Looking at the Modern to Better Understand the Ancient: Is It Possible to Differentiate Mars Pigments from Archaeological Ochres?
Abstract
:1. Introduction
1.1. Natural Ochres: Analytical Characterization
1.2. Mars Pigments: Historical Sources
2. Literature Review
3. Review of Commercial Mars Pigment and Ochre
4. Experimental Part
4.1. Materials and Methods
4.1.1. Materials
4.1.2. Methods
4.2. Results
4.2.1. Characterization of Raw Materials
Mars Yellow and Yellow Ochre
Mars Red and Red Ochre
4.2.2. Characterization of Pictorial Layers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses; Wiley-Vch: Weinheim, Germany, 2003; Volume 664. [Google Scholar]
- Dayet, L. Invasive and non-invasive analyses of ochre and iron-based pigment raw materials: A methodological perspective. Minerals 2021, 11, 210. [Google Scholar] [CrossRef]
- Matteini, M.; Moles, A. La Chimica Nel Restauro; Nardini: Firenze, Italy, 1989. [Google Scholar]
- Watts, I. Ochre and Human Evolution. In The International Encyclopedia of Anthropology; Wiley-Blackwell: Hoboken, NJ, USA, 2018; pp. 1–7. [Google Scholar]
- Elias, M.; Chartier, C.; Prévot, G.; Garay, H.; Vignaud, C. The colour of ochres explained by their composition. Mater. Sci. Eng. B 2006, 127, 70–80. [Google Scholar] [CrossRef]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. Pigment Compendium: A Dictionary of Historical Pigments; Routledge: Oxford, UK, 2007. [Google Scholar]
- Montagner, C.; Sanches, D.; Pedroso, J.; Melo, M.J.; Vilarigues, M. Ochres and earths: Matrix and chromophores characterization of 19th and 20th century artist materials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 103, 409–416. [Google Scholar] [CrossRef]
- Mastrotheodoros, G.P.; Beltsios, K.G. Pigments—Iron-based red, yellow, and brown ochres. Archaeol. Anthrop. Sci. 2022, 14, 35. [Google Scholar] [CrossRef]
- Cavallo, G.; Fontana, F.; Gialanella, S.; Gonzato, F.; Riccardi, M.P.; Zorzin, R.; Peresani, M. Heat treatment of mineral pigment during the upper Palaeolithic in north-east Italy. Archaeometry 2018, 60, 1045–1061. [Google Scholar] [CrossRef]
- Fragoso, D.; Costa, S.; Martins, E.; Dias, F.R.; Rosas, P.; Candeias, A.; Carvalho, M.L.; Manso, M. Through the hermit—Rediscovering António Dacosta’s lost painting. Microchem. J. 2016, 126, 474–479. [Google Scholar] [CrossRef]
- Townsend, J.H. The materials of JMW Turner: Pigments. Stud. Conserv. J. 1993, 38, 231–254. [Google Scholar]
- Kampasakali, E.; Papliaka, Z.E.; Christofilos, D.; Varella, E.A. The Russian Avant-Garde Painting Palette Documentary and Physicochemical Study of Inorganic Colorants. J. Anal. Env. Cult. Herit. Chem. 2007, 97, 447–472. [Google Scholar] [CrossRef]
- Ferro, D. The authenticity of the false. Substantia. Int. J. Hist. Chem. 2019, 3, 17–27. [Google Scholar]
- Gerstenblith, P. Provenances: Real, fake, and questionable. Int. J. Cult. Prop. 2019, 26, 285–304. [Google Scholar] [CrossRef]
- Giannossa, L.C.; Laviano, R.; Mastrorocco, F.; Giannelli, G.; Muntoni, I.M.; Mangone, A. A pottery jigsaw puzzle: Distinguish true and false pieces in two Apulian red figured vases by a poli-technique action plan. App. Phys. A 2016, 122, 68. [Google Scholar] [CrossRef]
- Aura Tortosa, J.E.; Gallello, G.; Roldan, C.; Cavallo, G.; Pastor, A.; Murcia-Mascarós, S. Characterization and sources of Paleolithic–Mesolithic ochre from Coves de Santa Maira (Valencian Region, Spain). Geoarchaeology 2021, 36, 72–91. [Google Scholar] [CrossRef]
- Lebon, M.; Gallet, X.; Bondetti, M.; Pont, S.; Mauran, G.; Walter, P.; Bellot-Gurlet, L.; Puaud, S.; Zazzo, A.; Forestier, H.; et al. Characterization of painting pigments and ochres associated with the Hoabinhian archaeological context at the rock-shelter site of Doi Pha Kan (Thailand). J. Archaeol. Sci. Rep. 2019, 26, 101855. [Google Scholar] [CrossRef]
- Mortimore, J.L.; Marshall, L.J.R.; Almond, M.J.; Hollins, P.; Matthews, W. Analysis of red and yellow ochre samples from Clearwell Caves and Çatalhöyük by vibrational spectroscopy and other techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 1179–1188. [Google Scholar] [CrossRef]
