Italy). Bull. Volcanol. 2004, 66, 622–641. [Google Scholar] [CrossRef]
- Brown, R.J.; Orsi, G.; De Vita, S. New insights into Late Pleistocene explosive volcanic activity and caldera formation on Ischia (southern Italy). Bull. Volcanol. 2008, 70, 583–603. [Google Scholar] [CrossRef]
- Tomlinson, E.L.; Albert, P.G.; Wulf, S.; Brown, R.J.; Smith, V.C.; Keller, J.; Orsi, G.; Bourne, A.J.; Menzies, M.A. Age and ge-ochemistry of tephra layers from Ischia, Italy: Constraints from proximal-distal correlations with Lago Grande di Monticchio. J. Volcanol. Geotherm. Res. 2014, 287, 22–39. [Google Scholar] [CrossRef] [Green Version]
- Melluso, L.; Morra, V.; Guarino, V.; De’ Gennaro, R.; Franciosi, L.; Grifa, C. The crystallization of shoshonitic to peralkaline trachyphonolitic magmas in a H2O–Cl–F-rich environment at Ischia (Italy), with implications for the feeder system of the Campania Plain volcanoes. Lithos 2014, 210–211, 242–259. [Google Scholar] [CrossRef]
- Santacroce, R.; Cioni, R.; Marianelli, P.; Sbrana, P.; Sbrana, A.; Sulpizio, R.; Zanchetta, G.; Donahue, D.J.; Joron, J.L. Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy. J. Volcanol. Geotherm. Res. 2008, 177, 1–18. [Google Scholar] [CrossRef]
- Orsi, G.; Civetta, L.; D’Antonio, M.; Di Girolamo, P.; Piochi, M. The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption: Eruptive dynamics, magma withdrawal and caldera collapse. J. Volcanol. Geotherm. Res. 1992, 67, 291–312. [Google Scholar] [CrossRef]
- Pabst, S.; Wörner, G.; Civetta, L.; Tesoro, R. Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy). Bull. Volcanol. 2008, 70, 961–976. [Google Scholar] [CrossRef] [Green Version]
- Di Vito, M.A.; Sulpizio, R.; Zanchetta, G.; D’Orazio, M. The late Pleistocene pyroclastic deposits of the Campanian Plain: New insights into the explosive activity of Neapolitan volcanoes. J. Volcanol. Geotherm. Res. 2008, 177, 19–48. [Google Scholar] [CrossRef]
- Di Vito, M.A.; Arienzo, I.; Braia, G.; Civetta, L.; D’Antonio, M.; Di Renzo, V.; Orsi, G. The Averno 2 fissure eruption: A recent small-size explosive event at the Campi Flegrei Caldera (Italy). Bull. Volcanol. 2011, 73, 295–320. [Google Scholar] [CrossRef]
- Di Renzo, V.; Di Vito, M.A.; Arienzo, I.; Caradente, A.; Civetta, L.; D’Antonio, M.; Giordano, F.; Orsi, G.; Tonarini, S. Magmatic history of Somma-Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). J. Petrol. 2007, 48, 758–784. [Google Scholar] [CrossRef] [Green Version]
- Tonarini, S.; D’Antonio, M.; Di Vito, M.A.; Orsi, G.; Carandente, A. Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy). Lithos 2009, 107, 135–151. [Google Scholar] [CrossRef]
- Smith, V.C.; Isaia, R.; Pearce, N.J.G. Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: Im-plications for eruption history and chronostratigraphic markers. Quat. Sci. Rev. 2011, 30, 3638–3660. [Google Scholar] [CrossRef]
