The Hosta’s Labyrinth on the Black Sea Shore: A Case Study of “Selling” Geosites to the Lay Public
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Approach
3. Results
3.1. Outline and Properties of the Geosite
3.2. Exploitation Modes of the Geosite
4. Discussion
4.1. Broader Meaning of the Proposed Factors of Success
4.2. Testing Factor Availability in Another Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brocx, M.; Semeniuk, V. Geoheritage and geoconservation—History, definition, scope and scale. J. R. Soc. West. Aust. 2007, 90, 53–87. [Google Scholar]
- Gray, M. Geodiversity, geoheritage and geoconservation for society. Int. J. Geoherit. Parks 2019, 7, 226–236. [Google Scholar] [CrossRef]
- Henriques, M.H.; dos Reis, R.P.; Brilha, J.; Mota, T. Geoconservation as an emerging geosciences. Geoheritage 2011, 3, 117–128. [Google Scholar] [CrossRef]
- Pescatore, E.; Bentivenga, M.; Giano, S.I. Geoheritage and Geoconservation: Some Remarks and Considerations. Sustainability 2023, 15, 5823. [Google Scholar] [CrossRef]
- Prosser, C.; Murphy, M.; Larwood, J. Geological Conservation: A Guide to Good Practice; English Nature: Peterborough, UK, 2006. [Google Scholar]
- Quesada-Valverde, M.E.; Quesada-Román, A. Worldwide Trends in Methods and Resources Promoting Geoconservation, Geotourism, and Geoheritage. Geosciences 2023, 13, 39. [Google Scholar] [CrossRef]
- Bentivenga, M.; Cavalcante, F.; Mastronuzzi, G.; Palladino, G.; Prosser, G. Geoheritage: The Foundation for Sustainable Geotourism. Geoheritage 2019, 11, 1367–1369. [Google Scholar] [CrossRef]
- Bétard, F.; Hobléa, F.; Portal, C. Geoheritage as new territorial resource for local development. In Annales de Geographie; Armand Colin: Paris, France, 2017; Volume 717, pp. 523–543. [Google Scholar]
- Santangelo, N.; Valente, E. Geoheritage and Geotourism resources. Resources 2020, 9, 80. [Google Scholar] [CrossRef]
- Dowling, R.; Newsome, D. (Eds.) Handbook of Geotourism; Edward Elgar: Cheltenham, UK, 2018. [Google Scholar]
- Farsani, N.T.; Coelho, C.; Costa, C. Geotourism and geoparks as novel strategies for socio-economic development in rural areas. Int. J. Tour. Res. 2011, 13, 68–81. [Google Scholar] [CrossRef]
- Ferreira, D.R.; Valdati, J. Geoparks and Sustainable Development: Systematic Review. Geoheritage 2023, 15, 6. [Google Scholar] [CrossRef]
- Hose, T.A. 3G’s for Modern Geotourism. Geoheritage 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Matshusa, K.; Leonard, L.; Thomas, P. The Contribution of Geotourism to Social Sustainability: Missed Opportunity? Int. J. Sustain. Econ. Soc. Cult. Context 2021, 17, 95–118. [Google Scholar] [CrossRef]
- Obradović, S.; Stojanović, V.; Lukić, T. Geotourism and Local Communities: Measuring Residents’ Attitudes Toward Sustainable Tourism in the Fruška Gora National Park. Geoheritage 2023, 15, 90. [Google Scholar] [CrossRef]
- Pescatore, E.; Bentivenga, M.; Giano, S.I.; Siervo, V. Geomorphosites: Versatile Tools in Geoheritage Cultural Dissemination. Geoheritage 2019, 11, 1583–1601. [Google Scholar] [CrossRef]
- Zhu, Y.; Pang, X.; Zhou, C.; He, X. Coupling Coordination Degree between the Socioeconomic and Eco-Environmental Benefits of Koktokay Global Geopark in China. Int. J. Environ. Res. Public Health 2022, 19, 8498. [Google Scholar] [CrossRef]
- Amaro, S.; Chaves, N.B.; Henriques, C.; Barroco, C. Motivation-Based Segmentation of Visitors to a UNESCO Global Geopark. Geoheritage 2023, 15, 79. [Google Scholar] [CrossRef]