- Capel, J.; Huertas, F.; Pozzuoli, A.; Linares, J. Red ochre decorations in Spanish Neolithic ceramics: A mineralogical and technological study. J. Archaeol. Sci. 2006, 33, 1157–1166. [Google Scholar] [CrossRef]
- Bikiaris, D.; Daniilia, S.; Sotiropoulou, S.; Katsimbiri, O.; Pavlidou, E.; Moutsatsou, A.P.; Chryssoulakis, Y. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: Application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2000, 56, 3–18. [Google Scholar] [CrossRef]
- Genestar, C.; Pons, C. Earth pigments in painting: Characterisation and differentiation by means of FTIR spectroscopy and SEM-EDS microanalysis. Anal. Bioanal. Chem. 2005, 382, 269–274. [Google Scholar] [CrossRef]
- Bugini, R.; Corti, C.; Folli, L.; Rampazzi, L. Unveiling the use of creta in Roman plasters: Analysis of clay wall paintings from Brixia (Italy). Archaeometry 2017, 56, 84–95. [Google Scholar] [CrossRef]
- Volpi, F.; Vagnini, M.; Vivani, R.; Malagodi, M.; Fiocco, G. Non-invasive identification of red and yellow oxide and sulfide pigments in wall-paintings with portable ER-FTIR spectroscopy. J. Cult. Herit. 2023, 63, 158–168. [Google Scholar] [CrossRef]
- Franquelo, M.L.; Duran, A.; Herrera, L.K.; De Haro, M.J.; Perez-Rodriguez, J.L. Comparison between micro-Raman and micro-FTIR spectroscopy techniques for the characterization of pigments from Southern Spain Cultural Heritage. J. Mol. Struct. 2009, 924, 404–412. [Google Scholar] [CrossRef]
- Guglielmi, V.; Andreoli, M.; Comite, V.; Baroni, A.; Fermo, P. The combined use of SEM-EDX, Raman, ATR-FTIR and visible reflectance techniques for the characterisation of Roman wall painting pigments from Monte d’Oro area (Rome): An insight into red, yellow and pink shades. Env. Sci. Pollut. Res. Int. 2022, 29, 29419–29437. [Google Scholar] [CrossRef] [PubMed]
- Potter, M.J. Iron Oxide Pigments. In U.S. Geological Survey Minerals Yearbook; U.S. Geological Survey: Reston, VA, USA, 2002. [Google Scholar]
- Harley, R.D. Artists’ Pigments c.1600-1835. In A Study of English Documentary Spurces, 2nd ed.; Heinemann-Butterwoorth: London, UK, 1892. [Google Scholar]
- Rampazzi, L.; Corti, C. Are commercial pigments reliable references for the analysis of paintings? Int. J. Conserv. Sci. 2019, 10, 207–220. [Google Scholar]
- Barnett, J.R.; Miller, S.; Pearce, E. Colour and art: A brief history of pigments. Opt. Laser. Technol. 2006, 38, 445–453. [Google Scholar] [CrossRef]
- Guskos, N.; Papadopoulos, G.J.; Likodimos, V.; Patapis, S.; Yarmis, D.; Przepiera, A.; Przepiera, K.; Majszczyk, J.; Typek, J.; Wabia, M.; et al. Photoacoustic, EPR and electrical conductivity investigations of three synthetic mineral pigments: Hematite, goethite and magnetite. Mater. Res. Bull. 2002, 37, 1051–1061. [Google Scholar] [CrossRef]
- Helwig, K. Mars colours: Preparation methods and chemical composition. Stud. Conserv. 1998, 43 (Suppl. S2), 23. [Google Scholar] [CrossRef]
- Čukovska, L.R.; Minčeva–Šukarova, B.; Lluveras-Tenorio, A.; Andreotti, A.; Colombini, M.P.; Nastova, I. Micro-Raman and GC/MS analysis to characterize the wall painting technique of Dicho Zograph in churches from Republic of Macedonia. J. Raman Spectrosc. 2012, 43, 1685–1693. [Google Scholar] [CrossRef]
- Franquelo, M.L.; Perez-Rodriguez, J.L. A new approach to the determination of the synthetic or natural origin of red pigments through spectroscopic analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 166, 103–111. [Google Scholar] [CrossRef]
- Ionescu, O.H.; Mohanu, D.; Stoica, A.I.; Baiulescu, G.E. Analytical contributions to the evaluation of painting authenticity from Princely church of Curtea de Arges. Talanta 2004, 63, 815–823. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Ma, Q.; Mei, J. A scientific study of the pigments in the wall paintings at Jokhang Monastery in Lhasa, Tibet, China. Herit. Sci. 2014, 2, 21. [Google Scholar] [CrossRef]
- Rizzo, M.M.; Machado, L.D.B.; Borrely, S.I.; Sampa, M.H.O.; Rela, P.R.; Farah, J.P.S.; Schumacher, R.I. Effects of gamma rays on a restored painting from the XVIIth century. Radiat. Phys. Chem. Oxf. Engl. 2002, 63, 259–262. [Google Scholar] [CrossRef]
- Sawczak, M.; Kamińska, A.; Rabczuk, G.; Ferretti, M.; Jendrzejewski, R.; Śliwiński, G. Complementary use of the Raman and XRF techniques for non-destructive analysis of historical paint layers. Appl. Surf. Sci. 2009, 255, 5542–5545. [Google Scholar] [CrossRef]