- Tomlinson, E.L.; Arienzo, I.; Civetta, L.; Wulf, S.; Smith, V.C.; Hardiman, M.; Lane, C.S.; Carandente, A.; Orsi, G.; Rosi, M.; et al. Geochemistry of the Phlegraean Fields (Italy) proximal sources for major Mediterranean tephras: Implications for the dispersal of Plinian and co-ignimbritic components of explosive eruptions. Geochim. Cosmochim. Acta 2012, 93, 102–128. [Google Scholar] [CrossRef] [Green Version]
- Arienzo, I.; Mazzeo, F.C.; Moretti, R.; Cavallo, A.; D’Antonio, M. Open-system magma evolution and fluid transfer at Campi Flegrei caldera (Southern Italy) during the past 5 ka as revealed by geochemical and isotopic data: The example of the Nisida eruption. Chem. Geol. 2016, 427, 109–124. [Google Scholar] [CrossRef]
- Piochi, M.; Ayuso, R.A.; De Vivo, B.; Somma, R. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma–Vesuvius volcano, Italy: Geochemical and Sr isotope evidence. Lithos 2006, 86, 303–329. [Google Scholar] [CrossRef]
- Ayuso, R.; De Vivo, B.; Rolandi, G.; Seal, R.; Paone, A. Geochemical and isotopic (Nd-Pb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J. Volcanol. Geotherm. Res. 1998, 82, 53–78. [Google Scholar] [CrossRef]
- Dilaria, S.; Marinello, A.; Zara, A. Analisi archeometriche delle malte aeree e pozzolaniche del tempio di Esculapio. Risult. Prelim. Quad. Norensi 2022, 9, 225–238. [Google Scholar]
- Bonetto, J.; Dilaria, S. Circolazione di maestranze e saperi costruttivi nel Mediterraneo antico. Il caso dei rivestimenti in malta delle cisterne punico-romane di Nora (Cagliari, Sardegna). ATTA Atlante Temat. Di Topogr. Antica 2021, 31, 495–520. [Google Scholar]
- Columbu, S.; Garau, A.M.; Lugliè, C. Geochemical characterisation of pozzolanic obsidian glasses used in the ancient mortars of Nora Roman theatre (Sardinia, Italy): Provenance of raw materials and historical–archaeological implications. Archaeol. Anthropol. Sci. 2019, 11, 2121–2150. [Google Scholar] [CrossRef]
- Previato, C. Building Public Baths outside Rome: The case study of Nora (Sardinia). In Architectures of the Roman World. Models, Agency, Reception; Mugnai, N., Ed.; in press.
- Rispoli, C.; Graziano, S.F.; Di Benedetto, C.; De Bonis, A.; Guarino, V.; Esposito, R.; Morra, V.; Cappelletti, P. New insights of historical mortars beyond Pompei: The example of villa del Pezzolo, Sorrento peninsula. Minerals 2019, 9, 575. [Google Scholar] [CrossRef]
- Rispoli, C.; De Bonis, A.; Guarino, V.; Sossio, F.G.; Di Benedetto, C.; Esposito, R.; Morra, V.; Cappelletti, P. The ancient pozzolanic mortars of the Thermal complex of Baia (Campi Flegrei, Italy). J. Cult. Herit. 2019, 40, 143–154. [Google Scholar] [CrossRef]
- Montesano, G.; Verde, M.; Columbu, S.; Graziano, S.F.; Guerriero, L.; Iadanza, M.L.; Manna, A.; Rispoli, C.; Cappelletti, P. Ancient Roman mortars from Anfiteatro Flavio (Pozzuoli, Southern Italy): A mineralogical, petrographic and chemical study. Coatings 2022, 12, 1712. [Google Scholar] [CrossRef]
- De Luca, R.; Miriello, D.; Pecci, A.; Domínguez-Bella, S.; Bernal-Casasola, D.; Cottica, D.; Bloise, A.; Crisci, G.M. Archaeometric study of mortars from the Garum Shop at Pompeii, Campania, Italy. Geoarchaeology 2015, 30, 330–351. [Google Scholar] [CrossRef]