- Chaves, N.; Amaro, S.; Barroco, C. Visitor’s motivations to the Arouca Geopark. J. Tour. Dev. 2023, 40, 127–136. [Google Scholar]
- Drápela, E.; Boháč, A.; Böhm, H.; Zágoršek, K. Motivation and preferences of visitors in the Bohemian Paradise UNESCO Global Geopark. Geosciences 2021, 11, 116. [Google Scholar] [CrossRef]
- Kubalíková, L.; Bajer, A.; Balková, M. Brief notes on geodiversity and geoheritage perception by the lay public. Geosciences 2021, 11, 54. [Google Scholar] [CrossRef]
- Rodrigues, F.H.; Pereira, D.M.Í.; Kolya, A.A.; Zaine, J.E. Evaluation of the geotourism potential of the northern region of São Sebastião island (São Paulo, Brazil). Anu. Inst. Geocienc. 2020, 43, 255–265. [Google Scholar] [CrossRef]
- Štrba, Ľ.; Vravcová, A.; Podoláková, M.; Varcholová, L.; Kršák, B. Linking Geoheritage or Geosite Assessment Results with Geotourism Potential and Development: A Literature Review. Sustainability 2023, 15, 9539. [Google Scholar] [CrossRef]
- Markaryan, I.N. Historical way of Sochi development: From resort to Olympic Games Host City. Bylye Gody 2014, 32, 206–214. [Google Scholar]
- Gorobtsova, O.N.; Chadaeva, V.A.; Pshegusov, R.K.; Gedgafova, F.V.; Uligova, T.S.; Tembotov, R.K. The current state of forest ecosystems in the Khosta Yew-Boxwood Grove. Environ. Monit. Assess. 2023, 195, 183. [Google Scholar] [CrossRef] [PubMed]
- Bewick, S.; Parkinson, I.J.; Harris, N.; Adamia, S.; Sadradze, N.; Allen, M.B.; Hammond, S. Quaternary Collision-Zone Magmatism of the Greater Caucasus. J. Petrol. 2022, 63, egac037. [Google Scholar] [CrossRef]
- Forte, A.M.; Gutterman, K.R.; van Soest, M.C.; Gallagher, K. Building a Young Mountain Range: Insight into the Growth of the Greater Caucasus Mountains from Detrital Zircon (U-Th)/He Thermochronology and 10Be Erosion Rates. Tectonics 2022, 41, e2021TC006900. [Google Scholar] [CrossRef]
- Vincent, S.J.; Somin, M.L.; Carter, A.; Vezzoli, G.; Fox, M.; Vautravers, B. Testing Models of Cenozoic Exhumation in the Western Greater Caucasus. Tectonics 2020, 39, e2018TC005451. [Google Scholar] [CrossRef]
- Andreev, V.M. Stratigraphic scheme of the Caucasus Black Sea coast. In Geology and Biodiversity of the Mesozoic–Cenozoic Deposits of the Russian South; Pinchuk, T.N., Ed.; Tetis: Goryachiy Klyuch, Russia, 2015; pp. 4–10. (In Russian) [Google Scholar]
- Yasamanov, N.A. Landscape-Climatic Conditions of the Jurassic, the Cretaceous and the Paleogene of the South of the USSR; Nedra: Moscow, Russia, 1978. (In Russian) [Google Scholar]
- Karelina, E.V.; Motuzov, I.S.; Markov, V.E.; Panasenko, Y.N.; Zhorzh, N.V.; Nosaeva, O.V. A study of volcanic-sedimentary rocks of the Dzykhra sequence within the Abkhazian zone of the Gargra-Java uplift, Northwestern Caucasus. RUDN J. Eng. Res. 2022, 23, 343–354. (In Russian) [Google Scholar]
- Wimbledon, W.A.P. National site selection, a stop on the way to a European Geosite list. Geol. Balc. 1996, 26, 15–27. [Google Scholar]
- Wimbledon, W.A.P. Geosites a new conservation initiative. Episodes 1996, 19, 87–88. [Google Scholar] [CrossRef]
- Bruschi, V.M.; Cendrero, A. Geosite evaluation; can we measure intangible values? Alp. Mediterr. Quat. 2005, 18, 293–306. [Google Scholar]
- Gatley, S.; Parkes, M. The Selection of and Characters of a Geosite—Examples from Ireland. Geoheritage 2018, 10, 157–167. [Google Scholar] [CrossRef]