- Schenatto, J.; Rizzutto, M.A. Use of non-invasive methods of analysis applied to the study of Oscar Pereira da Silva paintings. In Lasers in the Conservation of Artworks; CRC Press: Boca Raton, FL, USA, 2024; Volume XIII, pp. 12–21. [Google Scholar]
- Vermeulen, M.; Miranda, A.S.O.; Tamburini, D.; Delgado, S.E.R.; Walton, M. A multi-analytical study of the palette of impressionist and post-impressionist Puerto Rican artists. Herit. Sci. 2022, 10, 44. [Google Scholar] [CrossRef]
- Żmuda-Trzebiatowska, I.; Wachowiak, M.; Klisińska-Kopacz, A.; Trykowski, G.; Śliwiński, G. Raman spectroscopic signatures of the yellow and ochre paints from artist palette of J. Matejko (1838–1893). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 793–801. [Google Scholar] [CrossRef]
- Marengo, E.; Liparota, M.C.; Robotti, E.; Bobba, M. Monitoring of paintings under exposure to UV light by ATR-FT-IR spectroscopy and multivariate control charts. Vib. Spectrosc. 2006, 40, 225–234. [Google Scholar] [CrossRef]
- Buti, D.; Rosi, F.; Brunetti, B.G.; Miliani, C. In-situ identification of copper-based green pigments on paintings and manuscripts by reflection FTIR. Anal. Bioanal. Chem. 2013, 405, 2699–2711. [Google Scholar] [CrossRef] [PubMed]
- Carlesi, S.; Becucci, M.; Ricci, M. Vibrational spectroscopies and chemometry for nondestructive identification and differentiation of painting binders. J.Chem. 2017, 1, 3475659. [Google Scholar] [CrossRef]
- Pallipurath, A.; Skelton, J.; Ricciardi, P.; Bucklow, S.; Elliott, S. Multivariate analysis of combined Raman and fibre-optic reflectance spectra for the identification of binder materials in simulated medieval paints. J. Raman Spectrosc. 2013, 44, 866–874. [Google Scholar] [CrossRef]
- Mazzeo, R.; Prati, S.; Quaranta, M.; Joseph, E.; Kendix, E.; Galeotti, M. Attenuated total reflection micro FTIR characterisation of pigment–binder interaction in reconstructed paint films. Anal. Bioanal. Chem. 2008, 392, 65–76. [Google Scholar] [CrossRef]
- Miliani, C.; Rosi, F.; Daveri, A.; Brunetti, B.G. Reflection Infrared Spectroscopy for the Non-Invasive in Situ Study of Artists Pigments. Appl. Phys. A Mater. Sci. Process. 2012, 106, 295–307. [Google Scholar] [CrossRef]
- Rampazzi, L.; Brunello, V.; Campione, F.P.; Corti, C.; Lissoni, E. Non invasive techniques for disclosing the palette of Romantic painter Francesco Hayez. Spectrochim. Acta A 2017, 176, 142–154. [Google Scholar] [CrossRef]
- Rampazzi, L.; Brunello, V.; Campione, F.P.; Corti, C.; Geminiani, L.; Recchia, S.; Luraschi, M. Non-invasive identification of pigments in Japanese coloured photographs. Microchem. J. 2020, 157, 105017. [Google Scholar] [CrossRef]
- Bruni, S.; Guglielmi, V.; Della Foglia, E.; Castoldi, M.; Gianni, G.B. A non-destructive spectroscopic study of the decoration of archaeological pottery: From matt-painted bichrome ceramic sherds (southern Italy, VIII-VII BC) to an intact Etruscan cinerary urn. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 191, 88–97. [Google Scholar] [CrossRef]
- Guglielmi, V.; Fermo, P.; Andreoli, M.; Comite, V. A multi-analytical survey for the identification of the red and yellow pigments of coloured sherds discovered in the Monte d’Oro area (Rome). In 2020 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage; International Measurement Confederation: Budapest, Hungary, 2020; pp. 548–553. [Google Scholar]
- Monnier, G.F. A review of infrared spectroscopy in microarchaeology: Methods, applications, and recent trends. J. Archaeol. Sci. Rep. 2018, 18, 806–823. [Google Scholar] [CrossRef]
- Liu, G.L.; Kazarian, S.G. Recent advances and applications to cultural heritage using ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging. Analyst 2022, 147, 1777–1797. [Google Scholar] [CrossRef] [PubMed]
- Rosi, F.; Cartechini, L.; Sali, D.; Miliani, C. Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: From micro-to non-invasive FT-IR. Phys. Sci. Rev. 2019, 4, 20180006. [Google Scholar] [CrossRef]
- Kremer Pigmente. Available online: https://www.kremer-pigmente.com/it/ (accessed on 2 August 2024).