- Miriello, D.; Barca, D.; Bloise, A.; Ciarallo, A.; Crisci, G.M.; De Rose, T.; Gattuso, C.; Gazineo, F.; La Russa, M.F. Characterisation of archaeological mortars from Pompeii (Campania, Italy) and identification of construction phases by compositional data analysis. J. Archaeol. Sci. 2010, 37, 2207–2223. [Google Scholar] [CrossRef]
- Pompilio, M. Inerti di natura vulcanica nei calcestruzzi del ninfeo ovest presso il Calcidico di Leptis Magna. In Fontane e Ninfei minori di Leptis Magna; Tomasello, F., Ed.; L’“Erma” di Bretschneider: Roma, Italy, 2005; pp. 290–291. [Google Scholar]
- Djerad, M.S.; Boufenara, K.; des Courtils, J.; Cantin, N.; Lefrais, Y. Multianalytical characterisation and provenance investi-gation of natural pozzolana in Roman lime mortars from the archaeological site of Hippo Regius (Algeria). Mediterr. Ar-Chaeology Archaeom. 2022, 22, 231–248. [Google Scholar]
Sample | Type | Position |
---|---|---|
T-ROM1 | Tuff | Foundation of the cella (NW) |
T-ROM2 | Pumice | Outer wall of the cella (W) |
T-ROM3 | Pumice | Outer wall of the cella (W) |
T-ROM4 | Pumice | Foundation of the cella (E) |
T-ROM5 | Pumice | Foundation of the cella (E) |
T-ROM6 | Pumice | Foundation of the cella (E) |
T-ROM7 | Pumice | Outer wall of the cella (NW) |
T-ROM8 | Mortar | Outer wall of the cella (NE) |
T-ROM9 | Mortar | Outer wall of the cella (NE) |
T-ROM10 | Mortar | Outer wall of the western rooms (N) |
T-ROM11 | Pumice | Outer wall of the cella (N) |
T-ROM13 | Mortar | Outer wall of the western rooms (E) |
T-ROM14 | Mortar | Inner wall of the western rooms (E) |
T-ROM18 | Mortar | Outer wall of the western rooms (N) |
T-ROM19 | Mortar | Inner wall of the cella (W) |
T-ROM20 | Tuff | Inner wall of the cella (S) |
T-ROM21 | Mortar | Outer wall of the cella (S) |
Group | Samples | Lime | Porosity | Aggregates |
---|---|---|---|---|
A | T-ROM10, 13, 14, 18 | carbonatic, micritic, homogeneous. Lime lumps (••); unburned limestones (-) | vughs, vesicles (••) | Quartz (••); Feldpars (•); Quartzites (•); Clasts of andesites/dacites (•); Calcarenite fr. (-); Shells (-); Crystalline limestone fr. (- -); Granitoids (- -); Terracotta fr. (- -); Carbonate sand (- -) |
B | T-ROM8, 9, 19, 21 | carbonatic, micritic, homogeneous. Lime lumps (•) | vughs, vesicles (••) | Quartz (••); Pyroclastic pozzolans (••); Feldspars (•); Quartzites (•); Clasts of andesites/dacites (-); Calcarenite fr. (- -); Shells (- -); Crystalline limestone fr. (- -); Carbonate sand (- -) |
Sample | Rock type | Biotite | Quartz | Na-plagioclase | Ca-plagioclase | K-feldspar | Clinopyroxene | Phillipsite | Chabazite | Analcime | Ilmenite | Smectite | Amorphous | Alteration | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gypsum | Halite | Calcite | Dolomite | ||||||||||||||
T-ROM1 | tuff | 0.9 | 2.0 | 3.7 | 5.6 | 11.0 | 3.5 | 19.3 | 10.8 | 2.1 | b.d.l. | 9.2 | 30.2 | 0.9 | 0.6 | 0.3 | b.d.l. |
T-ROM2 | pumice | 0.3 | 0.6 | 0.5 | 4.2 | 5.5 | 1.7 | 1.7 | b.d.l. | 0.6 | b.d.l. | b.d.l. | 84.6 | b.d.l. | 0.3 | 0.1 | b.d.l. |