- Neto, K.; Henriques, M.H. Geoheritage of the Príncipe UNESCO World Biosphere Reserve (West Africa): Selected Geosites. Geoheritage 2023, 15, 118. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; da Garcia, M.G.M.; Reynard, E. Criteria for Assessing Geological Sites in National Parks: A Study in the Itatiaia National Park, Brazil. Geoheritage 2022, 14, 1. [Google Scholar] [CrossRef]
- Semeniuk, T.A. The Hornsby Quarry Geosite, NSW, Australia—A Geoheritage Treasure. Land 2022, 11, 2124. [Google Scholar] [CrossRef]
- Vasiljević, Đ.; Began, M.; Vujičić, M.; Hose, T.; Stankov, U. Does geosite interpretation lead to conservation? A case study of the Sićevo Gorge (Serbia). Acta Geogr. Slov. 2021, 61, 7–21. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Geosites Inventory in the Leon Province (Northwestern Spain): A Tool to Introduce Geoheritage into Regional Environmental Management. Geoheritage 2020, 2, 57–75. [Google Scholar] [CrossRef]
- Kubalíková, L.; Kirchner, K. Geosite and Geomorphosite Assessment as a Tool for Geoconservation and Geotourism Purposes: A Case Study from Vizovická vrchovina Highland (Eastern Part of the Czech Republic). Geoheritage 2016, 8, 5–14. [Google Scholar] [CrossRef]
- Štrba, L.; Rybár, P.; Baláž, B.; Molokac, M.; Hvizdak, L.; Krsak, B.; Lukac, M.; Muchova, L.; Tometzová, D.; Ferenčíková, J. Geosite assessments: Comparison of methods and results. Curr. Issues Tour. 2015, 18, 496–510. [Google Scholar] [CrossRef]
- Tamang, L.; Mandal, U.K.; Karmakar, M.; Banerjee, M.; Ghosh, D. Geomorphosite evaluation for geotourism development using geosite assessment model (GAM): A study from a Proterozoic terrain in eastern India. Int. J. Geoherit. Parks 2023, 11, 82–99. [Google Scholar] [CrossRef]
- Zafeiropoulos, G.; Drinia, H. GEOAM: A Holistic Assessment Tool for Unveiling the Geoeducational Potential of Geosites. Geosciences 2023, 13, 210. [Google Scholar] [CrossRef]
- Desbois, J.-L.; Costabloz, V. Garins’ landslide: From a geohazard to a touristic and pedagogical geosite. Rend. Online Soc. Geol. Ital. 2013, 28, 41–44. [Google Scholar]
- Morino, C.; Coratza, P.; Soldati, M. Landslides, a Key Landform in the Global Geological Heritage. Front. Earth Sci. 2022, 10, 864760. [Google Scholar] [CrossRef]
- Niculiţă, M.; Mărgărint, M.C. Landslides and Fortified Settlements as Valuable Cultural Geomorphosites and Geoheritage Sites in the Moldavian Plateau, North-Eastern Romania. Geoheritage 2018, 10, 613–634. [Google Scholar] [CrossRef]
- Senese, A.; Pelfini, M.; Maragno, D.; Bollati, I.M.; Fugazza, D.; Vaghi, L.; Federici, M.; Grimaldi, L.; Belotti, P.; Lauri, P.; et al. The Role of E-Bike in Discovering Geodiversity and Geoheritage. Sustainability 2023, 15, 4979. [Google Scholar] [CrossRef]
- Tronti, G.; Vergari, F.; Bollati, I.M.; Belisario, F.; Del Monte, M.; Pelfini, M.; Fredi, P. From landslide characterization to nature reserve management: The “Scialimata Grande di Torre Alfina” landslide Geosite (Central Apennines, Italy). J. Mt. Sci. 2023, 20, 585–606. [Google Scholar] [CrossRef]
- Erhartič, B. Geomorphosite assessment. Acta Geogr. Slov. 2010, 50, 295–319. [Google Scholar] [CrossRef]
- Panizza, M. Geomorphosites: Concepts, methods and examples of geomorphological survey. Chin. Sci. Bull. 2001, 46, 4–6. [Google Scholar] [CrossRef]
- Pereira, P.; Pereira, D. Methodological guidelines for geomorphosite assessment. Geomorphol. Relief Process. Environ. 2010, 2, 215–222. [Google Scholar] [CrossRef]