- Fabriano. Available online: https://fabriano.com (accessed on 2 August 2024).
- Zecchi, Soluzioni per Artisti, Materiale per Restauro. Available online: https://zecchi.it (accessed on 2 August 2024).
- Hakeem, N.A.; Basily, A.B.; Sagr, N.; Moharram, M.A. Study of the thermal transformation of natural goethite using infrared spectroscopy. J. Mater. Sci. 1986, 5, 4–6. [Google Scholar] [CrossRef]
- Rampazzi, L.; Corti, C.; Geminiani, L.; Recchia, S. Unexpected findings in 16th century wall paintings: Identification of aragonite and unusual pigments. Heritage 2021, 4, 2431–2448. [Google Scholar] [CrossRef]
- Rochester, C.H.; Topham, S.A. Infrared study of surface hydroxyl groups on goethite. J. Chem. Soc. Faraday Trans. 1979, 75, 591–602. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Poinern, G.E.J.; Issa, T.B.; Singh, P. Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean J. Chem. Eng. 2012, 29, 95–102. [Google Scholar] [CrossRef]
- Longa-Avello, L.; Pereyra-Zerpa, C.; Casal-Ramos, J.A.; Delvasto, P. Study of the calcination process of two limonitic iron ores between 250 °C and 950 °C. Rev. Fac. Ing. 2017, 26, 33–45. [Google Scholar] [CrossRef]
- Wilson, M.J. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods; Chapman & Hall: London, UK, 1994. [Google Scholar]
- Cui, H.; Ren, W.; Lin, P.; Liu, Y. Structure control synthesis of iron oxide polymorph nanoparticles through an epoxide precipitation route. J. Exp. Nanosci. 2013, 8, 869–875. [Google Scholar] [CrossRef]
- Das, S.; Hendry, M.J.; Essilfie-Dughan, J. Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. J. Appl. Geochem. 2013, 28, 185–193. [Google Scholar] [CrossRef]
- Davantès, A.; Costa, D.; Lefèvre, G. Molybdenum (VI) adsorption onto lepidocrocite (γ-FeOOH): In situ vibrational spectroscopy and DFT+ U theoretical study. J. Phys. Chem. C. 2016, 120, 11871–11881. [Google Scholar] [CrossRef]
- Frost, R.L.; Mako, E.; Kristof, J.; Kloprogge, J.T. Modification of kaolinite surfaces through mechanochemical treatment—A mid-IR and near-IR spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2002, 58, 2849–2859. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, H.; Liu, Q.; He, J.; Frost, R.L. Mid-infrared and near-infrared spectroscopic study of kaolinite-potassium acetate intercalation complex. J. Molec. Struct. 2011, 994, 55–60. [Google Scholar] [CrossRef]
- Bishop, J.; Madejova, J.; Komadel, P.; Fröschl, H. The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay. Miner. 2002, 37, 607–616. [Google Scholar] [CrossRef]
- Busca, G.; Lorenzelli, V.; Ramis, G.; Willey, R.J. Surface sites on spinel-type and corundum-type metal oxide powders. Langmuir 1993, 9, 1492–1499. [Google Scholar] [CrossRef]
- Kiskira, K.; Papirio, S.; Mascolo, M.C.; Fourdrin, C.; Pechaud, Y.; van Hullebusch, E.D.; Esposito, G. Mineral characterization of the biogenic Fe (III)(hydr) oxides produced during Fe (II)-driven denitrification with Cu, Ni and Zn. Sci. Total Environ. 2019, 687, 401–412. [Google Scholar] [CrossRef]
- Krehula, S.; Štefanić, G.; Zadro, K.; Krehula, L.K.; Marciuš, M.; Musić, S. Synthesis and properties of iridium-doped hematite (α-Fe2O3). J. Alloys Compd. 2012, 545, 200–209. [Google Scholar] [CrossRef]
- Vargas, M.A.; Diosa, J.E.; Mosquera, E. Data on study of hematite nanoparticles obtained from Iron (III) oxide by the Pechini method. Data Brief 2019, 25, 104183. [Google Scholar] [CrossRef]
- Yariv, S.; Mendelovici, E. The effect of degree of crystallinity on the infrared spectrum of hematite. App. Spectrosc. 1979, 33, 410–411. [Google Scholar] [CrossRef]
- Alp, Z.; Ciccola, A.; Serafini, I.; Nucara, A.; Postorino, P.; Gentili, A.; Curini, R.; Favero, G. Photons for Photography: A First Diagnostic Approach to Polaroid Emulsion Transfer on Paper in Paolo Gioli’s Artworks. Molecules 2022, 27, 7023. [Google Scholar] [CrossRef] [PubMed]