T-ROM3 | pumice | 0.6 | 0.6 | 3.5 | 2.7 | 0.7 | 1.7 | b.d.l. | b.d.l. | 0.6 | b.d.l. | b.d.l. | 85.4 | b.d.l. | 0.8 | 3.4 | b.d.l. |
T-ROM4 | pumice | 0.3 | 0.5 | 5.8 | 1.9 | 5.9 | 1.6 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 82.5 | b.d.l. | b.d.l. | 1.7 | b.d.l. |
T-ROM5 | pumice | 0.1 | 0.4 | 6.4 | 2.9 | 7.3 | 1.9 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 78.5 | 0.3 | 1.2 | 0.9 | b.d.l. |
T-ROM6 | pumice | 0.2 | 0.1 | 3.9 | 5.5 | 34.2 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 54.4 | b.d.l. | 0.6 | 1.1 | b.d.l. |
T-ROM7 | pumice | 0.7 | 0.2 | 32.9 | 3.0 | 14.0 | 3.7 | 2.1 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 43.3 | b.d.l. | b.d.l. | 0.2 | b.d.l. |
T-ROM11 | pumice | 0.5 | 0.8 | 1.3 | 4.4 | 11.3 | 1.1 | b.d.l. | b.d.l. | 0.2 | b.d.l. | b.d.l. | 78.3 | b.d.l. | 0.2 | 1.9 | b.d.l. |
T-ROM20 | tuff | 1.4 | 1.0 | 8.1 | 8.5 | 13.3 | 2.1 | 18.7 | 3.7 | 4.8 | 1.1 | 4.6 | 30.0 | b.d.l. | 0.4 | 2.0 | 0.2 |
T-ROM1 | T-ROM2 | T-ROM3 | T-ROM4 | T-ROM5 | T-ROM6 | T-ROM7 | T-ROM11 | T-ROM20 | |
---|---|---|---|---|---|---|---|---|---|
%Ox | tuff | pumice | pumice | pumice | pumice | pumice | pumice | pumice | tuff |
SiO2 | 59.31 | 60.29 | 60.89 | 60.82 | 60.53 | 61.71 | 60.5 | 60.07 | 62.07 |
TiO2 | 0.48 | 0.47 | 0.49 | 0.53 | 0.46 | 0.44 | 0.47 | 0.45 | 0.44 |
Al2O3 | 18.29 | 18.55 | 18.45 | 18.30 | 18.38 | 18.26 | 18.89 | 18.41 | 17.75 |
Fe2O3 | 3.88 | 3.67 | 3.51 | 3.59 | 3.44 | 3.18 | 3.71 | 3.47 | 3.17 |
MnO | 0.15 | 0.15 | 0.17 | 0.17 | 0.15 | 0.18 | 0.13 | 0.14 | 0.16 |
MgO | 1.27 | 0.39 | 0.14 | 0.24 | 0.33 | 0.09 | 0.29 | 0.27 | 0.92 |
CaO | 1.94 | 2.61 | 2.17 | 2.88 | 2.41 | 1.99 | 2.55 | 2.67 | 2.97 |
Na2O | 4.11 | 4.91 | 5.42 | 5.68 | 5.26 | 5.94 | 4.63 | 4.94 | 2.95 |
K2O | 9.30 | 8.00 | 7.63 | 7.41 | 8.01 | 7.15 | 8.52 | 8.23 | 9.25 |
P2O5 | 0.27 | 0.08 | 0.05 | 0.05 | 0.07 | 0.03 | 0.09 | 0.07 | 0.08 |
Tot | 99.00 | 99.12 | 98.92 | 99.67 | 99.04 | 98.97 | 99.78 | 98.72 | 99.76 |
L.O.I. | 14.97 | 4.96 | 3.55 | 3.76 | 3.48 | 2.34 | 3.38 | 3.27 | 11.71 |
ppm | |||||||||
S | 169 | 137 | 38 | 126 | 76 | 63 | 56 | 95 | 145 |
Sc | 3 | <3 | 3 | 13 | 11 | <3 | 3 | <3 | 3 |
V | 62 | 50 | 26 | 32 | 38 | 18 | 49 | 45 | 38 |
Cr | 6 | <6 | 4 | <6 | 7 | <6 | 5 | <6 | 12 |
Co | 3 | 9 | <3 | 6 | 6 | <3 | <3 | 6 | <3 |
Ni | 5 | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 |
Cu | 33 | 9 | 17 | 217 | 143 | 24 | 24 | 31 | 10 |
Zn | 103 | 102 | 100 | 106 | 126 | 109 | 89 | 411 | 81 |
Ga | 12 | 18 | 13 | 14 | 14 | 17 | 10 | 12 | 13 |
Rb | 362 | 390 | 436 | 440 | 411 | 478 | 381 | 392 | 366 |
Sr | 223 | 203 | 127 | 81 | 110 | 45 | 278 | 152 | 196 |
Y | 30 | 45 | 63 | 65 | 49 | 73 | 37 | 43 | 50 |
Zr | 386 | 550 | 763 | 779 | 610 | 956 | 517 | 528 | 660 |
Nb | 52 | 67 | 94 | 101 | 77 | 113 | 65 | 64 | 86 |
Ba | 766 | 104 | 122 | 35 | 46 | 21 | 182 | 73 | 231 |
La | 81 | 102 | 122 | 132 | 108 | 161 | 97 | 93 | 118 |
Ce | 161 | 204 | 252 | 267 | 220 | 323 | 196 | 193 | 238 |
Nd | 60 | 73 | 103 | 105 | 82 | 110 | 72 | 71 | 87 |