- Reynard, E.; Coratza, P. Geomorphosites and geodiversity: A new domain of research. Geogr. Helv. 2007, 62, 138–139. [Google Scholar] [CrossRef]
- Santos, D.S.; Mansur, K.L.; Seoane, J.C.S.; Mucivuna, V.C.; Reynard, E. Methodological Proposal for the Inventory and Assessment of Geomorphosites: An Integrated Approach focused on Territorial Management and Geoconservation. Environ. Manag. 2020, 66, 476–497. [Google Scholar] [CrossRef]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- Gordon, J.E. Geoheritage, geotourism and the cultural landscape: Enhancing the visitor experience and promoting geoconservation. Geosciences 2018, 8, 136. [Google Scholar] [CrossRef]
- Pijet-Migoń, E.; Migoń, P. Geoheritage and Cultural Heritage—A Review of Recurrent and Interlinked Themes. Geosciences 2022, 12, 98. [Google Scholar] [CrossRef]
- Montecchi, B. The labyrinth: Building, myth, and symbol. Aegaeum 2016, 39, 165–174. [Google Scholar]
- Lewis, I.D. Evolution of Geotourism in Australia from Kanawinka Global Geopark and Australian National Landscapes to GeoRegions and Geotrails: A Review and Lessons Learned. Land 2023, 12, 1190. [Google Scholar] [CrossRef]
- De Arruda, Í.R.P.; De Lima, G.R.; Da Silva Listo, D.G.; Mariano, G.; De Oliveira Guimarães, T. Proposal for Geoconservation in the district of Fazenda Nova—Brejo da Madre de Deus—Pernambuco, Northeast Brazil. Geol. USP—Ser. Cient. 2023, 23, 87–98. [Google Scholar]
- Miller, R.F.; Buhay, D.N. Turning a Forgotten Geological Heritage into a Geological Park: Developing Stonehammer Geopark. Geoheritage 2014, 6, 29–39. [Google Scholar] [CrossRef]
- Pardo-Igúzquiza, E.; Durán-Valsero, J.J.; Dowd, P.A.; Luque-Espinar, J.A.; Heredia, J.; Robledo-Ardila, P.A. Geodiversity of closed depressions in a high relief karst: Geoeducation asset and geotourism resource in the “Sierra de las Nieves” National Park (Málaga Province, Southern Spain). Int. J. Geoherit. Parks 2022, 10, 196–217. [Google Scholar] [CrossRef]
- Çiftçi, Y.; Güngör, Y. Natural and cultural heritage integration and geoconservation recommendatory of the Nemrut—Süphan proposed geopark area, Bitlis—Turkey. Bull. Miner. Res. Explor. 2021, 165, 191–215. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Mora-Frank, C.; Kovács, T.; Berrezueta, E. Georoutes as a Basis for Territorial Development of the Pacific Coast of South America: A Case Study. Geoheritage 2022, 14, 78. [Google Scholar] [CrossRef]
- Wulung, S.R.P.; Yuliawati, A.K.; Abdullah, C.U.; Fitriyani, E. Spice cultural heritage in geotourism trail. J. Eng. Sci. Technol. 2022, 17, 76–87. [Google Scholar]
- Khoshraftar, R.; Torabi Farsani, N. Geomythology: An Approach for Attracting Geotourists (Case Study: Takht-e Soleymān—Takab World Heritage Sites). Geoheritage 2019, 11, 1879–1888. [Google Scholar] [CrossRef]
- Necheş, I.-M. From geomorphosite evaluation to geotourism interpretation. Case study: The Sphinx of Romania’s Southern Carpathians. Geoj. Tour. Geosites 2013, 12, 145–162. [Google Scholar]
- Singtuen, V.; Junjuer, T. Characterisation of potholes formed on bedrock sandstones at Loei Dun, Phetchabun Geopark, Thailand. Geologos 2022, 28, 39–50. [Google Scholar] [CrossRef]
- Keskin Citiroglu, H.; Isik, S.; Pulat, O. Utilizing the Geological Diversity for Sustainable Regional Development, a Case Study-Zonguldak (NW Turkey). Geoheritage 2017, 9, 211–223. [Google Scholar] [CrossRef]