Reference | Where the Pigments Come from? | Which Techniques Were Used? | Which Pigments Were Identified? | Are Ochres also Present? | Why Identified as Mars Pigment? |
---|---|---|---|---|---|
Čukovska et al., 2012 [32] | 48 samples from Dicho Zograph’s (1819–1872) wall paintings. | Optical microscopy, μ-Raman, GC/MS. | Mars red, Mars yellow. | Red ochre, yellow ochre. | The pigments used by the artist are not identified as natural (ochre) or synthetic (Mars) because it is possible that both are used. Red ochre can be differentiated from Mars red by a Raman peak around 660 cm−1, present in some red ochres. |
Fragoso et al., 2016 [10] | The Heremit of António Dacosta, from 1985. Acrylic on canvas. | Digital X-ray radiograpy, XRF, Dark-field microscopy, SEM-EDX, μ-Raman. | Mars yellow, Mars red. | Not found. | Not explained. |
Franquelo et al., 2009 [24] | Lady Santa Ana, polychromed sculpture, XIV century; Saint Pascual Bailon, Saint Francis of Assisi, and the Virgin Maria, sculptures by Martinez Montañes, XVII century; Virgin and the Child, by Murillo, XVII century; A portrait collection of carmelitas Saints, XVII century; Paintings by Mohedano, XVIII century; Wall paintings from the House of the Golden Bracelet, Pompeii, II century BCE; Wall paintings from Cartuja Monastery, XVI and XVII centuries; El Salvador Church, XIX century. | Cross-sections with stereomicroscope, FTIR absorbance measurement, μ-FTIR, μ-Raman, SEM-EDX. | Mars red (in Lady Santa Ana). | Red ochre, yellow ochre, hematite. | Mars red is identified by the absence of minerals like calcite or clay. In addition, its IR band at 608–609 cm−1 is more intense than that of hematite. |
Franquelo, Perez-Rodriguez, 2016 [33] | Samples from various representative artworks of Southern Spain’s Cultural Heritage, including Spanish Gothic and Andalusian Baroque polychrome sculptures, canvases, and altarpieces. | Optical microscopy, SEM-EDX, μ-Raman spectroscopy, μ-FTIR microscopy, Py-GC/MS. | Mars red. | Natural red, ochre. | Presence of Al, K, and S, coming from the synthesis of the Mars pigment. |
Ionescu et al., 2004 [34] | Painting from Princely church of Curtea de Arges (1352–1377). | Optical microscopy, SEM-EDX, microchemical test, | Mars red. | Red earth, red ochre, yellow ochre. | XRF highlighted the presence of Fe, Ca, C, and S. Mars red was used in a documented restoration work. |
Li et al., 2014 [35] | Wall paintings at Jokhang Monastery in Lhasa, Tibet, China, 1850–1900 (?). | XRF, PLM, Raman spectroscopy, SEM-EDX. | Mars red. | - | Iron detected by XRF. |
Rizzo et al., 2002 [36] | Sacred Family with Angels, by Leonardo Glores, XVII century, Peru/South America. Tempera over canvas without varnish. | Spectrophotometer, TG-DSC. | Original painting: Mars red, yellow ochre; Restoration paints: Yellow ochre, Mars yellow, red ochre, Mars red. | Yellow ochre in the original painting and also used as pigment for the restoration work. | Not explained. |
Sawczak et al., 2009 [37] | Wall paintings in the Little Christopher chamber of the Main Town Hall (Gdansk). Frescos 1400 and 1427. | Portable XRF, Raman. | Mars red, Mars yellow. | Red ochre, yellow ochre. | Not explained. The terms ochre and Mars pigments are used as synonymous. |
Schenatto, Rizzuto, 2024 [38] | Sessões da corte de Lisboa, oil on canvas, 1922, and Príncipe Dom Pedro e Jorge de Avirez a bordo da fragata União, oil on canvas, 1922, both by Oscar Pereira da Silva. | Infrared reflectography, ED-XRF, Raman. | Mars red. | Yellow ochre. | Not explained. |