Pb | 75 | 71 | 62 | 62 | 55 | 50 | 62 | 53 | 49 |
Th | 43 | 49 | 72 | 74 | 56 | 89 | 50 | 52 | 67 |
U | 8 | 16 | 22 | 20 | 18 | 26 | 14 | 15 | 16 |
Trace Element | Phlegraean Fields | Ischia | Procida-Vivara | Vesuvius | Aeolian Arc | ||||
---|---|---|---|---|---|---|---|---|---|
Post CI | Pre-NYT | NYT | Post-NYT (Epoch I/II) | Post-NYT (Epoch III) | Pomici di Base | Vulcano | |||
Zr | 0.06 | 0.03 | 0.03 | 0.06 | 0.04 | 0.03 | 0.02 | 0.05 | −0.01 |
Nb | −0.64 | −0.23 | −0.42 | −0.46 | −0.33 | −0.17 | −0.21 | −0.42 | −0.28 |
Th | 0.21 | −0.15 | −0.15 | −0.04 | −0.01 | −0.43 | −0.07 | −0.09 | 0.31 |
Rb | 0.23 | 0.17 | 0.24 | 0.21 | 0.19 | 0.16 | 0.13 | 0.21 | 0.17 |
Sr | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 | 0.02 | 0.03 | 0.04 | 0.05 |
Y | 0.03 | 0.06 | 0.06 | 0.05 | 0.04 | 0.10 | 0.06 | 0.10 | 0.06 |
Ba | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 | 0.00 | −0.01 | −0.01 | −0.01 |
La | −0.12 | −0.10 | −0.12 | −0.13 | −0.11 | −0.07 | −0.06 | −0.14 | −0.02 |
Ce | −0.20 | −0.18 | −0.22 | −0.26 | −0.22 | −0.20 | −0.17 | −0.23 | −0.14 |
Nd | 0.35 | 0.57 | 0.65 | 0.75 | 0.60 | 0.79 | 0.56 | 0.62 | 0.29 |
CONSTANT | −37.39 | −27.17 | −42.20 | −40.89 | −35.34 | −34.11 | −21.89 | −37.65 | −34.30 |
Sample | Rock Type | Provenance (1st Probability) | Provenance (2nd Probability) |
---|---|---|---|
T-ROM_1 | tuff | Post-NYT (Epoch I/II) | NYT |
T-ROM_2 | pumice | Post-NYT (Epoch I/II) | NYT |
T-ROM_3 | pumice | Post-NYT (Epoch I/II) | Post-NYT (Epoch III) |
T-ROM_4 | pumice | Post-NYT (Epoch I/II) | Post-NYT (Epoch III) |
T-ROM_5 | pumice | Post-NYT (Epoch I/II) | Post-NYT (Epoch III) |
T-ROM_6 | pumice | Post-NYT (Epoch I/II) | Post-NYT (Epoch III) |
T-ROM_7 | pumice | Post-NYT (Epoch I/II) | Post-NYT (Epoch III) |
T-ROM_11 | pumice | Post-NYT (Epoch I/II) | NYT |
T-ROM_20 | tuff | Post-NYT (Epoch I/II) | Post-NYT (Epoch III) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dilaria, S.; Previato, C.; Bonetto, J.; Secco, M.; Zara, A.; De Luca, R.; Miriello, D. Volcanic Pozzolan from the Phlegraean Fields in the Structural Mortars of the Roman Temple of Nora (Sardinia). Heritage 2023, 6, 567-586. https://doi.org/10.3390/heritage6010030
Dilaria S, Previato C, Bonetto J, Secco M, Zara A, De Luca R, Miriello D. Volcanic Pozzolan from the Phlegraean Fields in the Structural Mortars of the Roman Temple of Nora (Sardinia). Heritage. 2023; 6(1):567-586. https://doi.org/10.3390/heritage6010030
Chicago/Turabian StyleDilaria, Simone, Caterina Previato, Jacopo Bonetto, Michele Secco, Arturo Zara, Raffaella De Luca, and Domenico Miriello. 2023. "Volcanic Pozzolan from the Phlegraean Fields in the Structural Mortars of the Roman Temple of Nora (Sardinia)" Heritage 6, no. 1: 567-586. https://doi.org/10.3390/heritage6010030
APA StyleDilaria, S., Previato, C., Bonetto, J., Secco, M., Zara, A., De Luca, R., & Miriello, D. (2023). Volcanic Pozzolan from the Phlegraean Fields in the Structural Mortars of the Roman Temple of Nora (Sardinia). Heritage, 6(1), 567-586. https://doi.org/10.3390/heritage6010030