- Masseroli, A.; Bollati, I.M.; Fracasetti, L.; Trombino, L. Soil Trail as a Tool to Promote Cultural and Geoheritage: The Case Study of Mount Cusna Geosite (Northern Italian Apennines). Appl. Sci. 2023, 13, 6420. [Google Scholar] [CrossRef]
- Dhali, M.K. Dynamic evolution of riverbed potholes in the granitic bedrock of Chota Nagpur Plateau, middle part of Subarnarekha River basin, India. J. Hydrol. 2019, 571, 819–836. [Google Scholar] [CrossRef]
- Huang, R.; Tang, D.; Li, Q.; Li, Q.; Zhou, M.; Feng, M.; Li, T.; Liu, L. Formation mechanism of volcanic tuff river potholes in Leizhou Peninsula, Guangdong Province. Quarter. Sci. 2022, 42, 541–551. [Google Scholar]
- Lima, A.G.; Binda, A.L. Differential control in the formation of river potholes on basalts of the Paraná Volcanic Province. J. South Am. Earth. Sci. 2015, 59, 86–94. [Google Scholar] [CrossRef]
- Nemec, W.; Lorenc, M.W.; Saavedra Alonso, J. Potholed granite terrace in the Rio Salor valley, Western Spain: A study of bedrock erosion by floods. Tecniterrae 1982, 50, 1–16. [Google Scholar]
- Ortega-Becerril, J.A.; Garrote, J. Magnitude of formative flows in stream potholes. Geomorph 2023, 434, 108738. [Google Scholar] [CrossRef]
- Cundari, A. Inverted relief due to lava flows along valleys. Aust. Geogr. 1970, 11, 291–293. [Google Scholar] [CrossRef]
- Karim, K.H.; Khanaqa, P.A. Syncline contribution to mountain peak building: Examples from Western Zagros, Kurdistan Region, Northeastern Iraq. Arab. J. Geosci. 2017, 10, 375. [Google Scholar] [CrossRef]
- Pain, C.F.; Ollier, C.D. Inversion of relief—A component of landscape evolution. Geomorphology 1995, 12, 151–165. [Google Scholar] [CrossRef]
- van Wyk de Vries, B.; Karatson, D.; Gouard, C.; Nemeth, K.; Rapprich, V.; Aydar, E. Inverted volcanic relief: Its importance in illustrating geological change and its geoheritage potential. Int. J. Geoherit. Parks 2022, 10, 47–83. [Google Scholar] [CrossRef]
- Wang, Z.-T.; Lai, Z.-P.; Qu, J.-J. Inverted relief landforms in the Kumtagh Desert of northwestern China: A mechanism to estimate wind erosion rates. Geol. J. 2017, 52, 131–140. [Google Scholar] [CrossRef]
- Franke, W.; Cocks, L.R.M.; Torsvik, T.H. The Palaeozoic Variscan oceans revisited. Gondw. Res. 2017, 48, 257–284. [Google Scholar] [CrossRef]
- Stampfli, G.M.; Hochard, C.; Vérard, C.; Wilhem, C.; von Raumer, J. The formation of Pangea. Tectonophysics 2013, 593, 1–19. [Google Scholar] [CrossRef]
- von Raumer, J.F.; Stampfli, G.M.; Bussy, F. Gondwana-derived microcontinents—The constituents of the Variscan and Alpine collisional orogens. Tectonophysics 2003, 365, 7–22. [Google Scholar] [CrossRef]
- Stuwe, K. Geodynamics of the Lithosphere; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Cusano, A.; Russo, F.; Guerriero, L.; Colucciello, A.; Ruzza, G.; Guadagno, F.M.; Revellino, P. Geotourism, traditions and typical products of Avellino Province. J. Maps 2022, 18, 133–141. [Google Scholar] [CrossRef]
- Komoo, I.; Azman, N.; Ahmad, N.; Ali, C.A.; Bukhari, A.M.M. An Integrated Geoproduct Development for Geotourism in Langkawi UNESCO Global Geopark: A Case Study of the Kubang Badak Biogeotrail. Geoheritage 2022, 14, 37. [Google Scholar] [CrossRef]
- Nakonechnykh, V.; Zhuravleva, M.; Sivkova, A.; Volokhova, S. The impact of the territorial marketing on highlighting the brand “Baikal” in the Baikal region. Geoj. Tour. Geosites 2019, 27, 1271–1279. [Google Scholar] [CrossRef]