Townsend 1993 [11] | Pigments from palette of J.M.W Turner (1792–1850) and some paints: Interior of a Gothic Church (1797, wood) and The Vision of Jacob’s Ladder (1800–1810, reworked c. 1830, painting on canvas). | Light and UV microscopy, microchemical test, thin-layer chromatography (TLC), EDX, XRD, FTIR. | Mars red, Mars orange, Mars yellow. | Yellow ochre. | The main difference between ochre and synthetic pigments lies in the particle size: Ochres vary due to natural mineral grinding, while synthetic pigments have uniform size. Turner used synthetic pigments throughout his career, as documented in the article. |
Vermeulen 2022 [39] | Six impressionist and post-impressionist paintings of three leading Puerto Rican artists: Francisco Oller (1833–1917): Trapiche meladero, 1890, oil on canvas, and Bodegón con guanábanas, 1890, oil on wood, and Bodegón con guanábanas y utensilios, 1890–91, oil on canvas; José Cuchí y Arnau (1857–1925): La Chula, 1895, oil on canvas, and Mujer en la playa, 1897, oil on canvas; Ramón Frade (1875–1954): Rêverie d’amour, 1905, oil on wood. | MA-XRF, reflectance imaging spectroscopy (RIS), SEM-EDX, Raman spectroscopy, HPLC-DAD-ESI-Q-ToF. | Mars red. | Yellow ochre, red ochre. | Not explained. |
Żmuda-Trzebiatowska et al., 2015 [40] | Original painting materials (paint tubes) of J. Matejko, XIX century. | Raman, XRF, SEM-EDX, LIPS, FTIR. | Mars red. | Yellow ochre. | Not explained. |
Pigment | Color | Information Available |
---|---|---|
A—Iron Oxide Yellow 1 | Yellow | Synthetic iron hydroxide. Pigment Yellow 42.77492, α-FeO(OH) |
A—Iron Oxide Yellow 2 | Yellow | Pigment Yellow 42, C.I. 77492, α-FeOOH |
A—Iron Oxide Yellow 3 | Yellow | α-FeO(OH). Pigment Yellow 42, C.I. 77492 |
A—Iron Oxide Yellow 4 | Yellow | C.I. Pigment Yellow 42.77492 (FeOOH) (CAS No. 20344-49-4), C.I. Pigment Red 101.77491 (Fe2O3) (CAS No. 1309-37-1) |
A—Iron Oxide Yellow 5 | Yellow | α-FeO(OH). Pigment Yellow 42, C.I. 77492 |
A—Iron Oxide Yellow 6 | Yellow | Pigment Yellow 43, C.I. 77491 Fe2O3 + Al2O3 + Mn2O3 + SiO4 + CaCO3. Natural product |
A—Iron Oxide Yellow-Orange | Orange | FeO(OH); Pigment Yellow 42, C.I. 77492. Synthetic iron oxide gamma-FeOOH |
A—Iron Oxide Orange | Orange | Mixture of Pigment Yellow 42.77492 (FeO(OH)) and Pigment Red 101.77491 (Fe2O3) |
A—Iron Oxide Red 1 | Red | Synthetic Iron oxide α-Fe2O3. Pigment Red 101, C.I. 77491 |
A—Iron Oxide Red 2 | Red | Synthetic Iron oxide α-Fe2O3. Pigment Red 101, C.I. 77491 |
A—Iron Oxide Red 3 | Red | Synthetic Iron oxide α-Fe2O3. Pigment Red 101, C.I. 77491 |
A—Iron Oxide Red 4 | Red | Synthetic Iron oxide α-Fe2O3. Pigment Red 101, C.I. 77491 |
A—Iron Oxide Red 5 | Red | Synthetic Iron oxide α-Fe2O3. Pigment Red 101, C.I. 77491 |
A—Iron Oxide Red 6 | Red | Synthetic Iron oxide α-Fe2O3. Pigment Red 101, C.I. 77491 |
A—Caput Mortuum Synthetic | Red | Synthetic Iron oxide α-Fe2O3. Pigment Red 101, C.I. 77491 |
A—Iron Oxide Red 7 | Red | Fe2O3. Pigment Red 101, C.I. 77491 |
A—Iron Oxide Red | Red | Synthetic Iron oxide α-Fe2O3. Pigment Red 101, C.I. 77491 |
A—Yellow Ochre, 1 | Yellow | Pigment Yellow 43, C.I. 77492. Natural product |
A—Yellow Ochre 2 | Yellow | Natural yellow earth, Pigment Yellow 43, C.I. 77492 |
A—Yellow Ochre 3 | Yellow | Natural yellow earth, Pigment Yellow 43, C.I. 77492 |
A—Yellow Ochre 4 | Yellow | Natural yellow earth from France. SiO2 + Al2O3 + Fe2O3. Pigment Yellow 43, C.I. 77492 |
A—Yellow Ochre 5 | Yellow | Natural yellow earth from France: Kaolin + Goethite. SiO2 + Al2O3 + Fe2O3. Pigment Yellow 43, C.I. 77492 |
A—Yellow ochre 6 | Yellow (orange) | Natural yellow earth from France. SiO2 + Al2O3 + Fe2O3. Pigment Red 102, C.I. 77491 |
A—Yellow Ochre 7 | Yellow | Natural ochre from Italy. Pigment Yellow 43, C.I. 77492 |
A—Yellow Ochre 8 | Yellow | Natural yellow ochre; Pigment Yellow 43, C.I. 77492 |
A—Yellow Ochre 9 | Yellow | Natural ochre from Italy. Pigment Yellow 43, C.I. 77492 |