- Rodrigues, J.; Neto de Carvalho, C.; Ramos, M.; Ramos, R.; Vinagre, A.; Vinagre, H. Geoproducts—Innovative development strategies in UNESCO Geoparks: Concept, implementation methodology, and case studies from Naturtejo Global Geopark, Portugal. Int. J. Geoherit. Parks 2021, 9, 108–128. [Google Scholar] [CrossRef]
- Yuliawati, A.K.; Rofaida, R.; Gautama, B.P.; Aryanti, A.N. Coffee as geo-product of a small island geopark increasing livelihood in a local community-A study in Belitung Island. Afr. J. Hosp. Tour. Leis. 2019, 2019, 1–6. [Google Scholar]
- Frey, M.-L. Geotourism—Examining tools for sustainable development. Geosciences 2021, 11, 30. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. A New Geosite as a Contribution to the Sustainable Development of Urban Geotourism in a Tourist Peripheral Region—Central Poland. Resources 2023, 12, 71. [Google Scholar] [CrossRef]
- Lazzari, M.; Aloia, A. Geoparks, geoheritage and geotourism: Opportunities and tools in sustainable development of the territory. Geoj. Tour. Geosites 2014, 13, 8–9. [Google Scholar]
- Mohamadianmansoor, S.; Khanian, M. Sustainable Geotourism: Developing a Grounded Model for Evaluation of Geoutouristic Capacities in Geosites via the Study of Khorzeneh in Hamedan, Iran. Geoheritage 2022, 14, 26. [Google Scholar] [CrossRef]
- Alasalvar, C.; Salvadó, J.-S.; Ros, E. Bioactives and health benefits of nuts and dried fruits. Food Chem. 2020, 314, 126192. [Google Scholar] [CrossRef] [PubMed]
- Keast, D.R.; O’Neil, C.E.; Jones, J.M. Dried fruit consumption is associated with improved diet quality and reduced obesity in US adults: National Health and Nutrition Examination Survey, 1999–2004. Nutr. Res. 2011, 31, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; Bhat, S.V.; Muzaffar, K.; Ibrahim, S.A.; Dar, B.N. Processing Technology, Chemical Composition, Microbial Quality and Health Benefits of Dried Fruits. Curr. Res. Nutr. Food Sci. 2022, 10, 71–84. [Google Scholar] [CrossRef]
- Sullivan, V.K.; Na, M.; Proctor, D.N.; Kris-Etherton, P.M.; Petersen, K.S. Consumption of Dried Fruits Is Associated with Greater Intakes of Underconsumed Nutrients, Higher Total Energy Intakes, and Better Diet Quality in US Adults: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey, 2007–2016. J. Acad. Nutr. Diet. 2021, 121, 1258–1272. [Google Scholar] [CrossRef] [PubMed]
- Testa, R.; Rizzo, G.; Schifani, G.; Tinebra, I.; Farina, V.; Vella, F.; Migliore, G. Can Dried Fruits Replace Unhealthy Snacking among Millennials? An Empirical Study on Dried Fruit Consumption in Italy. Sustainability 2023, 15, 7083. [Google Scholar] [CrossRef]
Property | Explanation (Definitions as Preferred in the Present Study) |
---|---|
Accessibility | Opportunity to reach geosites and move within them; this property often depends on the physical remoteness of the geosites, on the wilderness of the landscape, on the transport infrastructure, on the availability of bus and car stops, and on the within-geosite infrastructure (trails, stairs, etc.). |
Aesthetics | How geosites can appeal to the visitors’ ideas of beauty; importantly, this property is very relational (different visitors may have very different, and even opposite, ideas of beauty) and is determined by both the geological features and the geosites’ landscape context. |
Configuration (geometry) | Spatial appearance of geosites: too-small geosites look like points, but large geosites may extend as a line (linear) or embrace some plots (areal); higher-complex forms are also possible. |