A—Yellow Ochre 10 | Yellow | Pigment Yellow 43, C.I. 77492 Mixture of natural barium sulfate (BaSO4), earth containing iron oxide (Fe2O3 + MnO2 + SiO2), and iron oxide yellow (FeO(OH)) |
A—Red Ochre 1 | Red | Pigment Red 102, C.I. 77491. Natural product |
A—Red Ochre 2 | Red | Pigment Red 102, C.I. 77491 |
A—Red Ochre 3 | Red | Natural red earth from Spain; Pigment Red 102, C.I. 77491 |
A—Orange Ochre 1 | Yellow (orange) | Natural yellow earth from France. Pigment Yellow 43 (C.I. 77492) and Pigment Red 102 (C.I. 77491) |
A—Orange Ochre 2 | Orange | Natural earth from France. SiO2 + Al2O3 + Fe2O3 + Fe3O4. Pigment Yellow 43 + Pigment Red 102 + Pigment Black 11 |
A—Gold Ochre 1 | Yellow | Mixture of calcium carbonate and synthetic iron oxide. Pigment Yellow 42, C.I. 77492 |
A—Gold Ochre 2 | Yellow | Natural yellow ochre from Italy. Pigment Yellow 43, C.I. No. 77492 |
B—Yellow Ochre 1 | Yellow | ND |
B—Yellow Ochre 2 | Yellow | ND |
B—Yellow Ochre 3 | Yellow | Natural earth pigment derived from iron-rich clay deposits that are present all over the world; this Yellow Ochre comes from the hilly regions around Verona, Italy |
B—Golden Ochre | Yellow | Natural Iron Oxides |
B—Orange Ochre 1 | Orange | A rich orange pigment collected from the banks of the river Fleet in London |
B—Pink Ochre 1 | Pink | ND |
B—Red Ochre | Red | Synthetic Iron Oxides |
B—Red Pigment 1 | Red | Synthetic Iron Oxides. |
B—Red Pigment 2 | Red | Natural earth pigment that was originally found in the volcanic areas in Pozzuoli, Italy |
B—Red Pigment | Red | Iron oxide and chalk |
B—Mars Red Pigment | Red | Synthetic Iron Oxides |
B—Red Oxide Pigment | Red | Artificial mineral pigment, hydrated ferric oxides |
B—Mars Yellow Pigment | Yellow | Synthetic Iron Oxides |
B—Yellow Oxide Pigment | Yellow | Artificial mineral pigment, hydrated ferric oxides |
B—Orange Oxide | Orange | Artificial mineral pigment, hydrated ferric oxides |
C—Mars orange | Orange | Synthetic iron oxide—PY42—77492—inorganic |
C—Mars yellow | Yellow | Synthetic iron oxide—PY42—77492—inorganic |
C—Mars red | Yellow | Synthetic iron oxide—PR101—77491—inorganic |
C—Yellow ochre 1 | Yellow | Synthetic iron oxide—PY43—77492—inorganic |
C—Yellow ochre 2 | Yellow | Synthetic iron oxide—PY43—77492—inorganic |
C—Yellow ochre 3 | Yellow | Synthetic iron oxide—PY43—77492—inorganic, Synthetic iron oxide—PY42—77492—inorganic, Zinc oxide—PW4—77947—inorganic |
C—Gold ochre | Yellow | Natural iron oxide—PY43—77492—inorganic |
C—Red ochre 1 | Red | Natural iron oxide—PY43—77492—inorganic |
C—Gold 1 | Yellow | Mica+ Synthetic iron oxide—PW20—77019—inorganic |
C—Gold 2 | Yellow | Mica+ Synthetic iron oxide—PW20—77019—inorganic |
C—Gold 3 | Yellow | Mica+ Synthetic iron oxide—PW20—77019—inorganic |
C—Bronze 1 | Yellow | Mica+ Synthetic iron oxide—PW20—77019—inorganic, Carbon black—PBk7—77266—inorganic |
C—Bronze 2 | Yellow | Mica+ Synthetic iron oxide—PW20—77019—inorganic, Carbon black—PBk7—77266—inorganic |
D—Yellow ochre 1 | Yellow | Natural earth of a slightly transparent warm yellow. PY43 |
D—Yellow ochre 2 | Yellow | Or Chrome Yellow Rutile, is a slightly ochre yellow-orange. Synthetic. Chromium antimony titanium rutile. PBr24 |
D—Gold ochre | Yellow | Or Yellow of Rome, is a zinc ferrite. Synthetic. PY119 |
D—Red ochre | Red | Obtained by calcination of yellow ochre. PR102 |
D—Ocre de Ru | ND | Reconstituted color shade based on natural earth and synthetic pigment. Natural earth + phthalocyanine green. PBr7, PG7 |
D—Mars yellow | Yellow | Azo pigment and natural earth. In other times, this pigment was made from a concentrate of animal urine from the Indies. Py1, PBr7 |
D—Mars red | Red | Synthetic iron oxide. Very dark red-brown. PR101 |
D—Red pigment | Red | Synthetic iron oxide |
E—Yellow ochre 1 | Yellow | Natural earth |
E—Yellow ochre 2 | Yellow | Natural earth |