Content | Geological phenomena represented at geosites, which can be assigned to one or several types. |
Degree of uniqueness (rank) | Spatial rarity of geosites, which can be unique on the local, regional (provincial), national, and global levels. This property seems to be essential for geosite valuation. |
Dynamics | Geosites can be static (representing objects) or dynamic (representing processes). |
Form | Natural outcrop, road cutting, quarry, etc. |
Interpretation needs | How difficult understanding the essence of geosites is for visitors with different levels of geological knowledge (which is very elementary or even absent in the majority of visitors). |
Usefulness | Importance of geosites to research, teaching, and tourism. |
Vulnerability | Exposure to any present or potential danger, which can lead to the loss of a geosite’s informativeness, physical damage, or destruction; this property depends on natural (also geological) processes and anthropogenic pressure. |
Locality | General Geological Knowledge | Story Elements |
---|---|---|
Rufabgo potholes | Potholes reflect some specific mechanisms of river erosion, the understanding of which remains incomplete and attracts researchers’ attention [72,73,74,75,76]. It appears that potholes are formed commonly on the river bottom (especially during seasonal floods), and the subsequent uplift and related valley incision lead to their full or partial exposure above the water level. | Basic elements:
|
Gud mountain panorama | Development of inverted landforms reflects notable interaction between geomorphological processes and local geological settings [77,78,79,80,81]. A particular example of this can be seen when active river erosion removes older soft rocks at the limbs of a syncline, whereas the hinge zone remains “protected”, being capped by younger hard rocks. As a result, the most elevated point represents the syncline axis. | Basic elements:
|
Lipovy contact | In the Paleozoic, there were several episodes of the detachment of terranes from the Tethyan margin of Gondwana; these terranes, which often formed chains (superterranes), moved northward, with the oceans opening to the south of these chains and the other oceans closing to the north of them [82,83,84]. This was a kind of mega-conveyor, which functioned even after the assembly of the Pangaea. | Basic elements:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yashalova, N.N.; Ermolaev, V.A.; Ruban, D.A. The Hosta’s Labyrinth on the Black Sea Shore: A Case Study of “Selling” Geosites to the Lay Public. Heritage 2023, 6, 7083-7099. https://doi.org/10.3390/heritage6110369
Yashalova NN, Ermolaev VA, Ruban DA. The Hosta’s Labyrinth on the Black Sea Shore: A Case Study of “Selling” Geosites to the Lay Public. Heritage. 2023; 6(11):7083-7099. https://doi.org/10.3390/heritage6110369
Chicago/Turabian StyleYashalova, Natalia N., Vladimir A. Ermolaev, and Dmitry A. Ruban. 2023. "The Hosta’s Labyrinth on the Black Sea Shore: A Case Study of “Selling” Geosites to the Lay Public" Heritage 6, no. 11: 7083-7099. https://doi.org/10.3390/heritage6110369
APA StyleYashalova, N. N., Ermolaev, V. A., & Ruban, D. A. (2023). The Hosta’s Labyrinth on the Black Sea Shore: A Case Study of “Selling” Geosites to the Lay Public. Heritage, 6(11), 7083-7099. https://doi.org/10.3390/heritage6110369