E—Yellow ochre 3 | Yellow | Natural earth |
E—Yellow ochre 4 | Yellow | Natural earth |
E—Yellow ochre 5 | Yellow | Natural earth |
E—Yellow ochre 6 | Yellow | Natural earth |
E—Gold ochre 1 | Yellow | Natural earth |
E—Gold ochre 2 | Yellow | Natural earth |
E—Orange ochre | Orange | Natural earth |
E—Red ochre 1 | Red | Natural earth |
E—Red ochre 2 | Red | Natural earth |
E—Hematite 1 | Red | Natural earth |
E—Hematite 2 | Red | Natural iron oxide (Group 2) |
E—Red bole 1 | Red | Natural earth |
E—Red bole 2 | Red | Mixture of coloring earths |
E—Red pigment 1 | Red | Mix of natural earth |
E—Red pigment 2 | Red | Mix of natural earth |
E—Red pigment 3 | Red | Mix of natural earth |
E—Red pigment 4 | Red | Natural iron oxide (Group: 5) |
E—Red pigment 5 | Red | Mixture of coloring earths |
E—Red pigment 6 | Red | Iron oxide (Group: 2) |
E—Mars yellow | Yellow | Iron oxide (Group: 1) |
E—Mars orange | Orange | Iron oxide (Group: 1) |
E—Mars red | Red | Iron oxide (Group: 1) |
Powder Pigments and Raw Materials Characterized by FTIR-ER | |||
---|---|---|---|
Yellow Pigments | Red Pigments | ||
Pigment | Description | Pigment | Description |
MY1: Iron Oxide Yellow, maize yellow, #48001 | Synthetic iron oxide | MR1: Iron Oxide Red 110 M, light, #48100 | Red pigment 101.77491 Fe2O3 |
MY2: Iron Oxide Yellow 415, greenish, #48020 | Yellow pigment 42 (FeOOH) | MR2: Iron Oxide Red 120 M, #48120 | Red pigment 101.77491 Fe2O3 |
MY3: Iron Oxide Yellow 940, dark, #48040 | C.I. Yellow pigment 42.77492 (FeOOH) red pigment 101.77491 (Fe2O3) | MR3: Iron Oxide Red 130 B, medium, #48150 | Red pigment 101.77491 Fe2O3 |
MY4: Iron Oxide Yellow 930, dark, #48045 | Yellow pigment 42.77492, FeO(OH) | MR4: Iron Oxide Red, clinker red, #48151 | Red pigment 101.77491 Fe2O3 |
MY5: Iron Oxide Yellow, maize yellow, #48001 | Iron oxide pigment synthetic | MR5: Iron Oxide Red 130 M, medium, #48200 | Red pigment 101.77491 Fe2O3 |
MY5: Iron Oxide Yellow- Orange 943, Gamma, #48050 | FeO(OH); yellow pigment 42.77492 | MR6: Iron Oxide Red 160 M, #48210 | Red pigment 101.77491 Fe2O3 |
MR7: Caput Mortuum Synthetic 180 M, #48220 | Red pigment 101.77491 Fe2O3 | ||
MR8: Iron Oxide Red 222, dark, #48250 | Red pigment 101.77491 Fe2O3 | ||
MR9: Iron Oxide Red, micronized, #48289 | Iron oxide (II), 98–100% | ||
Raw materials | |||
YO1: Yellow Moroccan ochre, in pieces, #1164205 | Raw materials such as minerals and earth | RO1: Red Moroccan ochre, in pieces, #12450 | Red ochre |
RO2: Red bole in pieces, #40520 | Natural mixture of hematite, quartz, and feldspars. | ||
Characterized paper pictorial layers via FTIR-ATR and FTIR-ER | |||
MYP: Mars yellow in oil on paper | YOP: Yellow ochre in oil on paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carangi, M.C.; Corti, C.; Rampazzi, L. Looking at the Modern to Better Understand the Ancient: Is It Possible to Differentiate Mars Pigments from Archaeological Ochres? Heritage 2024, 7, 6192-6212. https://doi.org/10.3390/heritage7110291
Carangi MC, Corti C, Rampazzi L. Looking at the Modern to Better Understand the Ancient: Is It Possible to Differentiate Mars Pigments from Archaeological Ochres? Heritage. 2024; 7(11):6192-6212. https://doi.org/10.3390/heritage7110291
Chicago/Turabian StyleCarangi, Maria Cecilia, Cristina Corti, and Laura Rampazzi. 2024. "Looking at the Modern to Better Understand the Ancient: Is It Possible to Differentiate Mars Pigments from Archaeological Ochres?" Heritage 7, no. 11: 6192-6212. https://doi.org/10.3390/heritage7110291
APA StyleCarangi, M. C., Corti, C., & Rampazzi, L. (2024). Looking at the Modern to Better Understand the Ancient: Is It Possible to Differentiate Mars Pigments from Archaeological Ochres? Heritage, 7(11), 6192-6212. https://doi.org/10.3390/heritage7110291